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Population aging is an inevitable problem nowadays, and the elderly are going through a
lot of geriatric symptoms, especially cognitive impairment. Irisin, an exercise-stimulating
cleaved product from transmembrane fibronectin type III domain-containing protein
5 (FNDC5), has been linked with favorable effects on many metabolic diseases.
Recently, mounting studies also highlighted the neuroprotective effects of irisin on
dementia. The current evidence remains uncertain, and few clinical trials have been
undertaken to limit its clinical practice. Therefore, we provided an overview of current
scientific knowledge focusing on the preventive mechanisms of irisin on senile cognitive
decline and dementia, in terms of the possible connections between irisin and
neurogenesis, neuroinflammation, oxidative stress, and dementia-related diseases. This
study summarized the recent advances and ongoing studies, aiming to provide a better
scope into the effectiveness of irisin on dementia progression, as well as a mediator of
muscle brain cross talk to provide theoretical support for exercise therapy for patients
with dementia. Whether irisin is a diagnostic or prognostic factor for dementia needs
more researches.
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INTRODUCTION

The world has entered an aging society. In addition to chronic diseases, the elderly is accompanied
by a series of geriatric symptoms. Cognitive impairment is a classic symptom of geriatric syndrome,
which occurs from mild cognitive impairment (MCI) to dementia (Sanford, 2017). MCI is an
intermediate state between neurotypical cognition and neurodegenerative dementia (Petersen et al.,
2018). The prevalence of MCI in the elderly population aged ≥60 years is approximately 6.4–25%
and increases with age according to the American Academy of Neurology (AAN) guidelines (Cheng
et al., 2017). Dementia is the most serious form of cognitive impairment; diminishes the physical
and mental function of older people, quality of life, and disability; and is the fifth leading cause of
death (Winblad et al., 2004).

There were some risk factors of MCI and dementia, such as cardiovascular diseases (Schumacher
et al., 2013), inflammation (Huh et al., 2014), and stroke (Chen et al., 2019). Alzheimer’s disease
(AD) is a classic type of dementia, which is characterized at the neuropathological level by deposits
of insoluble amyloid β-peptide (Aβ) in extracellular plaques and aggregated Tau proteins (Hodson,
2018). Developing evidence suggested that decreased brain-derived neurotrophic factor (BDNF)
(Amidfar et al., 2020) and damaged synaptic plasticity (Skaper et al., 2017) led to dementia.
However, the mechanism remains to be clarified.
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Irisin, a myokine containing 112 amino acids, is secreted
by skeletal muscle after exercise stimulation, which was first
found in 2012 by Boström et al. (2012). It is processed from
the type I membrane protein encoded by the FNDC5 gene, then
secreted into the blood and circulated to several systems, and
passed through the blood-brain barrier (BBB). Irisin consists
of an N-terminal fibronectin III (FN III)-like domain attached
to a flexible C-terminal tail and a continuous inter-subunit β-
sheet dimer (Mahgoub et al., 2018). This structure is stabilized
because of the hydrogen bonds and its interactions between
the side chains of adjacent subunits, especially between Arg-
75 and Glu-79, thus protecting the dimer ends and Trp-
90/Trp-90 (Schumacher et al., 2013). Peroxisome proliferator-
activated receptor γ (PPARγ) coactivator-1 α (PGC-1α) is
the main regulator of FNDC5 in skeletal muscles in rodents
and humans (Huh et al., 2014). Endurance exercise activates
on PGC-1α to induce cleavage of FNDC5 to irisin. PGC-1α

interacts with a wide range of transcription factors, and it
is expressed in skeletal muscle, heart, and brain (Lin et al.,
2002). It interacted with several pathways such as the p38
mitogen-activated protein kinase (MAPK) pathway stimulated by
exercise (Akimoto et al., 2005), 5’ adenosine monophosphate-
activated protein kinase (AMPK) pathway (Chen et al., 2019),
Sirtuin1 (Sirt1) pathway (Safarpour et al., 2020), and the
cyclic adenosine monophosphate (cAMP) response element-
binding (CREB) pathway. The cAMP-mediated PGC-1α/CREB
signaling bolstered the expression of FNDC5 (Yang et al., 2018).
Besides, FNDC5 and irisin expressed in many tissues, such as
skeletal muscle, pancreas, brown adipose tissue (BAT), liver,
and brain, especially in the hippocampus and hypothalamus,
are important for memory and cognition (Dun et al., 2013;
Varela-Rodríguez et al., 2016).

Irisin was associated with various metabolic diseases such as
diabetes, cardiovascular disease, and obesity (Polyzos et al., 2018).
It induced the expression of mitochondrial uncoupling protein
1 (UCP1) (Castillo-Quan, 2012), increasing thermogenesis and
converting white adipose tissue (WAT) into BAT. Furthermore,
irisin exerted favorable effects on glucose metabolism to
maintain glucose homeostasis and improve insulin resistance,
of which mechanisms involved β cell regeneration (Natalicchio
et al., 2017), reducing gluconeogenesis and promoting glycogen
synthesis (Polyzos et al., 2013; Roca-Rivada et al., 2013). Besides,
irisin performed a protective function on lipid metabolism
involving several pathways such as the AMPK-SREBP2 pathway
(Tang et al., 2016). It was also antioxidative, anti-inflammatory,
and attenuating apoptosis, functioning to alleviate mitochondrial
dysfunction (Mazur-Bialy et al., 2017b; Tu et al., 2020;
Zhang et al., 2020). Many studies have reported that irisin
had neuroprotective functions in AD (Kim and Song, 2018;
Lourenco et al., 2019; de Freitas et al., 2020). Lourenco
et al. (2019) elucidated that FNDC5/irisin was decreased in
AD brains and CSF and in AD experimental models, but
there was no significance in plasma irisin levels. Conti et al.
(2019) reported a slight increase in irisin serum levels in
patients with AD. Zhang et al. (2021) suggested that serum
irisin might be a biomarker of cognitive decline in vascular
dementia. Bičíková et al. (2021) reported that movement was

a positive modulator of aging and the PPARγ is a critical
link between mental function and aging. FNDC5/irisin is
stimulated by PGC-1α, indicating irisin might be the mediator
of muscle and brain cross talk. Some clinical observations and
mechanisms were reported.

We try to summarize the research on the relationship
between irisin and cognitive impairment and to understand
the mechanisms of direct neuroprotective and indirect risk
reduction. This study intended to explore whether irisin is a
potential serum predictor of cognitive impairment in the elderly
and an underlying mediator of muscle-brain cross talk to support
exercise therapy for patients with dementia.

FNDC5/IRISIN IN MUSCLE-BRAIN
CROSS TALK

Accumulating evidence is supporting the existence of muscle
brain cross talk, a muscle-brain endocrine loop (Pedersen,
2019). Brain sensed exercise indirectly via adiponectin and liver-
derived proteins such as fibroblast growth factor 21 (FGF21)
and insulin-like growth factor 1 (IGF1), and muscle secreted
myokines to regulate the brain function as a loop. The
exercise was believed to decrease the risk of dementia (Santos-
Lozano et al., 2016), delay the cognitive decline in patients
with neurodegenerative disorders and prevent stress, anxiety,
and depression (Pedersen and Saltin, 2015). The underlying
mechanism might be the muscle brain cross talk. The physical
activity enhanced circulating levels of myokines to enable
the direct cross talk of muscle and brain, affecting neuronal
proliferation and differentiation, synaptic plasticity, memory, and
learning (Scisciola et al., 2021).

The exercise was tightly related to the PGC1-α/FNDC5/BDNF
pathway. FNDC5 gene expression was elevated following the
increased PGC-1α expression induced by exercise both in central
and peripheral organs, which stimulated the expression of BDNF
in the brain (Boström et al., 2012). Irisin, as a myokine dissected
from FNDC5, was also mediated by PGC-1α and passed through
the BBB to increase the BDNF expression and enhance learning,
memory, and mood (Lourenco et al., 2019). On the one hand,
periphery irisin delivered to the brain and overexpressed irisin
in the brain increased BDNF. On the other hand, knockdown
of FNDC5 reduced the central BDNF expression (Severinsen
and Pedersen, 2020). Figure 1 elucidated that irisin acted
as a mediator of muscle brain cross talk and the effects of
FNDC5/irisin on elderly cognition.

FNDC5/IRISIN ACT ON CNS

FNDC5/Irisin and Neurogenesis
Brain-derived neurotrophic factor expresses highly in the
brain, and it has considerable effects on synapses (Lu et al.,
2014). It, mostly released from microglia and astrocytes, acts
to promote synaptic plasticity, neuronal survival, neuronal
differentiation, and neuronal health (Binder and Scharfman,
2004; Zuccato and Cattaneo, 2009). It was well-related to
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FIGURE 1 | Effects of FNDC5/irisin on elderly dementia and cognition. Exercise promoted PGC-1α, which stimulated fibronectin type III domain-containing protein 5
(FNDC5) to be dissected into irisin. Irisin was shed into a blood vessel, circulating the whole body and passing through blood–brain barrier. Irisin might increase the
expression of brain-derived neurotrophic factors, which improved synaptic plasticity, neuronal survival, neuronal differentiation, and neuronal health, thus cognition.
FNDC5 was also highly expressed in hippocampus and stimulated by peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1 α (PGC-1α) to be cleaved
into irisin. Besides, irisin acts with its anti-inflammation and anti-oxidative effects to defend cognition deficits. Furthermore, FNDC5/irisin might have positive
connections to dementia-related diseases, such as coronary artery disease, hypertension, heart failure, stroke, and Parkinson’s disease, and depression to protect
against dementia.

neurofunction and cognition. BDNF is bound to tropomyosin-
related kinase B (TrKB) receptor to exert considerable effects.
Decreased BDNF/TrkB activity resulted in neurodegeneration.
Downregulation of BDNF/TrkB caused neuroinflammation,
increasing inflammatory cytokines such as IL-1β and IL-6. Then
triggered the JAK2/STAT3 pathway, resulting in the upregulation
of C/EBPβ/AEP signaling, which led to Aβ precursor protein
and Tau protein cleavage, and the Aβ and Tau alterations finally
caused cognitive impairment (Wang Z. H. et al., 2019). Many
studies reported BDNF levels decreased in AD patients and MCI
(Tanila, 2017).

Circulating and central irisin acted on the brain to exert
beneficial effects. Irisin bound and modified the function of
neurotransmitter receptors in the forebrain, then neurons. The
receptor of irisin in the brain was integrin-αV/β5 heterodimers
(Jackson et al., 2021). Recombinant irisin stimulated the
cAMP/PKA/CREB pathway in human cortical slices (Lourenco
et al., 2019). CREB protein is a cellular transcription factor that
plays a widely confirmed role in neuronal plasticity and long-
term memory formation in the brain (Sen and Stress, 2019). Irisin
increased cAMP and phosphorylated CREB (pCREB) in mouse
hippocampal slices, which bolstered the expression of BDNF.
According to the study by Lourenco et al. (2019), irisin-induced
CREB phosphorylation was mediated by PKA. Fahimi et al.
(2017) reported that mice after exercises appeared appreciable
increase in BDNF mRNA and protein levels, distinctively elevated

synaptic load in the dentate gyrus, and increased irisin and
TrkB receptor levels in the astrocytes, indicating that irisin
might mediate the effects of exercise on brain function and
could be a messenger of periphery and central cross talk.
Zsuga et al. (2016) proposed that irisin may be a mediator
between exercise and reward-related learning and motivation
through the irisin-BDNF/TrKB-MEK/ERK-mTOR pathway. The
TrKB linked with dopamine 3 (D3) receptor signaling such as
PI3/Akt/mTOR pathway was also involved. The two pathways
were under the control of BDNF and caused increased dopamine
content, neuronal plasticity, and raised neuronal survival (Collo
et al., 2014). Moon et al. (2013) described that irisin performed
favorable effects on hippocampal neuron proliferation primarily
via the STAT3 signaling pathway. Activation of STAT3 has
been confirmed to correlate with stimulating hippocampal
neurogenesis (Jung et al., 2006).

FNDC5 was highly expressed in the brain especially in
the hippocampus (Wrann et al., 2013; Lourenco et al., 2019).
Neuronal FNDC5 gene expression was also regulated by PGC-
1α. The orphan nuclear receptor estrogen-related receptor
alpha (ERRα) was a central metabolic regulator interacting
with PGC-1α (Schreiber et al., 2004). Wrann et al. (2013)
found that ERRα was up-regulated in the hippocampus upon
exercise. Furthermore, FNDC5 regulated BDNF gene expression
in a cell-autonomous manner, and BDNF decreased FNDC5
gene expression as a part of a potential feedback loop.
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Elevated expression of FNDC5 strikingly up-regulated BDNF
gene expression. Moreover, peripheral delivery of FNDC5
also increased BDNF expression in the hippocampus, and
ERK1/2 was a critical regulator of FNDC5 expression and
function on neuronal differentiation (Hosseini Farahabadi et al.,
2015; Wrann, 2015). In addition to the direct regulation of
FNDC5 to BDNF, irisin was also processed from FNDC5 in
the hippocampus. Thus, FNDC5/irisin acted as a messenger
of muscle brain cross talk, influencing the neurogenesis in
cognitive impairment, in particular through the neuroprotective
effects of BDNF.

FNDC5/Irisin and Inflammation
Emerging evidence suggested the importance of inflammation in
the pathogenesis of AD and mild cognitive impairment (Holmes,
2013; Shen et al., 2019). According to a meta-analysis of 170
studies, patients with AD and MCI were accompanied with
elevated inflammatory markers in both CSF and periphery, such
as C-reactive protein (CRP), interleukin-6 (IL-6), soluble tumor
necrosis factor receptor 1 (sTNFR1), soluble tumor necrosis
factor receptor 2(sTNFR2), alpha1-antichymotrypsin (α1-ACT),
IL-1β, soluble CD40 ligand, IL-10, monocyte chemoattractant
protein-1 (MCP-1), transforming growth factor-beta 1(TGF-
β1), soluble triggering receptor expressed on myeloid cells 2
(sTREM2), and so on (Shen et al., 2019).

The most common neuroinflammation is postoperative.
Disruption of the BBB is the hallmark of neuroinflammation;
BBB dysfunction like increased BBB permeability has been
regarded as accounting for cognitive impairment (Yang et al.,
2017). Surgical trauma induced the innate immune system
of the brain through the nuclear factor-κB (NF-κB) pathway,
leading to endothelial dysfunction and increased permeability
of the BBB (Alam et al., 2018). The neuroinflammation
consequences included neuronal apoptosis, damaged
hippocampal neurogenesis, and impaired synaptic plasticity
connections, resulting in neurodegenerative diseases (Zhang
et al., 2016; Feng et al., 2017; Alam et al., 2018).

Another type of neuroinflammation is obesity-related
inflammation. Obesity is related to chronic low-grade systemic
inflammation (Gregor and Hotamisligil, 2011; Spencer, 2013).
Inflammatory cascade was initiated by the stimulation of
free fatty acid and lipopolysaccharide (LPS) receptor, toll-like
receptor 4 (TLR4) on immune cells (Shu et al., 2012). The
downstream factors of the TLR family signaling involve the
adapter molecule MyD88, which activated NF-κB and MAPK
pathways. Both of them were important for the production
of cytokines and chemokines (Trinchieri and Sher, 2007;
Lim and Staudt, 2013). Maric et al. (2014) suggested that the
hypothalamic mRNA expression of IL-1β, IL-6, and TNF-α
significantly increased in high-saturated fat (HSF)-diet rats. Qin
et al. (2007) investigated that LPS-induced MAPK and STAT-3
activation, as well as the expression of IL-10, made a difference
to the suppressor of cytokine signaling 3 (SOCS3) transcription
and expression in macrophages and microglia, which alleviated
adaptive and innate immune responses. SOCS3 activated
the ERK-MAPK pathway, inhibited the NF-κB pathway, and
offended cAMP-mediated signaling (Qin et al., 2007). In

addition, neuroinflammation was related to microglia 1 (M1),
a pro-inflammatory cell, and the anti-inflammatory microglia
2 (M2) (Sica and Mantovani, 2012). Similarly, astrocytes also
have two phenotypes, pro-inflammatory astrocytes 1 (A1) and
anti-inflammatory astrocytes 2 (A2) (Kwon and Koh, 2020).
As a result, the neuroinflammation is under control of the
polarization status of M1/M2 and A1/A2.

Irisin has already been confirmed to have anti-inflammatory
effects (Pukajło et al., 2015). FNDC5 has been confirmed
to attenuate adipose tissue inflammation through the AMPK
pathway to induce macrophage polarization in obese mice
(Xiong et al., 2018). Irisin prevented LPS-mediated liver
injury by inhibiting apoptosis, nod-like receptor pyrin-3
(NLRP3) inflammasome activation, and NF-κB signaling (Li
et al., 2021). Mazur-Bialy (2017) demonstrated that irisin not
only promoted the activity and proliferation of macrophages
and phagocytosis but also attenuated the respiratory burst
of macrophages, which increased immunocompetent activity.
Mazur-Bialy et al. (2017a) reported that irisin exerted its anti-
inflammatory effects by downregulating the NF-κB pathway,
reducing TNF-α, IL-6, and MCP-1 in adipocyte 3T3 L1 cell
line, thus attenuating the obesity-related neuroinflammation.
Irisin was proved to improve memory and cognition in
diabetic mice by reducing the expression of IL-1β and IL-
6 in the murine hippocampus (Wang K. et al., 2019). The
underlying mechanism was by downregulating the P38, STAT3,
and NFκB pathways, which was related to the cytokine
cascade. The reactive oxygen species-NLRP3 (ROS-NLRP3)
pathway was also involved in the inhibition of irisin on
the neuroinflammation (Peng J. et al., 2017). Furthermore,
irisin played a pivotal role in the phenotypic switch of
adipose tissue macrophages from M1 to M2 to regulate
neuroinflammation (Dong et al., 2016). Irisin was also involved
in autophagy, which affected Tau proteins in dementia (Pesce
et al., 2020). Different pathways involved in how irisin affected
autophagy, such as the AMPK/SIRT1/PGC-1α pathway in
pancreatic β cells in insulin resistance stage (Li Q. et al.,
2019), and MAPK pathways in the hepatic I/R injury model
(Bi et al., 2020). Although the mechanisms on how irisin
directly influenced central autophagy were scarce, there was
a consensus on the link between irisin and AMPK. The
indirect effects of irisin in autophagy are reliable, and the
direct pathway still needs to explore. Table 1 summarizes
the experimental studies suggesting the roles of FNDC5/irisin
in inflammation.

FNDC5/Irisin and Oxidative Stress
Oxidative stress is critical in elderly cognitive impairment
and AD (Chen and Zhong, 2014). The mechanisms of
oxidative stress in AD included mitochondrial dysfunction,
metal accumulation, hyperphosphorylated Tau protein, and
inflammation. Mitochondrial dysfunction was mainly associated
with ROS production resulting from Aβ (Perez Ortiz and
Swerdlow, 2019). Increased Aβ1–40 and Aβ1–42 and decreased
ATP synthesis and ATPase activity were reported to promote
ROS generation in mitochondria (Sharma et al., 2021). Metal
ions, such as Cu, Zn, and Fe, were perceived to play a pivotal
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TABLE 1 | Experimental studies suggesting the roles of FNDC5/irisin in inflammation.

References Models Findings Pathways

Xiong et al., 2018 HFD-induced obese mice FNDC5 knock-down ↑inflammation and M2 to M1 Decreasing NF-κB-p65, p38, ERK, and
JNK pathways

FNDC5 overexpression ↓inflammation and ↑M1 to M2 AMPK pathway

RAW264.7 macrophages FNDC5↓M1 polarization NF-κB pathway

Li et al., 2021 LPS-induced liver injury rat;
LPS-challenged RAW264.7 cells

Irisin ↓inflammation and apoptosis NLRP3 inflammasome activation and
NF-κB signaling

Mazur-Bialy, 2017 RAW264.7 macrophages Irisin ↑macrophage activity, proliferation; and phagocytosis
↓macrophage respiratory burst

Reducing ROS overproduction

Mazur-Bialy et al.,
2017a

Adipocyte 3T3 L1 cell Irisin ↓proinflammatory cytokines (TNF-α, IL-6) NF-κB pathway

Irisin ↑adiponectin synthesis

Wang K. et al.,
2019

Streptozotocin-induced diabetic
mice

Irisin ↑memory and cognitive deficiency; ↓synaptic protein
loss; ↓IL-1β and IL-6 levels in Hippocampus and CSF

Reducing the activation of P38, STAT3,
and NF-κB pathways

Peng J. et al., 2017 OGD-induced PC12 cell line Irisin ↓oxidative stress, inflammation, and apoptosis; ↓IL-1β

and IL-18; ↓ROS and MDA
NLRP3 inflammatory signaling

Dong et al., 2016 HFD-fed mice Irisin ↓inflammation; ↑M1 to M2 AMPK and Akt pathway

Li Q. et al., 2019 INS-1 cells Irisin ↓autophagy; ↑INS-1 cell function and survival AMPK/SIRT1/PGC-1α pathway

Bi et al., 2020 Hepatic IR old rats Irisin ↓inflammation MAPK pathways

Abbreviations: HFD, high fat diet; LPS, lipopolysaccharide; ROS, reactive oxygen species; NLRP3, NOD-like receptor pyrin 3; OGD, oxygen-glucose deprivation; MDA,
malondialdehyde; HepG2, human hepatocellular carcinoma cells; IR, ischemia-reperfusion.

role in AD (Faller and Hureau, 2012). Metal ions accumulation
was also associated with Aβ for its metal binding sites for Zn2+,
Cu2+, and Fe3+. Theoretically, Aβ binds to Cu2+ or Fe3+
resulting in reduced Cu+ and Fe2+, respectively. The binding was
accompanied by the production of hydrogen peroxide (H2O2),
which reacted with Fe2+ to generate Fe3+ and hydroxyl radicals
(OH) (Gaeta and Hider, 2005; Chen and Zhong, 2014). Metal
mal-metabolism increased the oxidative stress. Violet et al.
(2014) suggested the Tau protein alterations contributed to the
impaired safeguarding function of DNA and RNA, promoting
the aggregation of nucleic acid oxidative damage in the AD
brain. Finally, as mentioned before, the inflammation arose the
generation of ROS.

FNDC5/irisin has been confirmed the anti-oxidative effects
in many studies. Zhang et al. (2020) suggested that FNDC5
decreased ROS production, MDA level, and NADPH oxidase
activity via its subunit p67phox and increased SOD1 and SOD2
expression in doxorubicin-treated hearts. Besides, FNDC5/irisin
exerted the anti-oxidative effects via the AKT/GSK3β/FYN/Nrf2
signaling in an mTOR-independent manner. Wang et al. (2020)
reported that irisin attenuated oxidative stress via 8-OHdG and
reversed Sirt3 and UCP-1 pathways to promote mitochondrial
membrane potential (MMP), ATP production, and the catalase
to alleviate reactive oxygen radical generation, mitochondrial
fusion and fission in the osteoarthritis model. Irisin targeted
mitochondria to promote SOD-2 activity and prevented the loss
of MMP, decreased the ROS activity, and finally relieved the
oxidative stress in the ischemia/reperfusion (I/R) heart (Wang
et al., 2018). Besides, in an ischemia/reperfusion (I/R) liver
model, irisin was shown to reduce oxidative stress via improving
UCP-2 expression, which led to reduced ROS production,
restrained mitochondrial fission, and increased mitochondrial
DNA copy to improve mitochondrial biogenesis (Bi et al., 2019).

The Nrf2/HO-1/HMGB1 signaling participated in the anti-
oxidative performance of irisin, increasing the expression of
anti-oxidative factors such as SOD-1, glutathione peroxidase
(GPx), and catalase-9 (Cat-9) (Mazur-Bialy and Pocheć, 2021).
Activation of the AMPK-Sirt1-PGC-1α pathway and Akt/ERK1/2
pathway were involved in the irisin’s anti-oxidative effect
(Li et al., 2017; Wu et al., 2020). Table 2 summarizes the
experimental studies suggesting the roles of FNDC5/irisin in
oxidative stress.

FNDC5/IRISIN ACT ON
DEMENTIA-RELATED DISEASE

FNDC5/Irisin and Coronary Artery
Disease
Coronary artery disease (CAD) was associated with dementia as
they shared common risk factors such as aging, obesity, type 2
diabetes (T2DM), and hypercholesterolemia. The prevalence of
both dementia and CAD increases with age, with the prevalence
of dementia in those with acute myocardial infarction (AMI)
increasing from 1.2% in those aged 65–69 years to 14.8% in those
aged above 85 years (Fowkes et al., 2016).

Various studies suggested serum irisin levels were decreased
in patients with CAD, indicating the positive effects of irisin
on CAD (Khorasani et al., 2019; Wang S. et al., 2019; Guo
et al., 2020). In a myocardial infarction (MI) mouse model, irisin
appeared to suppress cardiomyocyte apoptosis and fibrosis and
promote angiogenesis via the ERK signaling, which collectively
improved the cardiac function and reduced the infarct size of the
post-MI model (Liao et al., 2019). Zhao et al. (2016) found that
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TABLE 2 | Experimental studies suggesting the roles of FNDC5/irisin in oxidative stress.

References Models Findings Pathways

Zhang et al., 2020 DOX-induced Mice; DOX-induced
H9C2 cells

FNDC5 ↓cardiac oxidative damage AKT/GSK3β/FYN/Nrf2 signaling

FNDC5 ↓cardiomyocyte apoptosis AKT/mTOR signaling

Wang et al., 2020 DMM-induced OA mice Irisin ↓autophagy and apoptosis; PGC-1α; UCP-1; Sirt3

Wang et al., 2018 Myocardial I/R mice; A/R injury
H9c2 cells

Irisin ↓apoptosis; ↓MMP loss; protects against I/R-injured
myocardium

SOD2 targeting to mitochondria

Bi et al., 2019 Hepatic I/R Mice; H/R injury
HL-7702 cell

Serum irisin increased after ischemia and 4 h after reperfusion then
decreased.

PGC-1α; UCP 2; Fis-1;Drp-1

Irisin ↓organ injury and apoptosis; ↓inflammation; ↓excessive
mitochondrial fission; ↑mitochondrial biogenesis; ↓oxidative stress
(↓liver MDA level)

Mazur-Bialy and
Pocheć, 2021

LPS-induced RAW264.7
macrophages

Irisin ↓respiratory burst and apoptosis; ↑Nrf2, HO-1 SOD1, SOD2,
GPx, Cat-9; ↓HMGB1

Nrf2/HO-1/HMGB1 pathway

Wu et al., 2020 alcat1 knockout MI Mice; NRK cells
treated with H2O2

Irisin ↓oxidative stress and apoptosis in NRK cells AMPK-Sirt1-PGC-1α pathway

Li et al., 2017 MCAO Mice; PC12 neuronal cells
with OGD

Plasma irisin levels are negatively associated with brain infarct
volume, neurological deficit and inflammation.

Akt and ERK1/2 pathways

Irisin ↓ inflammation and oxidative stress

Abbreviations: DOX, doxorubicin; DMM, destabilized medial meniscus; OA, osteoarthritis; I/R, ischemia/reperfusion; A/R, anoxia/reoxygenation; SOD, superoxide
dismutase; H/R, hypoxia/reoxygenation; UCP, uncoupling proteins; Drp-1, dynamin related protein 1; Fis-1, fission 1; GPx, glutathione peroxidase; Cat-9, catalase-9;
HMGB1, high-mobility group box 1; Nrf2, nuclear factor erythroid 2-related factor 2; HO-1, heme oxygenase-1; NRK, normal rat kidney; ALCAT1, acyltransferase1;
MCAO, middle cerebral artery occlusion; OGD, oxygen and glucose deprivation.

in histone deacetylases (HDAC)-over-expressed H9c2 cardio-
myoblasts that went through hypoxia/reoxygenation-induced
injury, irisin treatment increased cardio-myoblast survival and
decreased the LDH release to alleviate cytotoxicity. Besides,
irisin repressed the cell apoptosis via reducing active-caspase
3 and annexin V signals, mitigating the loss of MMP to
protect mitochondrial damage. Furthermore, irisin held back the
opening of mitochondrial permeability transition pore, which
was critical for myocardial injury.

FNDC5/Irisin and Hypertension
Hypertension is associated with an increased incidence of
vascular dementia (Sharp et al., 2011). Midlife systolic blood
pressure (SBP) was suggested to be a significant predictor of
cognition that deficits later in life (Launer et al., 1995). In the
elderly, dysfunction of cerebral autoregulation led to vulnerable
cerebral hemodynamics. Autoregulation protected the brain
from hypertension but increased the risk of cerebral hypotension.
Inappropriate antihypertensive therapy might further increase
the risk of chronic cerebral hypoperfusion and subsequent
dementia (Feldstein, 2012). Higher diastolic blood pressure
(DBP) and lower SBP were correlated with impaired cognition
(Nilsson et al., 2007; Tsivgoulis et al., 2009).

Irisin made a difference in regulating blood pressure
through central and peripheral pathways; central irisin increased
cardiac output and blood pressure by activating hypothalamic
paraventricular nucleus of the hypothalamus (PVN) neurons,
while peripheral irisin secreted from skeletal muscle reduced
blood pressure via Adenosine triphosphate-sensitive potassium
(KATP) channels to dilate vessels (Zhang et al., 2015). Besides,
Irisin improved hypertension by protecting endothelial function
via the AMPK-Akt-eNOS-NO and Nrf2 signaling pathway, the

Nrf2 signaling pathway also participated in alleviating oxidative
stress in the hypothalamus (Fu et al., 2016; Huo et al., 2020).
Huang et al. (2022) proposed that irisin inhibited the NF-κB
signaling pathway to lower blood pressure, along with reduced
angiotensin II type 1 receptor (AT1R) expression and function.

FNDC5/Irisin and Heart Failure
A considerable number of patients with heart failure (HF)
have cognitive problems (Cannon et al., 2017). Vascular
dysfunction and loss of cardiac perfusion pump function
can trigger the typical AD feature such as Aβ accumulation
and hyperphosphorylated Tau tangles, as HF and AD shares
common risk factors like inflammation and oxidative stress
(Daniele et al., 2020).

Irisin exerted positive influences on mitochondrial
dysfunction, oxidative stress, metabolic imbalance, and
energy expenditure in HF (Ho and Wang, 2021). Cohort
and experimental studies were conducted to elucidate the
correlation between irisin and HF. Several cohorts showed
increased serum irisin levels in patients with HF (Shen et al.,
2017; Kalkan et al., 2018; Abd El-Mottaleb et al., 2019). Peng
Q. et al. (2017) suggested that irisin ameliorated H2O2-induced
apoptosis in H9c2 cardio-myoblasts and improved cell viability
via miR-19b/PTEN/AKT/mTOR pathway. Li R. et al. (2019)
found that irisin-induced protective autophagy and alleviated
apoptosis signaling attenuated the myocardial hypertrophy and
cardiomyocytes apoptosis. The AMPK-ULK1 pathway might be
involved in the underlying mechanisms (Li et al., 2018).

FNDC5/Irisin and Stroke
Stroke is a pronounced disease related to cognition impairment
and contributes to damaged life quality (Obaid et al., 2020).

Frontiers in Aging Neuroscience | www.frontiersin.org 6 March 2022 | Volume 14 | Article 863901

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-863901 March 25, 2022 Time: 16:39 # 7

Peng and Wu FNDC5/Irisin on Elderly Dementia

Stroke is divided into the ischemic and hemorrhagic stroke,
the former makes up 85% (Amarenco et al., 2009; Beal, 2010).
A total of 23.9% of older stroke survivors developed dementia
(Allan et al., 2011). Taking ischemic stroke as an example, brain
injury secondary to the stroke was a result of the post-stroke
excitotoxicity, oxidative and nitrative stress, inflammation, and
apoptosis (Khoshnam et al., 2017). Besides, Goulay et al. (2020)
have reported that stroke exacerbated the deposition of Aβ.

Irisin has been reported to perform neuroprotective effects on
stroke (Liu et al., 2020). Irisin mitigated brain injury after stroke
via inhibiting inflammation and oxidative stress and preventing
BBB dysfunction (Peng J. et al., 2017; Guo et al., 2019). Jin
et al. (2019) suggested that irisin attenuated the brain injury
after the cerebral ischemia/reperfusion (I/R) injury especially in
the hippocampus region through the Notch signaling pathway.
Irisin promoted the Notch1, Notch intracellular domain (NICD),
and Hes1 expression, which were reported to exert effects
in AD and other neurodegenerative diseases. Irisin alleviated
neuronal apoptosis, accompanied by decreasing the caspase-3
expression, a critical apoptotic effector. Besides, irisin reduced
the inflammation, decreasing the TNF-α and IL-1β levels
(Berezovska et al., 1998; Alberi et al., 2013). Yu et al. (2020)
reported that irisin protected the neurological function in a
middle cerebral artery occlusion (MCAO) I/R injury model
via suppressing the TLR4 and NF-κB pathways. Others also
elucidated the neuroprotective effects of irisin in mice with
MCAO and OGD neuronal cells via Akt and ERK1/2 signaling
pathways (Li et al., 2017). Irisin relieved the post-ischemic
inflammation by downregulating TNF-α and IL-6 expression,
suppressed the microglial infiltration, and decreased the MPO-
1+ cell numbers, as well as reduced the post-ischemic oxidative
stress by decreasing the levels of 4-HNE and MDA. Furthermore,
mitochondrial dynamics were involved in the ischemic stroke,
and mitochondrial defects are critical for AD (Yan et al.,
2013; Anzell et al., 2018). Irisin improved mitochondrial
function via AMPK pathway as the AMPK was a guardian of
mitochondrial homeostasis (Tang et al., 2016; Herzig and Shaw,
2018; Siteneski et al., 2018; Xin et al., 2020). In summary, irisin
exerted neuroprotective effects after stroke to prevent cognitive
impairment primarily through its anti-inflammatory and anti-
oxidative effects, as well as the beneficial effects on mitochondria.

FNDC5/Irisin and Parkinson’s Disease
Parkinson’s disease is the second most frequent senile
neurodegenerative disease (Mhyre et al., 2012). Patients with PD
often developed cognitive deficits and dementia, especially in
elderly patients (Aarsland et al., 2017). PD-dementia is a classic
type of dementia.

Irisin played a protective role in PD. In a mouse model of PD,
irisin treatment prevented dopaminergic neurons from apoptosis
and degeneration (Zarbakhsh et al., 2019). Mahalakshmi et al.
(2020) elucidated the benefits of exercise on PD, and irisin
was a mediator of exercise-induced BDNF. Raefsky and
Mattson (2017) suggested that irisin might protect neuronal
mitochondria function in PD via antioxidation, autophagy, and
DNA repair regulations.

FNDC5/Irisin and Depression
Depression and dementia often occur at the same time in the
elderly (Bennett and Thomas, 2014). Depression is both the risk
factor and prodrome of dementia (Gutzmann and Qazi, 2015).
The interreaction of depression and dementia is complex.

Irisin improved depressive neuropathology by regulating
mitochondria function via PGC-1α signaling and modifying
synaptic plasticity via BDNF signaling (Jo and Song, 2021). Hou
et al. (2020) proposed that irisin attenuated the postoperative
depressive-like behavior and reduced neuron death and cytokines
release from astrocytes through inhibiting the surface expression
of epidermal growth factor receptors (EGFR) in the mice
model. Siteneski et al. (2018) also suggested that central irisin
administration manifested antidepression effect, associated with
the adjustment of gene expression of PGC-1α, FNDC5, and
BDNF in the hippocampus and prefrontal cortex of mice.

FUTURE DIRECTION

There is a long way to intervene and delay the progression of
elderly cognitive impairment. Based on the irisin secretion and
function to optimize the exercise protocol such as the amount
of exercise, the form of exercise, and the duration of exercise,
further research is needed. Factors affecting exercise, such as
age, frailty, sarcopenia, and fracture, also need to be considered.
Although many studies have been reported to support the
favorable effects of FNDC5/irisin, there are some limitations.
Many studies are based on experimental studies, and direct
studies of irisin on central autophagy are scarce. Besides, the
difference of plasma irisin levels alterations in patients with
dementia was not significant and has not reached a consensus.
Interfering factors such as age, gender, race, and disease duration
differences cannot be ignored. There are also some controversial
results and views. On the one hand, Raschke et al. (2013)
argued that the beneficial effect of irisin observed in mice can
be translated to humans. Although there are many registered
clinical trials to clarify the effects of irisin on the human body,
large-scale clinical research and long-term follow-up are required
to study the relationship between FNDC5/irisin and cognition.
Besides, to carry out the animal experiments and clinical research
simultaneously and to conduct comparative analysis are very
necessary to elucidate the difference in FNDC5/irisin effects in
the mice and human body. On the other hand, the current irisin
detection method is still insufficient. ELISA has been widely used
in the examination of irisin levels in serum or other specimens in
humans and animals. However, Albrecht et al. (2015) argued that
ELISA kit for irisin may not be accurate. Besides, ELISA can be
influenced by a series of factors such as preservation conditions,
temperature, antibody, and operational contingency. As a result
of the conflicting opinions, conducting comparative studies on
the sensitivity and specificity of current ELISA kits is a research
direction. A high-quality meta-analysis or systematic review of
the efficacy of ELISA kits for irisin also can be considered. Most
of the ELISA kits for irisin were for laboratory research only,
not for drug, diagnostic, or other use. Exploring new methods
with high sensitivity and specificity as well as diagnostic value in
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clinical conditions is also the direction of future efforts, such as
the application of sensors or nanotechnology.

CONCLUSION

Cognitive impairment is a worldwide public health problem,
which seriously affects the quality of life of the elderly
and increases the burden of care. Clarifying the pathological
mechanism of dementia and exploring drugs to prevent, treat,
and delay the course of dementia have always been the direction
of efforts. Physical exercise and lifestyle are believed to defend
against cognitive decline in the elderly. Irisin might be a
mediator of muscle and brain cross talk mainly through the
PGC-1α/FNDC5/BDNF pathway. More information is needed
to optimize exercise protocols based on irisin for patients with
dementia. Our review discussed the favorable effects of irisin
on cognitive impairment, such as the positive effect irisin on
neurogenesis and synapse; anti-inflammatory and anti-oxidative
effects; and possible connections of irisin on dementia-related
diseases such as CAD, hypertension, HF, stroke, PD, and
depression. The serum irisin level alterations in dementia have
not reached a consensus. Large-scale clinical research and long-
term follow-up are required to explore whether serum irisin

is a diagnostic or prognostic factor for dementia. The current
detection method for irisin is still limited to ELISA. It is also an
exploratory direction to find more sensitive, specific, and simple
detection methods.
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