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Mild Cognitive Impairment (MCI) is an early stage of dementia, which may lead
to Alzheimer’s disease (AD) in older adults. Therefore, early detection of MCI and
implementation of treatment and intervention can effectively slow down or even inhibit
the progression of the disease, thus minimizing the risk of AD. Currently, we know that
published work relies on an analysis of awake EEG recordings. However, recent studies
have suggested that changes in the structure of sleep may lead to cognitive decline.
In this work, we propose a sleep EEG-based method for MCI detection, extracting
specific features of sleep to characterize neuroregulatory deficit emergent with MCI. This
study analyzed the EEGs of 40 subjects (20 MCI, 20 HC) with the developed algorithm.
We extracted sleep slow waves and spindles features, combined with spectral and
complexity features from sleep EEG, and used the SVM classifier and GRU network
to identify MCI. In addition, the classification results of different feature sets (including
with sleep features from sleep EEG and without sleep features from awake EEG) and
different classification methods were evaluated. Finally, the MCI classification accuracy
of the GRU network based on features extracted from sleep EEG was the highest,
reaching 93.46%. Experimental results show that compared with the awake EEG, sleep
EEG can provide more useful information to distinguish between MCI and HC. This
method can not only improve the classification performance but also facilitate the early
intervention of AD.

Keywords: mild cognitive impairment, sleep EEG, sleep slow waves, sleep spindles, machine learning

INTRODUCTION

As the aging of the population becomes increasingly serious, Alzheimer’s disease has become
a major challenge to human health and a serious social problem. Alzheimer’s disease (AD) is
the most common type of dementia, accounting for roughly 70% of all dementias worldwide.
It is an irreversible neurodegenerative disease marked by cognitive, behavioral, and intellectual
impairments (Prince, 2015). Mild cognitive impairment (MCI) is a pre-dementia condition in
which daily functioning is usually maintained despite objectively measured cognitive impairment
in one or more cognitive domains. As MCI is the primary stage of cognitive impairment, about
10–15% of MCI patients will progress to AD every year on average, and about 2/3 of AD patients
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are developed from MCI (Tsai et al., 2016). As a result,
early detection of MCI is critical for early intervention in the
preclinical stage of AD and has attracted much attention from
researchers in recent decades (Jiang et al., 2020).

According to recent studies, patients with MCI may return
to normal over time, therefore early detection and diagnosis of
MCI are critical (Amezquita-Sanchez et al., 2019). Early detection
of cognitive decline can lead to appropriate interventions before
further cognitive impairment occurs, thus delaying or even
preventing the progression of dementia as much as possible.
It is estimated that the average annual cost per patient for
mild dementia is $15,889, for moderate dementia is $26,859,
and for severe dementia is $36,180. Prevention of the disease
is therefore important for better health care, as well as for
national financial interests, and for controlling the progression
of cognitive impairment.

Finding biomarkers with low cost, high specificity, and
sensitivity has been the focus of MCI research. Magnetic
resonance imaging, such as functional magnetic resonance
imaging (fMRI) (Ni et al., 2017), magnetic resonance spectral
imaging (MRS) (Gao and Barker, 2014), diffusion-weighted
imaging (DWI) (Ge, 2017), diffusion tensor imaging (DTI)
(Ahmed et al., 2017), positron emission tomography, such as
fluorodeoxyglucose positron emission tomography (FDG-PET)
(Karow et al., 2010), etc., cerebrospinal fluid markers (Handels
et al., 2017), such as Aβ40, Aβ42, total tau protein (t-tau), etc., are
currently the main methods for early diagnosis of MCI. However,
these methods are expensive, and the equipment is large, with
high expertise requirements. As a result, researchers are looking
for non-invasive, quick, low-cost, and dependable approaches for
disease detection (Alberdi et al., 2016).

Biomarkers based on EEG have emerged as a viable tool in
the research of AD. In terms of EEG acquisition methods, most
of the published work relies on the analysis of closed resting
state EEG (rsEEG) recordings. Waninger et al. (2016) used fast
Fourier transform to calculate Power Spectral Density (PSD)
to study the difference between MCI and HC and found that
there were significant differences in theta and alpha frequency
bands, which were classified by linear discriminant analysis. The
final classification result was 85.11%. Rodrigues et al. (2021)
conducted statistical analysis of lacstral distances between EEG
subbands and found a metric that could identify AD at all
stages and characterize AD activity in each electrode, achieving a
classification accuracy of 98.06% with an artificial neural network.
Cassani and Falk (2020) proposed a new feature characterized
by a two-dimensional modulation spectrum domain based
on rsEEG signals, collected EEG signals of 20 channels, and
obtained classification accuracy of 88.1% by SVM classification
of MCI and HC. Other papers extract evoked potentials by
giving specific stimuli to the nervous system to detect and
classify MCI and other disorders that affect cognitive states.
For instance, Khatun et al. (2019) proposed an MCI detection
method based on single-channel EEG, which stimulated auditory
speech signals, extracted features from event-related potential
(ERP), and obtained an accuracy of 87.9% by SVM classification.
Although the literature has reported levels of accuracy above 80%,
it has been difficult to evaluate studies and determine the most

advanced approaches due to variances in experimental settings,
data collection methods, and database sizes.

Changes in sleep electrophysiology may be linked to the
cognitive condition of AD and MCI patients, according to recent
research (Gorgoni et al., 2020). Local sleep EEG oscillations have
a critical function in learning and plasticity mechanisms, it’s
worth highlighting. Several electrophysiological aspects of NREM
(such as slow waves, sleep spindles, and hippocampal ripples) and
REM sleep (such as θ activity) are particularly active in memory
consolidation (Klinzing et al., 2019). Sleep EEG can identify the
sleep changes associated with AD and MCI pathology, and is low-
cost and portable, so it can be utilized to make quick and precise
diagnoses (D’Atri et al., 2021). This is the main motivation of this
study. Various studies have employed multi-channel EEG data to
characterize MCI or AD using EEG signals. Although there are
several EEG-based studies in the literature, no one has attempted
to detect and classify MCI using two-channel sleep EEG signals,
as far as we are aware. Compared with the multi-channel, the
number of two-channel leads is less, and the measurement
method is simple. Moreover, compared with the EEG signal
during waking, the EEG signal collected during sleep is stable
and easy to be disturbed, which is more conducive to the study
of neurodegenerative diseases.

This study proposes a new method to distinguish the EEG
signals of MCI and health control (HC). We use from the
C3 and C4 (central electrode) dual channel sleep EEG data
with labels, based on the sleep slow waves, spindles, power
spectral density and complexity, the use of machine learning and
deep learning methods classifying MCI, and the classification
results were compared with the awake EEG classification results
without sleep features. The paper is organized as follows: section
“Materials” describes the data set used for this work, and the
section “Methodology” introduces the signal processing methods,
including the detection of sleep slow waves and spindles, as well
as the method of feature extraction and classification. Section
“Result and Discussion” is the experimental results and the
discussion of the paper. Finally, the conclusions are contained in
section “Conclusion.”

MATERIALS

Data and Materials
All data were obtained from NSRR (Zhang et al., 2018). To
balance the data, 40 subjects (20 patients with MCI and 20 healthy
subjects as controls, all women) with polysomnography (PSG)
signals were randomly selected in the SOF study (Spira et al.,
2008). All data were approved by the local institutional review
board of the institution, and each participant provided written,
informed consent before participation. The data included
functional tests, cognitive exams, use of medication, health
habits, and much more. All subjects underwent the Mini-mental
State Examination (MMSE) to determine the severity of their
impairment or dementia. According to the classification method
of dementia severity, the MMSE score between 21 and 26 was
considered MCI, and the MMSE score greater than 26 was
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normal. The comprehensive demographic information of the
subjects in this study is shown in Table 1.

MCI exclusion criteria are as follows:
(i) a history of depression (mild to moderate or major

depression) or a history of adolescent paroxysmal mental illness;
(ii) a history of major stroke or neurological symptoms; (iii)
Other mental disorders, frontotemporal dementia, Lewy body
dementia, vascular dementia, epilepsy, alcohol dependence;
(iv) The use of psychoactive drugs, which modulate EEG
markers; And (v) current or previously uncontrolled or complex
systemic diseases (including diabetes), or traumatic brain injury
(Moretti et al., 2013).

SOF data includes EDF and annotation files that include
manually graded sleep stages in 30-s epochs, as well as
manual annotations for arousal, limb movement, and signal
artifacts. All experiments employed the American Academy of
Sleep Medicine (AASM) staging, with NREM3 and NREM4
compressed to the N3 stage, and electrode labels were taken from
the International 10-20 system.

EEG Data and Preprocessing
EEG channels are selected from the multi-channel PSG signals,
and the signals are down-sampled to 100 Hz to speed up the
calculation time. A text file of the sleep stage vector (also known
as hypnogram) is then loaded at a sampling frequency of 1/30
and sampled upward to match the sampling frequency and length
of the EEG signal.

Sleep changes are a core component of MCI and AD patients.
The decrease in slow-wave activity (SWA) during NREM is
due in part to amyloid disease and leads to cognitive decline
in older adults (Rosinvil et al., 2020). Furthermore, studies
have revealed that patients with MCI often have a substantial
decrease in spindles, which is associated with cognitive decline
in dementia patients (Gorgoni et al., 2016). Because sleep quality
degradation is one of the primary symptoms of MCI, a variation
in EEG activity during NREM sleep could be a possible biomarker
(Romanella et al., 2021). Spindles are particularly noticeable
during N2 sleep and are a distinguishing feature of this stage,
while sleep slow waves are present during both N2 and N3.
Therefore, for the main analysis, a hypnogram was used to extract
the EEG signals of the N2 and N3 stages and the EEG signals of
the waking stage for comparison, so as to verify the importance
of sleep features.

First, the EEG signals were bandpass filtered between 0.1
and 30 Hz, and the artifact signals were eliminated using
independent component analysis (ICA). The signals of each
channel are divided into 5-min non-overlapping segments, and
the abnormal segment is removed using the standard deviation-
based rejection method. This method is speedier and is based

TABLE 1 | Corresponding statistical information of subjects.

Subjects Age (year) MMSE

HC 20 (female) 82.95 ± 2.71 29.6 ± 0.73

MCI 20 (female) 84.05 ± 3.51 24.4 ± 0.97

solely on the standard deviation distribution of each segment.
First, the standard deviation of each segment and channel is
determined, and the resulting array of standard deviations is
log-transformed and z-scored. Any epochs that have one or
more channels that surpass the threshold will be labeled as an
artifact. Because this method is more sensitive to the effects of
noise, any segment with overlapping wake, motion, or signal
artifact annotations have been removed before using this method.
Accordingly, the segment of each subject was evaluated which
accounts for a total of 2063 segments for NREM sleep and a total
of 768 segments for wakefulness are analyzed.

METHODOLOGY

Figure 1 describes a proposed algorithm for classifying EEG
segments from MCI and HC. As shown in the figure, the
algorithm consists of three steps. The first step is to calculate
the power spectral density of each frequency band. For the sleep
EEG signals, we mainly focus on sleep slow waves and spindles
during NREM sleep, and use the YASA algorithm to detect sleep
slow waves and spindles. Secondly, extract the features of sleep
slow waves and spindles and calculate the spectral and complexity
features. Thirdly, train the classifier with the extracted features
and evaluate the test results. In addition, to confirm the validity
of the sleep features reported in this work in MCI classification,
we extracted the spectral and complexity features from the awake
EEG for comparison. Two classification methods were used to
verify the classification effect of EEG signals during wakefulness
and sleep, and the test results were evaluated and compared.

Power Spectral Density
PSD is a frequency-dependent measure of the mean power
distribution. Because EEG slowing is the main linear indicator
of cognitive decline, spectral analysis is a critical parameter for
measuring neurocognitive impairment (Sharma et al., 2016).
Welch’s periodogram is the most generally used method for
calculating the estimated value of PSD (Welch, 1967), It involves
averaging sequential Fourier transforms of small windows of the
signal, with or without overlapping.

The PSD was calculated every 5 min by the Welch method,
using 5 s of hamming windows, with 50% overlap, and median-
averaging to limit the influence of artifacts. A commonly used
method of determining the window width is to adopt a window
long enough to contain at least two full minimum frequency
periods of interest. The lowest frequency of interest here is 0.5 Hz,
so we can choose a window that is greater than or equal to 4 s.
Here we chose a 5 s-long window. The following is the formula
for calculating power spectral density using the Welch method:

P(ω) =
1

MUL

L∑
i = 1

∣∣∣∣∣
M−1∑
n = 0

xi(n)d2(n)e−jωn

∣∣∣∣∣
2

Where M is the window length, U =
1
M
∑M−1

n = 0 d2
2(n),

L = N−M/2
M/2 , the xi(n) is the signal for each window, and the

d2(n) is the function of Hamming window.
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FIGURE 1 | Schematic diagram of proposed algorithm.

Spindle
Sleep spindles are a characteristic of N2 sleep, consisting of a
succession of separate waves with frequencies ranging from 11
to 16 Hz (most typically 12–14 Hz), duration 0.5 s, usually using
the maximum amplitude of the center deviation (Peyrache and
Seibt, 2020). YASA (Yet Another Spindle Algorithm) is an open-
source Python package for sleep analysis (Vallat, 2019). Spindles
are detected using the YASA algorithm. The main idea of the
algorithm is to calculate different thresholds from broadband
filtering signals (1–30 Hz, EEGbf ) and sigma filtering signals (11–
16 Hz, EEGσ). Figure 2A shows sleep spindles as detected by a
30-s EEG segment. The algorithm consists of three steps.

Step I: The FIR filter was used to bandpass the EEG segments
at 1–30 and 12–15 Hz.

Step II: Three thresholds are calculated.
Threshold 1: the relative power of the sigma band is the

power of the sigma band relative to the total power of broadband
(1–30 Hz). Calculated using the short-time Fourier transform
(STFT), the continuous period is 2 s and the overlap is 200 ms.
The first threshold is exceeded whenever the segment’s relative
power is greater than or equal to 0.2.

Threshold 2: movement correlation. Pearson correlation
coefficient was obtained by moving the sliding window of 300 ms

and the step of 100 ms. The correlation value r ≥ 0.65 will
exceed the second threshold.

Threshold 3: The moving root mean square is defined by
calculating the moving root mean square (RMS) of EEGσ. The
window width is 300 ms and the step of 100 ms. The third
threshold is exceeded whenever the RMS value of the segment
RMS ≥ RMSthresh. Where,

RMSthresh = RMSmean + 1.5∗RMSstd

Step III: Decision making. Each EEG segment detected above
three thresholds is considered a potential sleep spindle. The soft
threshold is calculated by smoothing the decision vector of the
100 ms window. The true start and end times of the spindles are
then found in the decision vector by finding the parameters that
two of the three critical values are exceeded. Finally, spindles that
are close to each other (less than 500 ms) are merged, and spindles
that are too short or too long are removed.

Sleep Slow Wave
Sleep slow waves, defined as those with slow frequencies (<2 Hz)
and high amplitudes (> 75 mV), have been linked to a drop in
steady-state sleep pressure and the protective impact of arousal
(Westerberg et al., 2012). Figure 2B shows slow sleep waves
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FIGURE 2 | EEG waveforms detected during 30-s NREM sleep (A) spindles and (B) slow sleep waves.

detected in 30-s EEG segments by the YASA algorithm. The
algorithm consists of four steps.

Step I: Bandpass filtering is carried out between 0.3 and 2 Hz
using an FIR filter with a transition band of 0.2 Hz.

Step II: Detection of all the negative peaks with amplitudes
between –40 and –300 µV and all the positive peaks with
amplitudes between 10 and 150 µV in the filtered signal.

Step III: For each negative peak (= slow-wave trough), find
the closest positive peak and calculate several metrics, including
peak-to-peak (PTP) amplitude, duration of the negative and
positive phases, slope, etc.

Step IV: Apply a set of logical thresholds to determine true
slow waves. PTP amplitudes need to be between 75 and 400 µV .
The positive and negative phase duration is calculated by the
zero-crossing value to ensure that the positive phase duration is
0.1–1 s and the negative phase duration is 0.3–1.5 s. The slope
between the trough and the midline is greater than 0.

Feature Extraction
We classify EEG data using four major types of features in
this paper: spectral, complexity, spindles, and sleep slow waves.
Table 2 shows the whole list of computed features.

For each EEG segment, absolute band power, total signal
power, and relative band power are calculated using PSD.
The term “relative band power” refers to the normalization of
each frequency band’s power in relation to the total power of
0.5–40 Hz (Kim and Kim, 2018). A total of 13 features are
spectral features. Nonlinear approaches using fractal dimension

or entropy methods may facilitate the identification of MCI.
We use entropy and fractal dimension methods to calculate the
features of EEG segments as complexity features (Ma Y. et al.,
2018). And the properties of spindles and sleep slow waves are
calculated after they are successfully detected.

Spectral, complexity, spindles, and sleep slow waves features
were extracted from sleep EEG. In order to test the validity of
sleep features, spectral and complexity features were extracted
from EEG signals during wakefulness as controls. All the
features were standardized. Then, these features are then utilized
to train the classifier to automatically identify between MCI
and HC EEG data.

Classification
The classifier receives the extracted features from the EEG data
as input. The classifier determines which category the new
observation belongs to. In this study, we use support vector
machine (SVM) and gated recurrent unit (GRU) to classify the
data separately.

We used two classifiers to predict the true category of subjects.
The predicted outcome variable is binary (0 for healthy controls,
1 for patients with MCI), and the predicted scores range from 0
to 1. The predicted scores of the subjects were utilized as MCI
scores. All data sets were randomly separated into two divisions,
80% of the data were used for training and 20% for testing. The
MCI classification model was fitted using the training data. We
fitted the MCI classification model on the whole training data
using the optimal hyperparameter configuration to determine the
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TABLE 2 | List of computed features for each 5-min segment.

Feature Group Features

Spectral(absolute power and relative power) Delta

Theta

Alpha

Sigma

Beta

Gamma

Total power

Complexity Permutation entropy

Singular value decomposition

Sample entropy

Detrended fluctuation analysis

Petrosian FD algorithms

Katz fractal dimension

Higuchi’s fractal dimension

Lempel-Ziv complexity

Spindle Density

Duration

Amplitude

RMS

Abspower

Relpower

Frequency

Oscillations

Sleep slow wave Density

Duration

ValNegPeak

ValPosPeak

PTP

Slope

Frequency

performance of the MCI classification model in the training data.
These optimal hyperparameters were determined using 10-fold
cross-validation. The generated model was directly applied to
the test data, and the MCI score was used to determine whether
the subject was HC or MCI. We use two classifiers to perform
MCI detection respectively, in order to analyze detection results
according to the structure of different types of classifiers.

Support Vector Machine
The SVM classifier is a supervised learning approach for
separating two classes by finding the best separation hyperplane
in the feature space (Safi and Safi, 2021). For N training samples{
(xi, yi), i = 1, · · · ,N

}
, where xi is the i th input vector and yi

is the known target, SVM training is the same as figuring out how
to solve the following optimization problem:

min
w,b,ξ

J (w, ξ) =
1
2

wTw + c
N∑

i = 1

ξi

subject to:

yi

[
wTϕ (xi) + b

]
≥ 1−ξi,ξi ≥ 0

Where ξi is slack variable, indicating the tolerance of
misclassification. C is a punishment parameter that is used to
penalize mistakes during training, b is a bias term, w is the
weight applied for input data xi. The kernel function ϕ (x) is a
nonlinear transformation function that maps the input vectors
into a high-dimensional feature space (Madusanka et al., 2019).

Gate Recurrent Unit
GRU is a variation structure of the Recurrent Neural Network
(RNN). RNN will remember past information and apply it to
the current output computation. Furthermore, RNN suffers from
the problem of vanishing and exploding gradients (Chung et al.,
2014), which causes the model to learn and train slowly. These
concerns are addressed by taking into account its versions, such
as GRU, which works on gated mechanisms. A GRU has two
gates, the update gate controls how much prior state information
is brought into the present state, while the reset gate controls
how much previous state information is ignored. The following
expressions show how a GRU calculates the result.

r = σ(wvrit + xrhst−1)

u = σ(wvuit + xrhst−1)

ht = tanh(wvit + x(r
⊙

hst−1, xt))

hst = [(1−u) hst−1] + uht

where, r is a reset gate and u is the update gate, σ is the
sigmoid function, ht for the hidden state, element multiplication
denoted by

⊙
.

Bidirectional GRU (Bi-GRU) can not only take advantage of
past information, but also capture subsequent information (Ma
C. et al., 2018).

ht =
(
−→
ht ||
←−
ht

)
where, ht for output states,

←−
ht a backward and

−→
ht forward states

in the opposite direction.

Performance Evaluation
To decide which classifier method is the most successful, the
sensitivity, specificity, F1 score, and accuracy of each one should
be calculated. The confusion matrix gives an exact idea of the
number of correctly classified and unclassified samples. The
parameters are calculated by the following equations:

Sensitivity =
TP

TP + FN
∗ 100%

Specificity =
TN

TP + FN
∗ 100%

Accuracy =
TP + TN

TP + FN + TN + FP
∗ 100%

F1 = 2 ∗
precision ∗ recall

precision + recall
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RESULTS AND DISCUSSION

According to the steps of this method, EEG segments of 40
different subjects with HC and MCI were analyzed. Then, in the
analysis step, the features of the signals during wakefulness and
NREM sleep are extracted, respectively. For the training of the
SVM classifier and the GRU network, all datasets were randomly
separated into two divisions of the training set and testing set
for evaluating the accuracy of the classifiers, with 80 percent of
the data treated as training data and 20% of the data considered
as testing data. The test accuracy, sensitivity, specificity, and F1
score were finally acquired with 10-fold cross-validation was used
to find the best hyperparameters values.

Results
To construct SVM classifiers, the “fitcsvm” module of MATLAB
is used. Bayesian hyperparameter optimization is used to find
the hyperparameter that minimizes the cross-validation loss to
optimize the classifier. In this study, the cubic polynomial kernel
function was selected, gamma = 2.15/C = 1 for the features
of NREM sleep and gamma = 13.2/C = 2 for the features of
wakefulness was used to obtain the best results. GRU classifier
construction, training, and testing were carried out with the
assistance of the PyTorch library. The default GRU sequential
class was updated to add different layers based on the models
provided. For two GRU networks, we used batch size 32, Adam
optimizer, and binary cross-entropy loss, and varied dropout, and
the number of hidden layers using random search (Yasir et al.,
2021). For the features of NREM sleep, the best results for GRU
were achieved with the dropout parameter value 0.5, the output
layer has 2 nodes, the input layer has 36 nodes, and finally three
hidden layers have 89 nodes. For the features of wakefulness, the
best results for GRU were achieved with the dropout parameter
value 0.5, the output layer has 2 nodes, the input layer has 21
nodes, and finally three hidden layers have 59 nodes. We trained
200 epochs for GRU and tested on the epoch that had the best
cross-validation accuracy.

The mean of each metric was used to objectively evaluate
classification performance, and the classification results
comparison between EEG during NREM sleep and wakefulness
are shown in Table 3.

As shown in Table 3, for different feature sets, the classification
accuracy of the sleep EEG feature set is higher than that of
the awake EEG feature set, and the sensitivity, specificity, and
F1 score are also higher than that of the awake EEG. The
results of the two classifiers showed that sleep EEG had better
performance in MCI and HC classification than awake EEG,
and the common features of sleep and awake EEG combined
with sleep features could significantly improve the classification
accuracy. For different classifiers, the accuracy of the GRU
network is 5 and 3% higher than that of the SVM classifier for
the same features, indicating that the classification performance
of GRU is better than that of the SVM classifier. These results
suggest that sleep features can reflect cognitive performance
in patients with MCI and emphasize that altered sleep is a
component of mild cognitive impairment.

The classification performance was also confirmed by ROC
curve analysis, especially by calculating the area under the ROC
curve (AUC). As shown in Figure 3, when awake and sleep EEG
features are used as inputs to the classifiers, ROC curves and
corresponding AUC values for MCI and HC classification are
calculated. The ROC curve of sleep EEG was closer to the upper
left corner, and the AUC value of GRU was higher than that of
awake EEG, indicating that the GRU network with sleep EEG
feature input achieved the best performance (AUC value was
as high as 0.981).

The results showed that the GRU classifier with the sleep
features had the best effect, with an accuracy of 93.46%, sensitivity
of 93.33%, specificity of 93.60%, F1 value of 93.56%, and AUC
value of 0.98. In conclusion, the spectral and complexity analysis
of sleep EEG, combined with the features of sleep slow waves and
spindles, and the classification of sleep EEG by GRU are effective
for the early detection of MCI.

Discussion
AD is an irreversible neurodegenerative disease, so early
screening and diagnosis of MCI is particularly important,
which is the key to effective early intervention of AD
and delay the progression of dementia. MCI is currently
diagnosed by specialists through extensive testing, including
neurophysiological assessment, blood analysis, cerebrospinal
fluid analysis, and imaging techniques. However, the evaluation
of these medical records is not only costly and complex
to implement, but also requires experienced physicians.
Therefore, the automated decision method which only needs one
physiological parameter can not only objectively evaluate the
patients, but also ensure high diagnostic accuracy. In addition,
it will be economical, portable, and more suitable for the
elderly population.

Several innovative research in recent years have only focused
on awake EEG to detect MCI, and they collected about 20
channels of EEG and extracted features for classification. The
DWT decomposition method was utilized to analyze 20 channels
of EEG signals, and the Hjorth parameter and KNN classifier
were incorporated to achieve 97.64% accuracy (Safi and Safi,
2021). Although this method has high classification accuracy, the
acquisition channels of the EEG signal are numerous, and the
measurement method is complex. Khatun et al. (2019) proposed
an MCI detection method based on single-channel EEG, which
stimulated auditory speech signals, extracted features from event-
related potential (ERP), and obtained an accuracy of 87.9% by
SVM classification. This method uses a single-channel signal,
but it requires the collection of evoked potentials, which is
complicated and difficult for patients to cooperate with. Cejnek
et al. (2021) proposed a new approach for detecting MCI based
on EEG recordings. The highest accuracy was 91.62 percent
among the results of cross-validation classification between HC
and MCI patients by each channel. All of the work above on EEG
acquisition methods relied on the analysis of EEG recordings
of waking states. It is worth noting that in this study, we
proposed using the features extracted from sleep EEG to detect
MCI and achieved an accuracy of 93.46%. Studies have shown
that changes in sleep electrophysiology may be linked to the
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TABLE 3 | Classification performance comparison between EEG during NREM sleep and wakefulness for distinguishing MCI from HC.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) F1 score (%)

W Cubic SVM 85.47 88.57 82.14 84.35

Bi-GRU 90.26 90.00 90.54 90.57

NREM Cubic SVM 90.51 92.02 88.89 89.87

Bi-GRU 93.46 93.33 93.60 93.56

FIGURE 3 | ROC curves and AUC values of NREM sleep EEG and awake EEG (A) SVM classifier (B) GRU network.

FIGURE 4 | Relative power of NREM sleep and awake EEG in MCI and HC subjects (∗p < 0.05; ∗∗p < 0.01).

cognitive condition of AD and MCI patients. We used spindles
and sleep slow waves, along with other common features, to
improve classification accuracy by the GRU network. Although
the accuracy is lower than that of multi-channel EEG signal
classification, it is superior to other single-channel results and
is not limited by the experimental site. Therefore, it is especially
suitable for head-mounted wearable devices.

In this study, we proposed a diagnostic method for patients
with MCI based on sleep EEG signals. We have shown that
incorporating features of sleep slow waves and spindles as
new features of the MCI detection significantly improves the
accuracy of the MCI detection over traditional features during

wakefulness. The proposed method is 5 and 3% better than
traditional features in the classification results of the SVM
classifiers and GRU network, respectively. In this study, the
detection of MCI using the GRU network with the features of
NREM sleep achieved the highest accuracy, reaching 93.46%.
The following three aspects are considered superior to other
methods. Firstly, the features of spindles and slow sleep waves
during NREM sleep are an effective supplement to traditional
features, and the data during sleep contains more information
than wakefulness. As shown in Figure 4, SPSS software was used
for statistical analysis. Non-normally distributed variables were
compared by the Mann-Whitney U test. P-values less than 0.05
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were considered statistically significant. During NREM sleep,
the MCI group showed significant differences in theta, alpha,
and gamma bands compared with the HC group. During
wakefulness, a similar phenomenon was observed, but only
the theta and alpha bands were significantly different (both
p < 0.05). This suggests that significant changes in power
spectral density can be detected during both NREM sleep
and awake sleep, and that sleep EEG does not reduce the
difference between MCI and HC. Therefore, related features
of sleep may be an important biomarker of MCI. Secondly,
this algorithm adopted two-channel EEG, which is simple
compared with the multi-channel acquisition, and does not
require additional nursing staff to take care of patients when
we collect the EEG signals during sleep. Finally, the GRU
network significantly improved the classification performance in
MCI recognition.

While the proposed approach is encouraging, there are some
limitations that should be addressed. In this study, only MCI and
HC were categorized, requiring further consideration of other
stages of cognitive impairment. In addition, we were only able to
analyze sleep EEG signals from 40 different subjects in this study,
so this research should be regarded as preliminary, and future
studies should include larger datasets to validate the suggested
method’s stability and generalizability.

CONCLUSION

EEG signals are non-stationary, nonlinear, and noisy, so
it is a challenging problem to distinguish between MCI
and HC based on EEG signals. In this study, MCI was
detected and classified using two-channel sleep EEG signals.
Based on traditional features, the features of sleep slow
waves and spindles were extracted. Unlike the existing
features, the proposed features are not restricted by the
use of traditional EEG bands. In particular, sleep features
combined with traditional features outperformed traditional
features on classification tasks, proved to be more accurate
in predicting MCI and performed better with sleep EEG
signals than with wakeful signals. Although studies have
shown that changes in EEG activity during NREM sleep
are associated with MCI, no studies have used it for
the recognition of MCI. The high classification accuracy
obtained in this paper once again proves that sleep slow
waves and spindles can be used as early biomarkers for the
development of AD (Romanella et al., 2020). Early diagnosis
would also provide patients access to available treatment,
while possibly initiating an earlier treatment. In addition,
this study is based on sleep EEG, which is non-invasive,
portable, and low-cost, and therefore has high value as a
diagnostic tool.
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