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The common features of all neurodegenerative diseases, including Alzheimer’s disease,

Parkinson’s disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington’s disease,

are the accumulation of aggregated and misfolded proteins and the progressive loss

of neurons, leading to cognitive decline and locomotive dysfunction. Still, they differ in

their ultimate manifestation, the affected brain region, and the kind of proteinopathy.

In the last decades, a vast number of processes have been described as associated

with neurodegenerative diseases, making it increasingly harder to keep an overview

of the big picture forming from all those data. In this meta-study, we analyzed

genomic, transcriptomic, proteomic, and epigenomic data of the aforementioned

diseases using the data of 234 studies in a network-based approach to study

significant general coherences but also specific processes in individual diseases or

omics levels. In the analysis part, we focus on only some of the emerging findings, but

trust that the meta-study provided here will be a valuable resource for various other

researchers focusing on specific processes or genes contributing to the development

of neurodegeneration.
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INTRODUCTION

The typical features of all neurodegenerative diseases (NDDs), including Alzheimer’s disease
(AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Huntington’s disease
(HD), are the accumulation of aggregated and misfolded proteins and the progressive loss of
neurons, leading to cognitive decline and locomotive dysfunction. Still, they differ in their ultimate
manifestation (e.g., dementia, Parkinsonism, motor neuron impairment), the affected brain region
[e.g., hippocampus (AD), Substantia nigra (PD), striatum (HD), upper and lower motor neurons
(ALS)], and the kind of proteinopathy [amyloidosis, tauopathies (AD)], a-synucleinopathy (PD),
CAG triplet elongation (HD) and TAR DNA-binding protein 43 (TDP-43) aggregates (ALS) (Roos,
2010; Zarei et al., 2015; Rosenberg et al., 2016; Armstrong and Okun, 2020; Pathak et al., 2021).
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Adult neurons maintain energy-intense functions, such as
membrane excitability, neurotransmission, and plasticity. They
cannot rejuvenate by dividing, so they are especially reliant
on a high supply of energy, the maintenance of protein and
organelle quality control, rapid delivery of molecules within
and out of cells, and the trafficking of organelles and other
factors over considerable distances within the cell (Franco-
Iborra et al., 2018; Gan et al., 2018). There are myriads of
biological processes involved in the well functioning of the brain,
whose malfunction can lead to neurodegeneration. Hallmarks
among others are an aberrant cell cycle regulation, mitochondrial
dysfunction, ER stress, impaired protein folding and quality
control, deregulated autophagy and apoptosis, oxidative stress
and insufficient DNA damage repair, missing homeostasis,
a malfunctioning extracellular matrix, excitotoxicity, aberrant
axonal transport, and excessive neuroinflammation (Coppedè
and Migliore, 2015; Lindberg et al., 2015; Nah et al., 2015;
Briston and Hicks, 2018; Cabral-Miranda and Hetz, 2018;
Sonbol, 2018; Guzman-Martinez et al., 2019; Armada-Moreira
et al., 2020; Guo et al., 2020; Joseph et al., 2020; Iatrou et al.,
2021). To disentangle the multitude of processes associated with
neurodegenerative diseases, we collected data from four omics-
layers in four neurodegenerative diseases from 234 studies. These
data are analyzed in a network-based approach that provides
structure regarding the most represented processes, hub genes,
and differences in regulation between specific omics-layers and
diseases by building communities within networks for each
omics-layer in each condition.

To provide an overview of the central biological processes
and the pathways involved, we have divided them into broader
categories according to their primary location or mode of action,
namely, intracellular mechanisms, local tissue environment
influences, and systemic influences (Ramanan and Saykin, 2013).
On the cellular level, a deregulated cell cycle and misguided
autophagy and apoptosis lead to degenerated neurons. Within
the local tissue environment, an intact extracellular matrix
(ECM), an unimpaired cell development, signal transduction,
and transport of vital molecules are of fundamental importance.
Excessive immune response and a dysregulated metabolism lead
to significant disturbances on the systemic level.

Within our analyses, we found thousands of biological
processes (BP) as defined by the Gene Ontology and local
network cluster terms given by the string DB database. To
allow an understanding within this complexity, we assigned
those multilayered and diverse terms to 6 hallmarks: “cell
cycle,” “autophagy/apoptosis,” “ECM/development,” “signal
transduction/transport,” “immune system,” and “metabolism”
for each community in all created networks. This observation
allows us to extract processes distributed across diseases and
omics-layers, which are mainly present in specific omics-layers
or conditions. We only address the most striking results
but see this work as an opportunity for other researchers
working primarily on the effect of particular processor genes on
neurodegeneration to study the gene communities associated
with those processes in more detail. For example, a specific
gene cluster containing the gene or process of interest can be
extracted from the Supplementary Data sources we provide

(see Supplementary Table 1—Genes Per Community) and
inserted, e.g., in string DB (https://string-db.org/). The resulting
network can be selectively examined, and all publications,
processes, pathways, etc., that are significantly associated
with the respective candidates or networks can be analyzed.
Consequently, we hope the big picture of neurodegeneration
we draw here in our results will serve as an inspiring and rich
source of data, providing a range of new insights and analysis
perspectives for the scientific community. In the following,
we introduce the six hallmarks, providing a preview of our
associated low-level terms by showing them in italics.

Hallmark 1: Cell Cycle
Neuronal cells similar to muscle cells usually remain in a
quiescent cell cycle state once they are differentiated due to
their specialized functions. But cell cycle regulatory proteins
like cyclins, CDKs, caspases, and p53 continue to be required
for axonal migration, maturation, and survival (López-Sánchez
et al., 2017; Joseph et al., 2020). One or more of these cell
cycle proteins and pathways might get activated in response
to various epigenetic or pathologic stimuli. Aberrant cell cycle
reentry of neurons with duplication of the genetic material but
without subsequent cell division is a well-known phenomenon.
However, it is still unknown whether this is deleterious or
beneficial. In the early stages of brain development, specific
populations of neurons undergo incomplete mitosis and stay
in a tetraploid state for the rest of their adult life. Still, a de
novo neuronal tetraploidization in the adult brain seems to be
an early indicator for neurodegeneration, with cells showing
elevatedmolecular stress response and apoptotic marker proteins
due to this aberrant regulation of cell cycle (Frade and Ovejero-
Benito, 2015; López-Sánchez et al., 2017; Joseph et al., 2020). The
correct assembly, positioning, and working of the mitotic spindle
apparatus are essential for the development and differentiation of
cells. Spindle orientation defects leading to an imbalance between
symmetric and asymmetric divisions have been discussed as
being linked to NDD. An asymmetric cell division leads to two
daughter cells with different cell fates. An important example is
the division of a stem cell, leading to a differentiated brain cell
and another stem cell. The preconditions for an asymmetric cell
division are the polarization of the content of the mother cell and
the alignment of the mitotic spindle along the axis of polarity.
If this process is disturbed by an impaired spindle orientation,
this will have severe consequences in the development of the
brain (Noatynska et al., 2012). During mitosis, motor proteins,
together with Huntingtin, localize along spindle microtubules to
segregate the chromosomes (Godin and Humbert, 2011). Thus,
mutant Huntingtin could lead to defective neurogenesis during
embryonic development leading to Huntington’s disease later in
life (Godin and Humbert, 2011; Wiatr et al., 2018). Defective
DNA repairmechanism, together with elevated oxidative stress, is
a typical hallmark for aging cells (Joseph et al., 2020). As the brain
is the largest consumer of oxygen, reactive oxygen species (ROS)
are the main inducers of DNA damage in neurons (Nissanka and
Moraes, 2018). The accumulation of unrepaired damaged DNA
might contribute to a cell cycle reentry of the neuron to increase
polyploidy, thus compensating for the loss of information on
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some parts of the DNA. Also, general terms like transcription
(mitochondrial) translation, RNA modification, spliceosome, and
chromatin organization were defined as subprocesses integrated
into the hallmark called the cell cycle.

Obviously, transcription, translation, and chromatin
remodeling as major contributors to protein homeostasis
have a considerable impact on all cellular functions, and
genetically or epigenetically misregulated transcription factors
can enhance or weaken all the processes that lead to or
prevent neurodegeneration like neuroinflammation, oxidative
stress, and protein homeostasis (Berson et al., 2018; Jin et al.,
2019). Especially neurons face the problem that their locus
of transcription is distant from the locus of translation as
protein synthesis is decentralized to meet the rapidly changing
metabolic needs of axons and dendrites. Nuclear mRNA is
transported from the cell body to the periphery as RNA/protein
granules linked to motor proteins of the cytoskeleton by adaptor
complexes. Conditions, such as mislocalization of the mRNA,
a defective cytoskeleton, and deleterious adaptor complexes,
lead to synaptic dysfunction, loss of synapses, and, ultimately, to
neuronal death (Liu et al., 2017).

Hallmark 2: Autophagy and Apoptosis
Accurate folding and control over levels of many proteins
are tightly regulated in neuronal cells by a protein quality
control network consisting of molecular chaperones and an
intact degradation system of misfolded or discarded proteins,
consisting of the ubiquitin-proteasome system and autophagic
processes. Chaperone-mediated processes are involved in the
promotion of de novo folding of nascent proteins or the
refolding of misfolded polypeptide chains, thereby preventing
their aggregation (Hartl et al., 2011; Chaplot et al., 2020).

Proteins that cannot be folded correctly or are no longer
needed are tagged by the attachment of the small protein
ubiquitin (ubiquitinylation) and degraded by a multi-subunit
protein complex called the proteasome or by autophagy, which
is a universal lysosome-dependent intracellular degradation
process for not only protein aggregates but also cell organelles
and cytoplasmic constituents to maintain cell homeostasis
(Nah et al., 2015; Schmidt et al., 2021). Lysosome-dependent
autophagy can either be carried out by lysosomes acting by
themselves in a process called micro-autophagy, or in macro-
autophagy where cell organelles with a lipid double layer derived
from the ER called omegasomes fuse with lysosomes to form
autophagosomes (Mizushima and Klionsky, 2007; Li et al.,
2012; Nah et al., 2015). In neurons, these autophagosomes
are generated constitutively in the cell periphery and mature
on their way to the cell body (Xie and Klionsky, 2007). The
proteins ensuring this axonal transport are Huntingtin and
Huntingtin-associated protein 1. As huntingtin is predominantly
cleared by autophagy, the deficiency of intact huntingtin in
HD is a double stress factor leading to the accumulation
of polyglutamine-expanded huntingtin polyQ-htt and other
cytoplasmic constituents that need to be degraded (Wong and
Holzbaur, 2014). Besides deficiencies in the protein quality
control network leading to the typical protein aggregations in
NDD, there are many more factors that impair homeostasis of

the cell, causing stress to the cells. Heat, toxins, mechanical
damage, infections, starvation, hypoxia, and oxidants all lead
to cellular stress responses that aim to control the induced
damage and, if possible, to confer resilience to the stressor.
The integrated stress response (ISR) is an elaborate signaling
cascade, where different stress signals activate different protein
kinases that converge in phosphorylating the core of the ISR,
the α-subunit of the translation initiation factor 2 (eIF2α).
This leads to a reduction of global protein synthesis in favor
of ISR-specific mRNAs, such as the activating transcription
factor ATF4. ATF4 is the main effector of the ISR. It forms
homo- and heterodimers that bind to DNA targets to control
the expression of genes involved in cellular adaptation, mainly
chaperones that refold denaturated proteins or tag them for
immediate degradation (Harding et al., 2003; Fulda et al., 2010;
Pakos-Zebrucka et al., 2016). To terminate the integrated stress
response, dephosphorylation of eIF2α is required. However,
dephosphorylation of eIF2α can also facilitate the production
of death-inducing proteins in cases where the cell is so severely
damaged that normal functioning and homeostasis cannot be
restored (Pakos-Zebrucka et al., 2016). Highly regulated cascades
of events will then lead to the decomposition of the cell in a
process called apoptosis (Danial and Korsmeyer, 2004; Elmore,
2007; Fulda et al., 2010). Apoptosis is a caspase-mediated
programmed cell death that can be triggered either by stress
signals from within the cell or by signals that are released
by the surrounding cells and that bind to cell-surface death-
receptors (Danial and Korsmeyer, 2004; Elmore, 2007). Both
intrinsic and extrinsic pathways ultimately induce cell death by
activating caspases, enzymes that carry out the degradation of
the cell, leading to cell shrinkage, plasma membrane blebbing,
chromosome condensation and degradation, mitochondrial
death with release of cytochrome C, cellular fragmentation, and
formation of membranous apoptotic bodies. At the same time,
phosphatidylserine residues are exposed at the cell surface to
attract macrophages that phagocytize the cell fragments. The
extrinsic pathway is activated by extracellular ligands (e.g., CD95
ligand, tumor necrosis factor α) binding to cell-surface death
receptors, which either leads to the formation of the so-called
DISC (death-inducing signaling complex) or the activation of
nuclear factor kappa B (NFκB) (Wang and El-Deiry, 2003; Lavrik
et al., 2005). Caspase 8, which serves as the initiator caspase,
is activated within this complex. If the activating stimulus is
sufficiently large, caspase 8 begins activating the effector Caspases
3, 6, and 7. They translocate to the mitochondria to trigger pore
formation in the outer mitochondrial membrane (Fan et al.,
2005), which ultimately leads to mitochondrial permeability
and death. The release of cytochrome C promotes caspase-9
activation, which triggers a cascade of proteolytic events. The
intrinsic signaling pathway is controlled by the Bcl2-family
of proteins and is triggered by cell-internal factors, such as
DNA damage, osmotic stress, or growth factor withdrawal.
The triggering cell event activates the transcription factor p53,
leading to the expression of proapoptotic Bad protein. The Bad
protein, in turn, activates the multidomain proapoptotic Bax
protein, which triggers permeabilization of the mitochondrial
outer membrane. As a result, similar to the extrinsic pathway,
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cytochrome C escapes from the intermembrane space of the
mitochondria and induces a proteolytic cascade (Mcilwain et al.,
2013; Wang and Tjandra, 2013; Chen et al., 2018).

The NFkB signaling pathway is activated during apoptosis
either to enforce the ongoing apoptotic processes or to navigate
the cell back to the survival pathway by stimulating the
expression of anti-apoptotic genes, especially TRAF1 and TRAF2,
and thus overruling the activities of the caspases (Sheikh
and Huang, 2003). NFκB is a family of transcription factors
with multiple physiological and pathological functions. The
NFκB complex exists in an inactive state in the cytoplasm. It
consists of different NFkB dimers and inhibitory kB proteins
(IκB) that prevent NFkB to enter the nucleus and bind to
the DNA (Israël, 2010). NFkB can be activated by highly
variable stimuli, including growth factors, cytokines like tumor
necrosis factor alpha and interleukin 1-ß, bacterial and viral
antigens like lipopolysaccharides or double-stranded RNA and
physicochemical insults like ionizing radiation or free radicals.
All these different stimuli activate different phosphorylation
cascades that, in the end, lead to an interaction with the IκB
kinase (IKK) complex, which then leads to the phosphorylation
of IκB in the NFkB complex. Once phosphorylated, IκB gets
ubiquitinylated and degraded by the proteasome. The released
NFkB can now enter the nucleus to activate target gene
expression that regulates immune responses, cell growth, and
proliferation but also apoptosis (Qin et al., 2007). The selectivity
of the NF-κB response is based on several factors, including
dimer composition, timing, organization of chromatin, and cell
type (Natoli, 2009; Sen and Smale, 2010). Besides the NFkB
signaling pathway, an important low-level term in autophagy
and apoptosis, was the mTOR signaling pathway. As mentioned
above, an impaired autophagy in NDD leads to the accumulation
of toxic protein aggregates that promote cellular stress and
death. The kinase mammalian target of rapamycin (mTOR) is
a central regulator of metabolism as it senses cellular nutrient,
oxygen, and energy levels (Perluigi et al., 2015). It is a potent
repressor of autophagy and reacts to food abundancy with
cell growth and proliferation, whereas, in times of starvation,
it is inhibited, thus allowing the cells to derive energy from
autophagic and apoptotic processes (Heras-Sandoval et al.,
2020).

Hallmark 3: Extracellular Matrix
Organization and Development
The extracellular matrix (ECM) is a three-dimensional network
that reaches all cells of the body to provide structural support,
segregate tissues, and regulate intercellular communication by
many different biochemical processes. It consists of minerals and
macromolecules like collagen, elastin, enzymes, glycoproteins,
and hyaluronan, which is most abundant in the brain (Bonnans
et al., 2014). These compounds contribute to a varying degree
of stiffness and elasticity of the ECM throughout the body from
hard bone to soft brain tissues. The mechanical properties of
the ECM environment can be sensed by the cells, which is
the precondition for processes like cell migration, proliferation,
differentiation and growth, apoptosis, and, on a higher level,

the development of tissues and organs (Bonneh-Barkay and
Wiley, 2009; Sethi and Zaia, 2017; Maguire, 2018). These
processes also require a direct connection between cells and
ECM. The ECM communicates with the cells by connecting to
the cytoskeleton through cilia and (focal) adhesion complexes
(Geiger and Bershadsky, 2002). The cytoskeleton is a functionally
versatile filamental structure that transports and localizes the
contents of the cell, it organizes the process of cell division,
namely, chromosome segregation and cytokinesis, it connects the
cell physically and biochemically to the external environment
through interacting with the ECM (cell adhesion, focal adhesion,
cell junction), and it enables the cell to move and change
shape (cell migration, cell differentiation, growth, and localization)
(Wozniak et al., 2004; Fletcher and Mullins, 2010). These
functions are mediated by three filament types: microtubules,
actin microfilaments, and intermediate filaments, which, in
neurons, are called neurofilaments (Herrmann et al., 2007;
Hohmann and Dehghani, 2019). Microtubules are hollow tubes
consisting of tubulin dimers, which are stabilized by tau proteins.
They grow out from the centrosome to the plasma membrane
by constantly adding and subtracting tubulin dimers at both
ends of the filament (Mitchison and Kirschner, 1984). They
are responsible for the intracellular transport together with
the motor proteins kinesin and dynein that transport, e.g.,
vesicles, nutrients, and essential organelles, but also broken-
down neurotransmitters and misfolded proteins by extending
along the axon and functioning as the cytoskeletal navigation
pathways in the transporting process (Guo et al., 2020). The
hyperphosphorylation of tau proteins as seen in AD results
in microtubule destabilization and cytoskeleton abnormalities
(Mandelkow et al., 1995; Barbier et al., 2019). Actin ß- and γ-
monomers, together with formin homology proteins, form linear
polymers called actinmicrofilaments, which can then be arranged
as a network with the help of the proteins Arp2 and Arp3. The
Arp2/3-complex forms dimers that resemble actin dimers, but
are much more stable. They attach themselves in a 70◦ angle
and serve as nucleation cores for actin filaments activated by
the nucleation-promoting factor proteins of the WASP/WAVE-
family (Kurisu and Takenawa, 2009). Both filaments and
networks stabilize the plasma membrane of the cells and control
the position of the nucleus and other cell organelles (Pfisterer
et al., 2017). They maintain and adapt cell shape, thus allowing
for cytokinesis, organization of cell junctions, and enhancement
of cell adhesion. Cell migration is achieved by the polymerization
of new actin filaments in the forward edge of a moving cell
that pushes the cell membrane forward in protrusions called
lamellipodia. These protrusions form mechanical links between
the actin filaments and the ECM called focal adhesions. Once
attached, the rear of the cell body contracts, squeezing its contents
forward past the adhesion point. Once the adhesion point has
moved to the rear of the cell, the cell disassembles it, allowing
the rear of the cell to move forward (Ananthakrishnan and
Ehrlicher, 2007). The actin filaments also provide the tracks for
cellular transport, allowing actin-basedmotor proteins (myosins)
to transport organelles over short distances.

The interactions of a-actin und myosin but also troponin
and tropomyosin are most sophisticated in muscle cells. These
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highly specialized cells work together to contract and release
muscles, thus leading to movement of the whole organism and to
the cardiac muscle action potential (Cooper, 2000). Intermediate
filaments are the major cytoskeletal proteins, which, in contrast
to microtubules and microfilaments, are more heterogeneous,
have tensile strength, and do not participate in cell motility
(Herrmann et al., 2009). The intermediate filaments primarily
provide structural support for the cell, especially for the long
neuronal cells where they regulate the diameter of the axon and,
thereby, the nerve conduction speed (Helfand et al., 2003).

All cells have intermediate filaments, but the protein subunits
of these structures vary. They can be classified into six different
types: Types I and II are the keratins, which are expressed
in epithelia. Type III contains the proteins vimentin, which
frequently colocalizes with microtubules, desmin, peripherin,
and glial fibrillary acidic protein (GFAP). Type IV consists of the
neurofilament proteins L, M, H, and internexin. Type V consists
of the nuclear lamins, and Type VI consists of the protein nestin
(Muñoz-Lasso et al., 2020). During embryonic development
of the brain microtubules, microfilaments and neurofilaments
work together to guarantee proper growth and guidance of
axons; during adult life, they maintain neuronal homeostasis and
plasticity. Given these fundamental processes rely on an intact
cytoskeleton organization, it is not surprising that cytoskeleton
defects, including alterations in microtubule stability, in axonal
transport as well as in actin dynamics, have been characterized in
several NDDs.

Hallmark 4: Signal Transduction and
Transport
Neuronal signal transduction and transport of organelles and
vital molecules along the axon maintain neuronal activity and
health. In NDD, neuronal signaling is more and more impaired
because of synaptic and cytoskeletal dysfunctions. The loss of
synapses has detrimental consequences as they are critical to
learning, memory, and behavior (Lepeta et al., 2016; Ardiles et al.,
2017), and perturbations in axonal transport can lead to neuronal
cell death (Perlson et al., 2010).

Cell communication in the brain is achieved by neuronal
signaling via synapses. In this process, electrical activity
is transferred from one neuron to another through
neurotransmitters as chemical mediators. The most important
neurotransmitters in the central nervous system are glutamate for
the excitatory, and GABA and glycine for the inhibitory synapses,
but also dopamine, serotonin, and acetylcholine (Fogarty et al.,
2016). Action potentials that travel along axons induce an
intracellular Ca2+ influx mediated by voltage-gated calcium
channels at the presynaptic terminal. Increased Ca2+ levels are
sensed by the synaptic vesicle protein synaptotagmin I, which
induces the Soluble NSF Attachment Protein Receptor (SNARE)
protein complex to mediate fusion of the neurotransmitter
vesicles with the plasma membrane (SNARE binding), releasing
them into the synaptic cleft (neurotransmitter secretion). The
neurotransmitters then bind to and thus activate receptors of the
postsynaptic cell, which can be either ion channels or G protein-
coupled receptors. They transmit signals from the post-synaptic

membrane to the cell body by transducing the chemical signal
into an electrical signal that depolarizes the postsynaptic cell
and is transmitted downstream to the next neuron (Lepeta et al.,
2016; Taoufik et al., 2018).

Rather than being just a gap, the synaptic cleft is full
of trans-synaptic adhesion molecules that not only physically
connect the pre- and post-synaptic compartment but also
mediate recognition and signaling processes that are essential
for the establishment, specification, and plasticity of synapses.
Such synapse-organizing adhesion molecules include neurexins
and neuroligins, cadherins, integrins, receptor phosphotyrosine
kinases, and phosphatases, such as ephrins and Rho GTPases
(Missler et al., 2012; Jang et al., 2017). Deficiencies in the complex
synaptic functioning are not only seen in neurodegenerative
diseases but also in neuropsychiatric disorders, suggesting that
the loss of synapses is not the endpoint incident of the disease
but, rather, a triggering event (Taoufik et al., 2018).

Axonal transport, in general, is a process where the motor
proteins kinesin and dynein loaded with diverse cargos navigate
along the microtubules of the cytoskeleton. Anterograde axonal
transport delivers proteins, lipids, mRNA, and mitochondria to
the distal synapse, whereas retrograde transport clears misfolded
or aggregated proteins and brings distal trophic signals to the
soma (Millecamps and Julien, 2013; Sleigh et al., 2019).

Transmembranal transport systems in neurons are the
anterograde ER to Golgi transport with COP II-coated vesicles and
the retrograde trans-Golgi-Network transport with COP I-coated
vesicles (Martínez-Menárguez et al., 2019; Wang L. et al., 2020).

Neurotransmitters or other secretory molecules leave the
ER packed in COPII-coated vesicles to be further processed
in the Golgi apparatus before being secreted into the synaptic
cleft. After an action potential, neurotransmitter and receptors
are recycled by the cell. They are protected from lysosomal
degradation by COPI-coated vesicles of the retrograde trafficking
and redirected to the ER where they are recycled for the next
release (Lu and Hong, 2014).

Deficiencies in axonal transport through defects in the
cytoskeletal organization, the impairment of motor protein
attachment to the microtubules or the destabilization of motor-
cargo binding but also aberrant transmembranal anterograde
and retrograde transport between ER and Golgi apparatus can
induce synaptic failure and ultimately lead to neurodegeneration,
as shown in AD, PD, ALS, andHD (Perlson et al., 2010; Guo et al.,
2020).

Hallmark 5: Immune System
A fundamental feature in NDD is the dysregulation of the
innate immune response in the central nervous system by
chronic inflammation. The innate immune response of the brain
represents not only the first line of defense against invading
microorganisms (defense response to other organisms) but also
responds to endogenous stress like dying or damaged cells
after cellular stress. It consists primarily of microglial cells and
astrocytes. Microglia are resident tissue macrophages and the
principal mediators of inflammation (Frank-Cannon et al., 2009),
whereas astrocytes mainly supply neurons with nutrients and
energy and form the blood–brain barrier (Blackburn et al.,
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2009). Both microglia and astrocytes express on their cell-
surface pattern-recognition receptors that detect pathogen-
associated molecular patterns like residues from bacteria, viruses,
fungi but also danger-associated molecular patterns, which can
be abnormal endogenous proteins, iron overload, antibodies,
cytokines, and chemokines, including toll-like receptors (Akira
et al., 2006; Medzhitov, 2007). Also, complement factors bind
to these receptors, initiating the complement and coagulation
cascade, which enhances the immune response of microglia
and astrocytes.

Pathogen- and danger-associated molecular patterns induce
neuroinflammation by activating the transcription factor
NFkB in microglial cells. NFkB induces the synthesis of
proinflammatory cytokines like Interleukin−1ß (IL-1β), IL-6,
IL-12, interferon gamma (IFN-γ), chemokines, including the
C-C motif chemokine ligand 2 and tumor necrosis factor alpha
(TNF-α), but also prostaglandins (Schaefer, 2014; Guzman-
Martinez et al., 2019) to promote efficient clearance of cell
debris and plaques. Also, these factors, being released into the
cell environment, activate the astrocytes to both increase the
permeability of the blood–brain barrier for easier recruitment
of B- and T-adaptive immune cells (leukocyte activation) in
the brain parenchyma and to release intracellular signals like
neurotrophic and growth factors and cytokines, promoting
neuronal survival, neurite growth, and neurogenesis (Jha et al.,
2019). At the same time, microglial cells synthesize and release
short-lived cytotoxic factors, such as superoxide radicals, nitric
oxide, and reactive oxygen species that help remove pathological
agents (Harry and Kraft, 2008; Jurga et al., 2020).

Although an acute insult may trigger oxidative and nitrosative
stress and a slightly more permeable blood-brain barrier,
this reaction is typically short-lived and unlikely to be
detrimental to long-term neuronal survival (Kurutas, 2015).
But disease-induced protein aggregations like oligomers of
tau and Aβ, aging, and other risk factors can lead to
chronic neuroinflammation with a long-standing and, often,
self-perpetuating neuroinflammatory response that persists
long after the initial injury or insult. Permanently activated
microglia may not be able to remove amyloid-beta deposits,
which, in turn, contributes to further plaque accumulation
as opposed to clearance (Frank-Cannon et al., 2009). Also,
the permanently increased oxidative and nitrosative stress
leads to damaged neurons, synaptic dysfunction, loss of
synapses, and neuronal death (Schain and Kreisl, 2017; Shabab
and Zorofchian, 2017; Kinney et al., 2018), aggravated by
the fact that astrocytes lose their neurotrophic function
during the progressive loss of neurons. This process called
astrogliosis affects considerably the neurons and their integrity
(Sofroniew and Vinters, 2010; Sofroniew, 2015). Chronic
inflammation can also trigger signaling pathways that activate
brain tau hyperphosphorylation in residues that are not
modified under normal physiological conditions, again leading
to degenerated neurons and, finally, the now permeable blood-
brain barrier allows much more pathogens to enter the brain
than the innate immune response can cope with (Gendelman,
2002).

Hallmark 6: Metabolic Processes
We associated the highest number of low-level terms across
all six hallmarks to the metabolism hallmark as its pathways
and biological processes are involved in all basic physiological
processes, and the homeostasis of the compounds and their
interactions is vital for the well-functioning of the organism.
As neurons but also astrocytes, oligodendrocytes, and microglia
are highly dependent on a continuous energy supply. One of
the most significant hallmarks for NDD is the dysfunction
of mitochondria. Mitochondrial metabolism, comprising the
oxidation of pyruvate and fatty acids, the citric acid cycle,
the oxidative phosphorylation within the respiratory chain, and
the formation of antioxidants, was assigned to the hallmark
metabolism, which also contains metabolic processes in the
cytoplasm like fat metabolism, protein, carbohydrate, and
nucleic acid metabolism, but also homeostasis of the cell.
Lipid molecules are key components of the brain’s complex
structure and function, with lipids comprising around 50% of
the brain’s dry weight (O’brien et al., 1964). Many neurological
diseases are caused by mutations in genes that are involved
in lipid metabolism (Mesa-Herrera et al., 2019; Petit et al.,
2020). As associated low-level terms, we included lipid-,
cholesterol-, sphingolipid metabolism, lipoproteins, carboxylic
acid, and fatty acid oxidation. Lipids function as key regulators
of neurotransmission; cholesterol is a membrane stabilizer
and organizer during synaptic vesicle exo- and endocytosis;
sphingolipids and their metabolites are regulators of the fluidity
of cell membranes and second messengers in signal transduction
(Puchkov and Haucke, 2013; Barber and Raben, 2019). Being
hydrophobic, lipids and cholesterol must be transported through
the blood by lipoproteins. The term carboxylic acid was mostly
connected to biological processes concerning the citric acid cycle
and was thus assigned to mitochondrial metabolism, like fatty
acids, which are degraded in the mitochondria in an energy-
generating process called ß-oxidation (Petit et al., 2020).

Main low-level terms of protein metabolism were branched
amino acid degradation and proteoglycans. Valine, isoleucine,
and leucine are essential branched-chain amino acids (BCAAs).
Their catabolism starts inmuscle mitochondria and yieldsNADH
and FADH2, which can be utilized for ATP generation. In the
brain, BCAAs contribute to the synthesis of excitatory glutamate
and inhibitory gamma-aminobutyric acid (GABA) and, at the
same time, can reduce the production of serotonin and the
catecholamines because they compete for transport across the
blood-brain barrier with the aromatic amino acids tryptophan,
tyrosine, and phenylalanine, which are the precursors of these
neurotransmitters (Fernstrom, 2005). AD metabolomics studies
demonstrate that altered branched-chain amino acidsmetabolism
accompanies Alzheimer’s disease development. Lower plasma
valine levels are correlated with accelerated cognitive decline in
AD and the severity of motor dysfunction in HD (Polis and
Samson, 2020; Xu et al., 2020). No clear correlation between the
levels of BCAA and ALS or PD could be found (Bjornevik et al.,
2019; Xu et al., 2020).

Carbohydrates are the main source for energy production in
the brain and are broken down by glycolysis, the tricarboxylic
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acid cycle, and oxidative phosphorylation (Attwell and Laughlin,
2001). The main causes for defective glucose usage in NDD are
deleterious mitochondria and a decreased secretion of insulin,
coupled with resistance to its actions, problems that link NDD
to type II diabetes (Ristow, 2004; Haan, 2006; Seneff et al., 2011;
Schaeffer et al., 2021).

During nutritional uptake, the insulin pathway secures the
release of the hormone insulin into the blood, which then binds to
insulin receptors on the cell surface and thus regulates the uptake
of glucose into the cells. But insulin also controls divergent
signaling pathways like the Act-pathway or the MAP-kinase
pathway, which are involved in cell growth and differentiation
(Saltiel and Pessin, 2002). Studies withmousemodels have shown
that insulin is also involved in the excitability of (hippocampal)
neurons (Dai et al., 2014). AD neurons show a reduced action
potential due to soluble Aß, an effect that is aggravated bymissing
insulin and that can be partially reversed by the anti-cancer agent
bexarotene (Cramer et al., 2012; Dai et al., 2014).

Another important task of carbohydrates is the glycosylation
of proteins and lipids in the ER. In the brain, glycosylated
proteins participate in a myriad of processes, from electrical
gradients to neurotransmission (Conroy et al., 2021), and
glycolipids are crucial for the interaction of cells and for signal
transduction (Reily et al., 2019). Thus, an intact N-glycosylation
and O-glycosylation of lipids and proteins are important for
the well functioning of the brain, and disrupted glycosylation
can lead to NDD (Moll et al., 2020), e.g., O-GlcNAcylation of
CNS proteins important for axonal and synaptic function is
significantly reduced in AD, ALS, HD, and PD patients’ tissue
(Liu et al., 2004; Lüdemann et al., 2005; Kumar et al., 2014).

Nucleotides are not only the building blocks of DNA and RNA
but also are involved in cellular metabolism, with, especially,
ATP and NADH as energy carriers and cAMP, a second
messenger molecule, as a translator of signals from outside to
cellular processes. Thus, these molecules are involved in all basic
physiological processes critical to the proper function of the
organism (Huang et al., 2021). Nucleotides are either built de
novo or, as this process takes much energy, recovered during the
degradation of DNA and RNA in a nucleotide salvage pathway.
A disbalance in the synthesis pathways again disturbs energy
homeostasis and many cellular processes like proliferation,
differentiation, migration, and apoptosis. The respiratory chain
complex in the mitochondria not only efficiently produces energy
but also reactive oxygen species that can harm the mitochondrial
DNA. Antioxidants like glutathione protect mitochondria and
cells against damage, but, if this homeostasis is disturbed,
oxidative stress induces the destruction of mitochondria and
apoptosis of neuronal and other brain cells (Kausar et al., 2018).

MATERIALS AND METHODS

To make all steps from data acquisition via data management
to data analysis comprehensible, we will outline these steps
following that order. The data analysis is composed of several
steps, the analysis of the intersections of the individual omics-
layers per NDD, the analysis of the conformity of the mean

regulatory direction across omics-layers per NDD, as well as the
core of the data analysis: the generation and evaluation of the
protein-protein interaction networks, and the generation and
evaluation of the communities.

Data Acquisition
In this meta-study, we used datasets of four different omics-
layers: Genomics (SNP data), Transcriptomics, Proteomics, and
Methylomics. In the following, we describe where these data were
acquired from.

The SNP data are based on the genome-wide association
studies (GWAS) Catalog (Buniello et al., 2019), which has
been updated on November 18, 2021. The experimental
factor ontology (EFO) numbers for the exact search pattern
were EFO_0000249 (Alzheimer’s disease), EFO_0002508
(Parkinson’s disease), Orphanet_399 (Huntington’s disease), and
EFO_0000253 (Amyotrophic Lateral Sclerosis). For all NDD but
HD, a child term was given, which was also included in the data
acquisition step. In total, 153 studies with genomic data were
used for the analyses (Maraganore et al., 2005; Fung et al., 2006;
Coon et al., 2007; Reiman et al., 2007; Schymick et al., 2007; van
Es et al., 2007; Van Es et al., 2008, 2009; Abraham et al., 2008;
Bertram et al., 2008; Cronin et al., 2008, 2009; Li et al., 2008, 2021;
Webster et al., 2008; Beecham et al., 2009, 2015; Carrasquillo
et al., 2009; Harold et al., 2009; Lambert et al., 2009, 2013a,b;
Landers et al., 2009; Latourelle et al., 2009; Pankratz et al., 2009,
2012; Satake et al., 2009; Simón-Sánchez et al., 2009; Edwards
et al., 2010; Feulner et al., 2010; Hamza et al., 2010; Heinzen et al.,
2010; Laaksovirta et al., 2010; Naj et al., 2010, 2011; Seshadri
et al., 2010; Shatunov et al., 2010; Stein et al., 2010; Antúnez et al.,
2011; Do et al., 2011; Furney et al., 2011; Hollingworth et al.,
2011, 2012; Hu et al., 2011, 2016; Kim et al., 2011; Kramer et al.,
2011; Liu et al., 2011, 2021; Logue et al., 2011; Nalls et al., 2011,
2014, 2019; Saad et al., 2011; Spencer et al., 2011; Wijsman et al.,
2011; Chung et al., 2012, 2018; Cummings et al., 2012; Kamboh
et al., 2012a,b; Kwee et al., 2012; Lill et al., 2012; Meda et al.,
2012; Cruchaga et al., 2013; Davis et al., 2013; Deng et al., 2013;
Jonsson et al., 2013; Langefeld, 2013; Martinelli-Boneschi et al.,
2013; Miyashita et al., 2013; Reitz et al., 2013; Diekstra et al.,
2014; Fogh et al., 2014, 2016; Goris et al., 2014; Hill-Burns et al.,
2014, 2016; Kauwe et al., 2014; Nelson et al., 2014; Pérez-Palma
et al., 2014; Ramanan et al., 2014; Ramirez et al., 2014; Sherva
et al., 2014, 2020; Vacic et al., 2014; Xie et al., 2014; Hirano et al.,
2015; McLaughlin et al., 2015; Tosto et al., 2015; Wang et al.,
2015, 2021; Biernacka et al., 2016; Chen et al., 2016; Deming
et al., 2016; Herold et al., 2016; Jun et al., 2016, 2017; Pickrell
et al., 2016; Schott et al., 2016; Traylor et al., 2016; Van Rheenen
et al., 2016; Watanabe et al., 2016; Benyamin et al., 2017; Chang
et al., 2017; Foo et al., 2017, 2020; Lee et al., 2017; Mez et al., 2017;
Moss et al., 2017; Siitonen et al., 2017; Sims et al., 2017; Chao
et al., 2018; Gusareva et al., 2018; Marioni et al., 2018; Miron
et al., 2018; Mukherjee et al., 2018; Nicolas et al., 2018; Pottier
et al., 2018; Wallen et al., 2018; Yashin et al., 2018; Bandres-Ciga
et al., 2019; Blauwendraat et al., 2019, 2020; Dekker et al.,
2019; Jansen et al., 2019; Kunkle et al., 2019, 2021; Lo et al.,
2019; Moreno-Grau et al., 2019; Nazarian et al., 2019a,b; Wei
et al., 2019; Zhu et al., 2019; Cha et al., 2020; Hong et al., 2020;
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Nakamura et al., 2020; Ryu et al., 2020; Alfradique-Dunham
et al., 2021; Bone et al., 2021; DeMichele-Sweet et al., 2021; de
Rojas et al., 2021; Kang et al., 2021; Loesch et al., 2021; Park
et al., 2021; Reddy et al., 2021; Rodrigo and Nyholt, 2021; Sakaue
et al., 2021; Schwartzentruber et al., 2021; Shigemizu et al., 2021;
Smeland et al., 2021; Tan et al., 2021; Wightman et al., 2021).

For the transcriptomic and proteomic layer, we used the
studies that we have identified previously (Ruffini et al., 2020),
using the Gene Expression Omnibus (GEO) (Barrett et al., 2013),
the Expression Atlas (Papatheodorou et al., 2018) databases,
and doing literature research (Ruffini et al., 2020). For the
transcriptomic data, the keywords used in the GEO database
were <name of disease> AND (“microarray” OR “RNAseq”)
AND “human,” The Expression Atlas was used in Release
35 (May 2020, https://www.ebi.ac.uk/gxa/home) and scanned
for Alzheimer’s, Parkinson’s, Huntington, and Amyotrophic
Lateral Sclerosis, using the filter “Homo sapiens” in the section
“Differential Experiments.”

For the proteomic data, literature search was conducted
in PubMed and Google Scholar, with the keywords:
(“neurodegenerative diseases” OR “Alzheimer’s∗ disease”
OR “Parkinson’s∗ disease” OR “Huntington∗ disease” OR
“Amyotrophic Lateral Sclerosis”) AND (proteomics OR
“quantitative proteomics” OR “differentially expressed proteins”
OR biomarkers) AND human NOT mice for publications from
2010 to 2020.

Of the included experiments, 63% of the transcriptomic
experiments were performed with brain material, while 67% of
the proteomic experiments were conducted with brain material.
Among the non-control patients, 84% were classified as having a
moderate or severe condition in the transcriptome experiments
and 90% in the proteome experiments. In total, transcriptomic
data of 39 studies (Blalock et al., 2004, 2011; Zhang et al., 2005;
Dunckley et al., 2006; Lesnick et al., 2007; Liang et al., 2007;
Scherzer et al., 2007; Simunovic et al., 2009; Cox et al., 2010;
Elstner et al., 2011; Dumitriu et al., 2012, 2016; Feyeux et al.,
2012; Berchtold et al., 2013; Hokama et al., 2014; Riley et al., 2014;
Calligaris et al., 2015; Dijkstra et al., 2015; Labadorf et al., 2015;
Magistri et al., 2015; Prudencio et al., 2015; Raman et al., 2015;
Ring et al., 2015; Kapeli et al., 2016; Lin et al., 2016; Scheckel
et al., 2016; Lim et al., 2017a,b; Gagliardi et al., 2018; Mehta et al.,
2018; Stopa et al., 2018; Mathys et al., 2019; Meyer et al., 2019;
Otake et al., 2019; Swindell et al., 2019; Switońska et al., 2019;
Al-Dalahmah et al., 2020; Dols-Icardo et al., 2020; Higginbotham
et al., 2020) and proteomic data of 22 studies were acquired (Fang
et al., 2009; van Dijk et al., 2012; Varghese et al., 2013; McQuade
et al., 2014; Riley et al., 2014; Collins et al., 2015; Dumitriu
et al., 2016; Hondius et al., 2016; Ratovitski et al., 2016; Lachén-
Montes et al., 2017, 2019; Seyfried et al., 2017; Umoh et al., 2018;
Zhang et al., 2018; Higginbotham et al., 2019, 2020; Iridoy et al.,
2019; Bader et al., 2020; Johnson et al., 2020; Oeckl et al., 2020;
Rotunno et al., 2020; Wingo et al., 2020) (see also Table 1). A
table giving the number of samples per condition, the severity
state of the included samples, and the used technology is given in
Supplementary Table 4.

For the methylomic data, we used all data from the
PDMethDB (Wang C. et al., 2020) (last accessed December 13,

TABLE 1 | A summary of the number of used studies per disease and omics-layer.

NDD Genome Transcriptome Proteome Methylome Studies

AD 79 11 9 10 109

PD 46 11 7 7 71

HD 2 10 5 2 19

ALS 26 8 3 2 39
∑

153 40 (39) 24 (22) 21 (20) 238 (234)

In total, data of four studies were used for more than one omics-layer, resulting in 234

different studies as a basis for this meta-studies data analysis. In brackets, the actual

summed number of unique studies used is shown, as some studies contained information

of two NDDs.

2021), the EWAS Atlas (Li M. et al., 2019) (accessed 01.02.21)
for the four respective diseases, and other data we found through
literature research using PubMed and Google Scholar. Queries
for “epigenome-wide” OR “epigenome wide” OR “EWAS” OR
“genome-wide” AND “methylation” OR “genome wide” AND
“methylation,” as well as “metastudy” AND “neurodegenerative
disease” AND “epigenetic,” were used to find studies published
after 2010. Combined, the databases and literature research
resulted in the inclusion of data of 20 studies (Bakulski et al.,
2012; Kaut et al., 2012; Masliah et al., 2013; de Jager et al., 2014;
Lunnon et al., 2014; Sanchez-Mut et al., 2016; Watson et al.,
2016; Zhang et al., 2016; Young et al., 2017, 2019; Gasparoni
et al., 2018; Smith et al., 2018, 2019; Zadel et al., 2018; Altuna
et al., 2019; Li P. et al., 2019; Tarr et al., 2019; Go et al.,
2020; Lu et al., 2020; Marshall et al., 2020), one of which
contained data for both AD and PD. As the higher availability of
methylome data for Alzheimer’s and Parkinson’s diseases made
it possible, we chose to include exclusively brain tissue-derived
data for those two diseases. However, as the data availability for
HD and ALS were much poorer, only blood tissue data were
included for those NDDs. In total, we gathered data from 234
different studies for the four respective diseases and omics-layers
(see Table 1).

Data Management
The raw gene lists obtained from the transcriptomic, proteomic,
and methylomic data were filtered for a false discovery ratio
(FDR)<= 0.05, the proteomic data were mapped to gene names,
and all the obtained gene names (from genomic, transcriptomic,
proteomic, and methylomic data) were then mapped to the list of
current protein-coding gene symbols (22 March 2021) from the
HUGO Gene Nomenclature Committee (Tweedie et al., 2021)
by mapping all alias names to the original gene symbol. Those
names that were not found as any gene symbol or alias were
discarded. The following data management step consisted of
removing those genes that appeared as significantly altered only
once in our transcriptomic, proteomic, and methylomic data.
However, since the database for our methylomic and proteomic
data in ALS and for the proteomic data in HD was very sparse,
we decided to retain all significant genes for these gene lists to
interpret a potentially noisy signal instead of hardly any signal
at all.
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Mean Direction of Regulation
The transcriptomic, proteomic, and methylomic data also
contained information about the regulation of these significant
genes/proteins. This information was contained as G-
fold change (FC), log2 FC or other in transcriptomic and
proteomic experiments, and as beta values in some methylomic
experiments. To make this information from the different data
sources as comparable as possible, we derived the mean direction
of regulation (MeanRegDir) for all significantly conspicuous
genes in each of the three omics levels, which equals to 1 if a
gene/protein was overexpressed/hypomethylated in the disease
group in every instance in which it occurred. Conversely,
MeanRegDir indicates a value of −1 if a gene in the disease
group was downregulated/hypomethylated in all experiments
in which it appeared as significantly striking. If the signal is
ambiguous, MeanRegDir will give a value between −1 and 1, as
indicated in Equation (1).

Equation 1: Calculation of mean regulation of direction

MeanRegDir(gene) =
1

n

n
∑

i=1

(

sig
(

geneifoldChange

))

with

n = number of appearances for gene with FDR ≤ 0.05

sig (x) =

{

1, if x > 0
−1, if x < 0

geneifoldChange = fold change of genei

Method 1: Omics-Layer Intersections per
Disease
By intersecting the four analyzed omics-layers per disease, we
were able to test whether the number of shared genes between
each pair of omics-layers per disease was significantly increased.
We used a hypergeometric test for the overlapping sets, with
the total amount of 19,207 gene symbols of protein-coding
genes (HUGO Gene Nomenclature Committee, 22 March 2021)
(Braschi et al., 2019) as the total population. To also have a
measure for the effect size of the significantly high numbers of
genes in the overlapping sets and thus being able to differentiate
between the differently significantly found large gene sets, we
calculated the effect size of the hypergeometric test results by
setting the difference between observed and expected value
in relation to the standard deviation of the hypergeometric
distribution. This led to the following formula and the value
effsize that gives the number of standard deviations by which our
expected value is beyond/below the expected value:

Equation 2: Effect size of the hypergeometric test results

effsize =
overlapobs − overlapexp

stdhypergeom

with:

stdhypergeom =

√

n∗
K

N
∗
N − K

N
∗
N − n

N − 1

with:

overlapobs = observed overlap between the two omics layers

overlapexp = expected overlap between the two omics layers

N = population size
(

whole gene background
)

K = number of successes in the population
(

number of genes in the first omics layer
)

n = number of draws
(

number of genes in the second omics layer
)

k = number of observed successes

(number of overlapping genes)

Intersections were performed and visualized using the R (version
4.0.2) (Urbanek et al., 2014) package venn (version 1.10) (Dusa,
2016).

Method 2: Multi-Omics Conformity
Stacked Bar Plots
In order to visualize those genes, which are appearing
as altered/differentially expressed in multiple omics-
layers, stacked bar plots showing conformity in genomics,
transcriptomics, proteomics, and methylomics data
(Supplementary Presentation 2—StackedBarPlots) were
created using the python package matplotlib (Hunter, 2007).
As the overlap between genomics and the other three omics-
layers was rather low, stacked bar plots were also created for
those genes appearing only in transcriptomic, proteomic, and
methylomic levels. Plots were only created if there was any
overlap. To gain insights into the direction of regulation (up-
or downregulation) for the overlapping genes, the stacked bars
are also color-coded. The color represents the ratio of studies
in which a gene was significantly up- or downregulated (see
Equation 1 Calculation of mean regulation of direction). This
data representation shows information about the certainty of
the direction of differential regulation as well as coherency
between transcriptomic, proteomic, and methylomic over- or
underrepresentation or hyper-/hypomethylation, respectively.

Correlation Test
The pearson function that is available in the scipy.stats module
(Virtanen et al., 2020) was used to compute the correlation and
its two-sided p-value for the relation between transcriptomic
and proteomic direction of regulation. The correlation analysis
showed if there was a significant correlation between the
direction of regulation in the pairwise intersection between the
transcriptomic, proteomic, and methylomic levels. The value of
the pairwise correlation and information about the p-value of the
correlation test was calculated for each pairwise intersection of
the transcriptomic, proteomic, and methylomic data layers for
each disease. The results are shown as a heatmap in Figure 2.

Method 3: Protein-Protein Interaction
Networks
The significantly distinctive genes and proteins that emerged in
our analysis represented a variety of processes connected to the
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respectedNDD. Consequently, the functional analysis of all genes
that emerged for an individual omics-layer for a particular NDD
would lead to results showing a combination of different related
processes and would, therefore, lower the statistical power of the
hypergeometric test and interpretability of the results.

To better separate the distinct processes related to our gene
sets, we constructed protein-protein interaction (PPI) graphs
for each omics-layer of each NDD and isolated communities of
high modularity within that graph with the louvain algorithm
(Blondel et al., 2008). These communities of high modularity
were then used for the functional analyses and showed clearly
distinct processes for our different gene sets.

Network Construction
PPI networks were constructed to visualize and utilize protein-
protein interaction data for each omics layer per NDD,
which were subsequently used to identify communities of high
modularity and associated hub genes within each network. The
networks were constructed using the Python module louvain
(2.6.3) (Hagberg et al., 2008). The PPI data were based on the
louvain dataset for human PPI enrichment (species = 9,606,
accessed on October 18, 2021) and were filtered for those PPI
with a combined score > = 400 (default value). The combined
score in string DB consists of a combination of the individual
scores (annotated pathways, gene neighborhood, . . . ), emerging
from the underlying databases and is typically higher than
the individual scores, as it expresses increased confidence if a
connection between two genes is supported by different types
of evidence (von Mering et al., 2005). This resulted in a graph
that consisted of nodes representing the genes that are connected
by weighted edges, representing the combined interaction score
of the involved genes. These weights were later used in the hub
gene identification to represent the importance of an edge or
to calculate a distance between edges as distance = 1/weight,
depending on each centrality algorithms input requirements.

Furthermore, the modularity of the networks was
computed using the Python module louvain, with the
louvain.algorithms.community.quality.modularity function with
a resolution parameter set to 1. For this function, modularity is
defined as described by Newman (2010) and shown below:

Equation 3: Modularity

Q =
1

2m

∑

ij

(Aij − γ
kikj

2m
)δ(ci, cj)

with

m = number of edges
A = adjacency matrix of Graph G
ki = degree of node ui
γ = a resolution parameter

(

for this analysis, set to 1
)

δ
(

ci, cj
)

=

{

1, if ui and uj are in the same community
0, otherwise

Community Creation
The community search was carried out using the Python
module community (1.0.0b1) with the community.best_partition
function, which computes a partition of the graph, maximizing

the modularity using the louvain heuristics (Blondel et al., 2008).
As the louvain algorithm’s result varies with the order in which
the input is given, we applicated the louvain algorithm 100 times
with permutated input of the whole network for each omics-
layer in each disease and calculated the whole graph’s modularity,
picking the best result in terms of networkmodularity as our final
community output.

Functional Analysis and Hallmark Definition
For each of the resulting communities, we performed the
functional annotation using the stringDB API (stringDB Version
11.5) and further focused on all communities with at least one
biological process with an FDR < = 0.05, as we considered
those communities as most helpful for creating a meaningful
redefinition of the neurodegenerative hallmarks. We also
visualized these communities of the networks in Arcplots and
Matrixplots using the Python module nxviz (0.7.2).

Derived from the functional analysis results, we defined six
hallmarks that resemble the most meaningful categorization
of our results, given prior knowledge and the most recurring
processes throughout ourmulti-omics analysis of the four NDDs.
When interpreting the functional analysis results and defining
not only the six hallmarks but also low-level terms for each
hallmark, we especially focused on the GO terms, pathways,
and stringDB local network clusters that were associated with
our communities. The stringDB local network clusters are
precomputed protein clusters from stringDB that are derived
from hierarchical clustering of the whole stringDB PPI network
and further reduced by excluding all child clusters that are too
redundant and only vary from the parent cluster by less than
five proteins. These clusters’ names are then derived from the
proteins’ annotation given in databases fromGene Ontology (GO)
(Carbon et al., 2021), KEGG (Kanehisa et al., 2021), Reactome
(Fabregat et al., 2016), UniProt (Bateman et al., 2021), Pfam
(Mistry et al., 2021), SMART (Letunic et al., 2021), and InterPro
(Blum et al., 2021).

The actual analysis of the associations between our
communities and the low-level terms was performed by
comparing the found number of associations with the expected
number of associations per NDD and omics-layer based on
the overall distribution. Additionally, we performed an X2-Test
across all NDDs and, also, across all omics-layers to see if there
was a statistically significant difference between the expected
and observed numbers of associations across the four NDDs or
across the four omics-layers for all six defined hallmarks.

Hub Gene Identification
To find out if, for some of our extracted communities, there
were key players clearly playing the most prominent role in
their respective communities, we aimed to identify the hub
genes in our communities, meaning the most central node in
our community networks. In network theory, there are different
concepts for determining the centrality of a node, meaning
the node’s dominance within the network. Three widely used
centrality measures were originally described by Freeman in the
late ’70s, namely, degree centrality, betweenness centrality, and
closeness centrality (Freeman, 1977, 1978; Freeman et al., 1979),
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based on the number of direct links between a node and other
nodes, the mediation role of a node in a network and on the
sum of the shortest paths to all other nodes in the network,
respectively. For closeness centrality, the Wassermann- and
Faust-improved formula was used (Wasserman and Faust, 1994).
These three centrality measures were computed with the Python
module networkx and were based on the following formulas:

Equation 4: Degree centrality of node ui

Cd (ui) =
1

N
∗

N
∑

j=1

Xi,j

with:

i 6= j;
N = number of nodes in the graph;

Xi,j =

{

1, if ui and uj are connected by an edge
0, otherwise

Equation 5: Betweenness centrality of node ui

Cb (ui) =
n− 1

∑n−1
j=1 d(ui, uj)

∗
n− 1

N − 1

Cb (ui) =
∑

s,t ∈V

σ (s, t|ui)

σ (s, t)

with:

s, t 6= ui; s 6= t;
V = set of all nodes in the graph;
σ (s, t) = the number of shortest s, t paths
σ (s, t|ui) = the number of shortest s, t paths going through ui

Equation 6: Closeness centrality of node ui (Wasserman- and
Faust-improved formula)

Cc (ui) =
n− 1

∑n−1
j=1 d(ui, uj)

∗
n− 1

N − 1

with:

n = number of reachable nodes from ui;
N = number of nodes in the graph;
d

(

ui, uj
)

= shortest path
′
s distance between node uiand node uj

In addition to these three centrality measures originally proposed
by Freeman, we also computed the eigenvector centrality of each
node (Newman, 2010; Bonacich, 2015), which gives a centrality
score to each node that is proportional to the sum of the centrality
scores of each node’s neighbors.

Equation 7: Eigenvector centrality of node ui
Ce(ui) is the i-th element of the vector x defined by:

Ax = λx

with A = adjacency matrix of the graph with eigenvalue λ.
The current literature on finding hub genes in biological

networks differs but often uses the node degree (Li et al., 2018;

Zhou et al., 2018) or weighted gene coexpression network
analysis (Zhang and Horvath, 2005) as a basis for identification
of hub genes. Here, we combined the four mentioned
centrality measurements that give information for each
node ui about:

• The number of other nodes in the network connected to ui
• The number of shortest paths between two other nodes in

which ui is involved
• The accumulated distance to all other nodes in the network

from ui
• The importance of nodes connected to ui

We considered hub genes in our communities as those that are
among the most important nodes in several of these centrality
measures. Accordingly, we defined hub genes as being among
the top three nodes in at least three of the four centrality
measures mentioned. Genes that appeared among the three most
central nodes in the network on all four calculated measures of
centrality, or that were the single most central nodes according
to at least three measures of centrality, were given special
consideration for subsequent interpretation of hub genes in our
community networks.

RESULTS

Omics-Layer Intersections per Disease
The intersection of the four analyzed omics-layers per disease
showed significantly high numbers of shared genes between
the transcriptomic and proteomic levels for all four analyzed
NDDs (Figure 1, Table 2). All other pairwise intersections show
a significantly high number of shared genes in two to three of
the analyzed NDDs, while AD shows significantly high numbers
of shared genes for all pairwise intersections of omics-layers.
AD also showed the highest number of genes in total across
all omics-layers with 14,970 genes. PD followed with 6,026, and
then HD with 5,795 and ALS with 2,725 genes (Figure 1). The
mean direction of regulation was close to 0 for all omics-layers
in AD (0.13, −0.1, −0.06 for transcriptomic, proteomic, and
methylomic data, respectively); in PD, the mean direction of
regulation was −0.59 for the transcriptomic level, 0.42 for the
proteomic level, and 0.33 for the methylomic level. For HD,
the methylomic layer showed a mean direction of regulation
of −0.8, while the other omics-layers were closer to 0 (0.04
transcriptomic, −0.18 proteomic). In ALS, the transcriptomic
and proteomic layers showed a positive mean direction of
regulation (0.12 and 0.16), while the methylomic layer showed
a strong negative mean direction of regulation (−0.75). For
the genomic level, there are no mean directions of regulation
as these data show an association between the presence of
specific SNPs and the respective NDDs. The calculated effect
sizes for the hypergeometric test results show the highest values
in the transcriptomic-proteomic intersection for all NDDs, with
differences between expected and observed numbers of genes of
more than 10 standard deviations (stds) except for PD (second
highest value with 9.9 stds). In PD, the highest effect size was
achieved in the transcriptomic-methylomic intersection with 13
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FIGURE 1 | Omics-layer intersections per disease: The Venn diagrams for the four NDDs, AD, PD, HD, and ALS are shown with the numbers of shared genes in the

intersections of the specific omics-layers. Additionally, the transcriptomic, proteomic, and methylomic layers of each NDD are colored to give each layer’s mean

direction of regulation. This color represents the color of only the respective layer, not of the individual intersections, as those have a specific regulation for each

omics-layer.

stds difference. All other comparisons showed much weaker
effect sizes, with values below 5 stds.

Multi-Omics Conformity
The correlation between the transcriptomic and proteomic
mean direction of regulation of the genes in the transcriptomic
and proteomic layers’ intersection in AD, HD, and ALS was
significantly high (all p < 10−5) (see Figure 2). The correlation
for this layer intersection in PD was not significantly high.
However, the correlation was slightly positive, even though the
mean direction of regulation for the whole transcriptomic PD
data was highly negative (−0.59), while it was highly positive
(0.42) for the whole proteomic PD data. All other correlations

of mean direction of regulation in the pairwise intersections
between transcriptomic, proteomic, and methylomic layers per
disease were neither significantly high nor low (p ≥ 0.05).

Protein-Protein Interaction Networks
The network construction step led to a PPI network for each
analyzed omics-layer in all four analyzed NDDs. However, the
constructed communities of the networks based on the genomic
layer in HD and ALS, as well as the methylomic layer in ALS,
showed a little functional signal. Consequently, we focused on the
remaining 13 PPI networks for the analysis.

These remaining networks varied between 7 (PD proteome)
and 15 (PD methylome) communities with sufficient functional
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TABLE 2 | Omics-layers intersections per disease: the number of resulting genes in each pairwise intersection of omics-layers per disease was tested for enrichment in a

hypergeometric test.

DEG-Prot DEG-SNP DEG-Meth Prot-SNP Prot-Meth Meth-SNP

NDD p Eff. size p Eff.size p Eff.size p Eff.size p Eff.size p Eff.size

AD 0 22.5 1.6E-12 6.4 0.00 11.1 1.3E-05 4.4 1.5E-06 4.8 1.4E-06 5.1

PD 0 9.9 8.2E-04 3.2 0.00 13.0 0.56 −0.4 6E-03 2.5 0.01 2.2

ALS 0 11.3 0.29 0.4 0.79 −1.1 2E-03 3.0 0.33 0.2 0.14 0.4

HD 0 10.3 0.53 −0.3 1.4E-06 4.8 0.49 −0.4 4.6E-06 4.7 0.81 −1.3

The results show that the number of significantly striking genes that emerged in transcriptomic and proteomic data was significantly high in all four analyzed diseases. The number of

genes in the other pairwise intersections was only significantly high in two to three of the analyzed diseases. AD, the NDD with the largest database in our study, showed significantly high

numbers of genes in all pairwise intersections. Additionally, the effect sizes of these hypergeometric test results are depicted as explained in Equation (2). Especially, the intersections

between transcriptomic and proteomic layers show large effect sizes in all groups. Cells associated with significant overlaps are depicted in bold letters. SNP, genomic level; DEG,

transcriptomic level; Prot, proteomic level; Meth, methylomic level.

FIGURE 2 | Pairwise correlation of the omics-layers per disease. For each of the four NDDs, a heatmap is showing the pairwise correlation value of the mean direction

of regulation between each pair of omics-layers, which shows a direction of regulation (transcriptomics, proteomics, methylomics). Additionally, the significance of the

correlation is given in each tile (n.s., not significant, ***p < 0.001). SNP, genomic level; DEG, transcriptomic level; Prot, proteomic level; Meth, methylomic level.

annotation (any biological process with FDR < = 0.05) to be
further considered in our analysis. The modularity of these 13
PPI networks varied after community creation between 0.484
(PD proteome) and 0.588 (ALS proteome), thus showing a small
deviation in modularity values across the different NDDs and
omics-layers. The modularity value is positive if the communities
in the network show higher interconnectedness than randomly
expected; negative values if there are less connections within the
communities than randomly expected are strictly lower than 1
(Equation 3: Modularity). Thus, the 13 networks that we further
consider show more connections within their communities than
expected by chance (as all have positive modularity values).

Examples of those network plots for PD are given in Figures 3–6.
The networks for AD, HD, and ALS can be found in the
Supplementary Presentation 1—Network Figures.

Hallmark Definition
The hallmarks of neurodegenerative diseases that we defined
based on the functional analyses of the communities are a
deregulated Cell Cycle, defects in autophagy and apoptosis on
the cellular level, a defective Extracellular Matrix Organization

andmisguided cell and organ development, the impaired Signal
Transduction/Transport of vital molecules within and between
cells within the local tissue environment, an excessive Immune
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FIGURE 3 | Summarizing figure of the network analysis results of the genomic layer of PD. The general properties, such as number of nodes (genes) and edges (a

combined score > 400 between two nodes) of the PPI, network constructed with all PD genomic genes are given in Subfigure (A). The individual

(Continued)
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FIGURE 3 | connections with a combined score > = 400 between each two genes are also given in a matrix plot (B) and an Arcplot (D) that are ordered by

community. The latter shows the confidence of the connection between two genes additionally by the color of the arc. The general properties of each individual

community, as well as their hub genes and the categorization of their functional annotation, are given in the table in Subfigure (C). The connected processes are

colored by the associated hallmarks that are also displayed in the bottom right corner.

System response, and defectiveMetabolic Processes in the whole
systemic environment.

The results of the X2-test showed that there is a significant
difference between the expected and observed values for
the four omics-layers across all six hallmarks (p < 0.05),
but not for the four NDDs across all six hallmarks (see
Supplementary Table 3—Low-Level Term Associations).

The most striking results we found when analyzing the
accumulated numbers of associations between our communities
and low-level terms across the four NDDs and also across the
four omics-layers were the low number of associations found in
PD for the Immune System hallmark and the low number of
associations in the methylomic layer in the Metabolic Processes
hallmark while having a high number of associations in the
proteomic layer.

A more detailed description of the results is presented in
the following;

Cell Cycle
In the category of Cell Cycle 56 communities could be assigned
to the low-level terms Regulation of Cell Cycle, Spindle Apparatus,
DNA repair, Transcription, RNA Modification, Spliceosome,
Translation, Mitochondrial Translation, and Chromatin.

AD showed the most low-level terms (21), followed by
PD, HD, and ALS (15, 13, 7), while the transcriptomic and
methylomic layers showed a higher number of low-level terms
(21, 20) than the proteomic and genomic layers (11 and 4) (see
Table 3). In general, for the hallmark Cell Cycle, the numbers
of associations between communities and low-level terms neither
strongly differed across NDDs nor across omics-layers from the
expected values, given the overall distribution of associations
across all hallmarks, NDDS, and omics-layers.

Autophagy and Apoptosis
Of all NDDs and omics-layers, 46 communities were involved
in autophagy and apoptosis specified by low-level terms
like Chaperone-Mediated Process, Proteolysis, Ubiquitinylation,
Proteasome, Stress Response, Apoptotic Process, and the mTOR
and NfkB Signaling Pathways.

Again, AD showed the most associations (16), followed by PD,
HD, and ALS (13, 9, and 8), as shown in Table 4. The expected
number for ALS is 5, in contrast to the observed 8 associations,
but, overall, the deviations between observation and expectation
for the NDDs in this hallmark were quite low.

The distribution of associations across the four omics-layers
shows that the transcriptomic data had the most associations
(20), followed by the proteomic, methylomic, and genomic layers
(14, 9, and 3). Here, the discrepancy between observation and
expectation is larger, with the methylomic data showing only 9
associations, whereas 14 are expected, and the transcriptomic and

proteomic layers showing 4 and 3more associations, respectively,
than expected.

Extracellular Matrix Organization and Development
In total, 80 associations were found between communities
and the low-level terms for Extracellular Matrix (ECM)
and Cytoskeleton Organization, with the different fibril
components Actin -, Collagen -, and Keratin Cytoskeleton,
Cilium as the bridge between ECM and cytoskeleton, Cell
Adhesion, Focal Adhesion, Cell Junction, Cell Migration along
microtubules, Cell Differentiation and Growth (e.g., neuron,
axon, dendrite, organelle), Localization of cells or proteins,Organ
Development (brain, muscle, heart, bone, blood vessels), and
Early Development (embryogenesis and cell fate commitment).

The distribution of the number of associated low-level terms
across the four NDDs is according to the expectation that can be
derived from the summed number of associations across all low-
level terms, with AD showing the highest number of associations
(33), followed by PD (26), HD (14), and ALS (7), as given in
Table 5, with having the highest deviation between observation
and expectation for HD.

However, the distribution of associations across the
different omics-layers for the hallmark ECM Organization and
Development deviates from the expectation for the proteomic
and methylomic layers. The highest number of associations can
be observed on the methylomic layer, closely followed by the
transcriptomic (31, 27) and then by the proteomic and genomic
layers (13, 9). Here, the methylomic layer shows a nearly 25%
higher number of associations than expected, while the number
for the proteomic layer is nearly 30% lower than expected.

Signal Transduction/Transport
This hallmark consisted of the low-level terms Cell
Communication, Neuronal Signaling, Synapsis, Ion- and Voltage-
Gated Channel, Neurotransmitter Secretion, SNARE Binding,
Receptor Activity and Recycling, Axonal Transport, Vesicle
(exo- and endocytosis, clathrin coat, extracellular exosome),
Transmembranal Transport (small molecules, e.g., AA), Trans-
Golgi-Network (retrograde), ER to Golgi transport (anterograde),
and (Cardiac) Muscle Action Potential.

The hallmark Signal Transduction/Transport united the most
associations between communities and low-level terms (88),
having the most associations in AD (34), followed by PD (31),
HD (17), and ALS (6). Compared to the number of expected
associations, ALS showed a reduction of 4 associations (−40%)
and PD, an increase of 5 associations (approximately + 20%)
compared to the expectation.

Observing the results per omics-layer, it becomes apparent
that not the transcriptomic but the methylomic layer showed
the most associations for this hallmark (31). The number
of associations in the transcriptomic layer is lower than the
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FIGURE 4 | Summarizing figure of the network analysis results of the transcriptomic layer of PD. The general properties, such as number of nodes (genes) and edges

(a combined score > 400 between two nodes) of the PPI network constructed with all PD transcriptomic genes, are given in Subfigure (A). The individual

(Continued)
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FIGURE 4 | connections with a combined score > = 800 between each two genes are also given in a matrix plot (B) and an Arcplot (D) that are ordered by

community. The latter shows the confidence of the connection between two genes additionally by the color of the arc. The general properties of each individual

community, as well as their hub genes and the categorization of their functional annotation, are given in the table in Subfigure (C). The connected processes are

colored by the associated hallmarks that are also displayed in the bottom right corner.

methylomic layer’s associations (24), followed by the proteomic
(18) and genomic layers (15), as given in Table 6. While the
transcriptomic layer shows surprisingly little associations (–
22%), the genomic layer, on opposite, shows a surprisingly high
number of associations (+50%), in contrast to the expectation.

A closer look at all low-level terms in relation to the
individual NDD’s omics-layers (see Supplementary Table 3—
Low-Level Term Associations) also shows that two out of
the three associations for Axonal Transport are found in the
methylomic PD network, and two out of the four Receptor
Activity associations are found in the AD genomic network.

Looking at the aggregated data per layer in each omics-
layer also shows a high number of genomic PD associations (8
out of 88 for Signal Transduction/Transport), far exceeding the
overall 4% proportion of low-level terms associated with the PD
genomic layer.

At the same time, the proportion of transcriptomic ALS
communities associated with the low-level terms of these
hallmarks (2 of 88) is only half the proportion that might be
expected based on the overall distribution of low-level terms
associated with the transcriptomic ALS layer (>5%).

Immune System
Only 28 associations between communities and the low-level
terms related to Immune System were found, making it
the hallmark with the lowest number of associations. Low-
level terms, which were referred to by these communities,
were Immune Response, Defense Response to Other Organisms,
Cytokine, Interferon, Complement and Coagulation Cascade,
Inflammation, and Leukocyte Activation.

The highest number of associations was found in AD (13),
followed by HD (7), ALS (5), and PD (3), making this the only
hallmark in which PD showed the lowest number of associations
(seeTable 7). This number of associations found across all omics-
layers in PD is more than 60% lower than expected.

The findings in the aggregation per omics-layers seem less
surprising, with the transcriptomic layer showing the most
associations (12), followed by the methylomic (7), proteomic (5),
and genomic layers (4).

Metabolic Processes
The hallmark Metabolic Processes consisted of the low-level
terms Lipid, Cholesterol, Sphingolipid, Fatty acid oxidation
[mitochondrial (Mt.)], Carboxylic Acid (Mt.), Lipoprotein,
Protein, Carbohydrate, and Nucleotide, most of which referred
to the respective metabolic processes and of terms like
Glycosylation, NADH (Mt.) Homeostasis, Respiratory Chain
Complex (Mt.), and Antioxidant (Mt.), which were tagged with
the “Mt.” term if they represent processes that occur in the
mitochondrion rather than in the cytoplasm.

Looking at the accumulated associations between
communities and low-level terms across the four different
NDDs (see Table 8), the most associations can be found across
the communities of AD (26), followed by PD (20), HD (14), and
ALS (7). This distribution across NDDs perfectly matches the
expected distribution of associations.

However, the distribution across the four omics-layers is more
conspicuous, asMetabolic Processes are the only hallmark having
the majority of the associations in the proteomic layer (25).
This is closely followed by the transcriptomic (24) and then
the methylomic and genomic layers (13 and 5). Following the
overall distribution of associations across the omics-layers, only
16, instead of 25, associations were expected across the proteomic
layers (+ 56%) of all NDDs, but 20, instead of 13, associations
were expected for the methylomic layers of all NDDs (−35%).

The individual omics-layers per NDD showed that, especially,
the proteomic layer of PD and AD had enriched numbers of
associations for this hallmark, both with havingmore than 33% of
their community associations to the low-level term in Metabolic
Processes, while, overall, only∼18% were expected.

DISCUSSION

Omics-Layer Intersections per Disease
The intersection of genes found in genomic, transcriptomic,
proteomic, and methylomic data per disease showed that, while
the number of shared genes between the transcriptomic
and proteomic level was significantly high in all four
investigated NDDs, the significance of the intersections
was more heterogenous in the other comparisons.

Only AD showed a significant number of shared genes in
all pairwise intersections of the four analyzed omics-layers. The
fact that ALS methylomic and HD genomic data consisted
of only two studies and thus had a very small database (61
and 35 genes) may have contributed to the non-significance
of pairwise comparisons that considered the methylomic level
for ALS and the genomic layer for HD. However, even though
the database was much broader for HD methylomic data (885
genes), these genes also stem from only two studies, but showed
significant overlaps in all pairwise intersections, except for the
one with genomic data. Summarizing, especially those pairwise
comparisons with a low number of expected overlapping genes,
seemed to not show a significantly large pairwise overlap. All
pairwise intersections that are based on two large groups of genes
and, therefore, showed an expected number of shared genes >

= 10 also showed a significantly high number of overlapping
genes in these hypergeometric tests (Supplementary Table 2—
Hypergeom Test Per Disease).

The fact that the effect size was highest for the transcriptomic-
proteomic intersection in AD, ALS, and HD and, also, very high
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FIGURE 5 | Summarizing figure of the network analysis results of the proteomic layer of PD. The general properties. such as number of nodes (genes) and edges (a

combined score > 400 between two nodes) of the PPI network constructed with all PD proteomic genes, are given in Subfigure (A). The individual connections with a

(Continued)
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FIGURE 5 | combined score > = 400 between each two genes are also given in a matrix plot (B) and an Arcplot (D) that are ordered by community. The latter shows

the confidence of the connection between two genes additionally by the color of the arc. The general properties of each individual community, as well as their hub

genes and the categorization of their functional annotation, are given in the table in Subfigure (C). The connected processes are colored by the associated hallmarks

that are also displayed in the bottom right corner.

in PD (9.9) seems as if these layers shared the most striking
relation in terms of overlapping genes. However, in PD, the effect
size is even higher between the transcriptomic and methylomic
layers. PD is also the only disease in which not proteomic and
transcriptomic layers showed the largest database in terms of
including the most genes but the transcriptomic and methylomic
data did. Thus, in all NDDs, especially those intersections,
showed the largest effect sizes that were based on the omics-
layers, with the most genes per NDD. The statement that the
transcriptomic and proteomic layers of our data showed high
significantly enriched numbers of genes in their overlap in all
analyzed NDDs holds true; however, it is, to this point, unclear
if the high effect sizes in contrast to the other intersections
are due to biological facts or to the broader database for these
omics-layers in our data.

A more surprising point is the fact that the mean direction of
regulation was vastly unequal to zero for both, the transcriptomic
and the proteomic data in PD. This was also the case for
the methylomic layer of HD and ALS, but, given that the
transcriptomic and proteomic layers of PD are based on much
more studies (11 and 7, while 2 studies for HD and ALS
methylome), this high absolute mean direction of regulation,
in combination with the dichotomy of these values, constitutes
an interesting finding. The finding of a mainly (70%) negative
direction of regulation for PD transcriptomic differentially
expressed genes was already described in a meta-study, focusing
only on microarray data (Kelly et al., 2019). However, the reason
for this phenomenon remains unclear.

Multi-Omics Conformity
The finding of significant overlaps between the transcriptomic
and proteomic data for only three out of four NDDs seems
to be surprising and to hint at an extraordinary phenomenon
in the posttranscriptional or translational processes in PD.
However, given that the mean direction of regulation for the
PD transcriptomic data was highly negative (−0.59), while
the PD proteomic data were, overall, highly positive (0.42),
it is striking that the genes in the intersection of these two
omics-layers are still positively correlated, even though not
significantly. Thus, this result might show a signal for some
altered posttranscriptional behavior in PD in contrast to the
other NDDs, but this could also be an artifact of the striking
negative mean direction of regulation in the transcriptomic and
the similarly strong positive mean direction of regulation in the
proteomic data that were discussed earlier.

However, even the highly significant correlations between the
transcriptomic and proteomic data in AD, HD, and ALS reached
values of r = 0.283 (AD) to r = 0.344 (ALS), which might seem
surprisingly small, following James Watson’s simplified version
of the central dogma of molecular biology (Watson et al., 1988).

Even though proteins are produced from mRNA, the
correlation between mRNA levels and protein abundances is
moderate. This non-trivial mRNA–protein relation is a general
phenomenon, ranging from yeast to humans (De Sousa Abreu
et al., 2009), and can have biological or, simply, technical reasons.
Biological reasons can be found both on the posttranscriptional
and on the translational levels, wheremany different mechanisms
enhance or repress the synthesis of proteins from a certain copy
number of mRNAmolecules (Crick, 1958; Varshavsky, 1997; Fire
et al., 1998; Kozak, 1999; Glickman and Ciechanover, 2002; Pillai
et al., 2007; Kurreck, 2009; Maier et al., 2009; Chursov et al., 2013;
Komar, 2016; Liu et al., 2016; McShane et al., 2016; Lau et al.,
2018).

Protein-Protein Interaction Networks
The Hub Gene HDAC1
On the transcriptomic level of all 4 diseases communities
were found, that showed Histone Deacetylase 1 (HDAC1) as
one of their hub genes. HDAC1 deacetylates lysine residues
on the N-terminal part of the core histones H2A, H2B, H3,
and H4, thereby contributing to epigenetic silencing of active
chromatin (Carroll et al., 2018). HDAC1 plays an important
role in transcriptional regulation, cell cycle progression, and
developmental events. This was also reflected in the low-level
terms of the associated communities of all four diseases: In
AD and PD, they referred to transcription, chromatin, and
early development, together with the hubgenes TP53, EP300,
and MYC, respectively. In ALS, the low-level terms referred to
regulation of cell cycle, transcription, and chromatin, together
with the hub gene CCND1. HD showed low-level terms about
cell differentiation, cell and early development, together with the
hubgenesMYC and TP53.

All the hubgenes that were related to HDAC1 are involved
in similar processes like regulation of cell cycle, cell growth
and migration, and development by influencing the chromatin
formation (EP300), binding to DNA as transcription factors
(TP53, MYC) or regulating other proteins (CCND1). Beyond
the aforementioned similarities, researchers can, maybe, find
differences in how the diseases developed by comparing the
functions of the hub genes and their StringDB protein networks
per disease.

The Hub Genes BIN1, ABCA7, and PICALM
BIN1, ABCA7, and PICALM were found to be among the three
most central nodes in, at least, three of our four centrality
measures and were, therefore, defined as hub genes in our
analysis for the AD genomic community that was associated
with the two processes, proteolysis and ECM/cytoskeleton.
Approximately, 38 genes were involved in this network, showing

284 interactions giving an average node degree (Nd) of 14.9.
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FIGURE 6 | Summarizing figure of the network analysis results of the methylomic layer of PD. The general properties, such as number of nodes (genes) and edges (a

combined score > 400 between two nodes) of the PPI network constructed with all PD methylomic genes, are given in Subfigure (A). The individual connections

(Continued)
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FIGURE 6 | with a combined score > = 600 between each two genes are also given in a matrix plot (B) and an Arcplot (D) that are ordered by community. The latter

shows the confidence of the connection between two genes additionally by the color of the arc. The general properties of each individual community, as well as their

hub genes and the categorization of their functional annotation, are given in the table in Subfigure (C). The connected processes are colored by the associated

hallmarks that are also displayed in the bottom right corner.

TABLE 3 | Accumulated number of low-level terms per NDD and per omics-layer for the hallmark Cell Cycle.

Per disease Per omics-layer

Low-level term AD PD ALS HD Total SNP DEG Prot Meth

Cell cycle Regulation of cell cycle 2 1 1 1 5 0 2 0 3

Spindle apparatus 1 0 0 0 1 0 1 0 0

DNA repair 3 0 0 1 4 1 1 0 2

Transcription 2 4 1 1 8 1 3 0 4

RNA modification (degradation, processing, transport) 4 2 1 3 10 1 3 3 3

Spliceosome 2 2 1 2 7 0 2 3 2

Translation 3 4 2 3 12 0 5 4 3

Mitochondrial translation 2 0 0 1 3 0 1 1 1

Chromatin (organization, binding, modification) 2 2 1 1 6 1 3 0 2

Total 21 15 7 13 56 4 21 11 20

Expected 22 17 6 11 56 6 20 13 17

The column for the total number of low-level terms found refers to both the sum across all four NDDs and the sum across all four omics-layers. This table is intended to provide summary

information about the accumulated data—the number of individual low-level terms per omics-layer for each disease can be found in the Supplementary Table 3. SNP, genomic level;

DEG, transcriptomic level; Prot, proteomic level; Meth, methylomic level.

TABLE 4 | Accumulated number of low-level terms per NDD and per omics-layer for the hallmark autophagy and apoptosis.

Per disease Per omics-layer

Low-level term AD PD ALS HD Total SNP DEG Prot Meth

Autophagy and Autophagic process 2 2 2 1 7 1 4 1 1

apoptosis Chaperone mediated process 2 2 1 2 7 0 4 3 0

Proteolysis 2 2 1 0 5 1 2 1 1

Ubiquitinylation 1 2 1 2 6 0 3 1 2

Proteasome 2 1 1 2 6 0 1 4 1

Stress response 2 1 0 0 3 1 1 1 0

Apoptotic process 1 1 1 2 5 0 3 0 2

mTOR signaling pathway 3 2 1 0 6 0 1 3 2

NfkB signaling pathway 1 0 0 0 1 0 1 0 0

Total 16 13 8 9 46 3 20 14 9

Expected 18 14 5 9 46 5 16 11 14

The column for the total number of low-level terms found refers to both the sum across all four NDDs and the sum across all four omics-layers. This table is intended to provide summary

information about the accumulated data—the number of individual low-level terms per omics-layer for each disease can be found in the Supplementary Table 3. SNP, genomic level;

DEG, transcriptomic level; Prot, proteomic level; Meth, methylomic level.

Mutations in these three genes are well-known risk factors in
AD, and all the three of them are tightly connected to amyloid
ß metabolism.

BIN1 or Bridging Integrator-1 is a key player in the
control of plasma membrane shaping. The depletion of BIN1
increases cellular β-site APP-cleaving enzyme 1 (BACE1) levels
through impaired endosomal trafficking and reduced lysosomal
degradation, resulting in an increased Aβ production.

ABCA7 is a member of the superfamily of ATP-binding
cassette (ABC) transporters, which transport various molecules

across extra- and intra-cellular membranes. As with BIN1,
ABCA7 could be shown to be involved in the generation and
processing of amyloid ß peptides (Satoh et al., 2015), but also in
the lipid metabolism and in phagocytosis and immune response
(Dib et al., 2021).

PICALM, the phosphatidylinositol-binding clathrin assembly
protein, also affects AD risk primarily by modulating production,
transportation, and clearance of β-amyloid (Aβ) peptide,
but other Aβ-independent pathways are discussed, including
tauopathy (Dean and Shaw, 2010), synaptic dysfunction (Jahn
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TABLE 5 | Accumulated number of low-level terms per NDD and per omics-layer for the hallmark Extracellular Matrix Organization and Development.

Per disease Per omics-layer

Low-level term AD PD ALS HD Total SNP DEG Prot Meth

Extracellular matrix

organization and

ECM- and cytoskeleton

organization

6 5 2 2 15 3 2 4 6

development Actin cytoskeleton 2 2 2 2 8 0 4 4 0

Collagen cytoskeleton 2 1 1 1 5 0 4 0 1

Keratin cytoskeleton 0 0 0 1 1 0 0 1 0

Cilium 2 3 0 0 5 1 2 0 2

Cell adhesion 4 3 0 2 9 1 3 2 3

Focal adhesion 2 0 0 0 2 0 1 0 1

Cell junction 0 1 0 0 1 0 0 0 1

Cell migration

(along microtubules)

1 2 0 1 4 0 1 0 3

Cell differentiation and growth

(e.g., neuron, axon,

dendrite, organelle)

6 1 1 3 11 1 4 1 5

Localization (cellular, of protein…) 1 1 0 1 3 0 1 0 2

Organ development

(brain, muscle, heart,

bone, blood vessels)

4 3 1 0 8 2 2 1 3

Early development

(embryogenesis and

cell fate commitment)

3 4 0 1 8 1 3 0 4

Total 33 26 7 14 80 9 27 13 31

Expected 31 24 9 16 80 9 28 19 24

The column for the total number of low-level terms found refers to both the sum across all four NDDs and the sum across all four omics-layers. This table is intended to provide summary

information about the accumulated data—the number of individual low-level terms per omics-layer for each disease can be found in the Supplementary Table 3. ECM, Extracellular

Matrix; SNP, genomic level; DEG, transcriptomic level; Prot, proteomic level; Meth, methylomic level.

and Scheller, 2006), disorganized lipid metabolism (Eisenstein,
2011), immune disorder (Carter, 2010), and disrupted iron
homeostasis (Xu et al., 2014).

These genes, together with the other 35 genes found to
interact closely with the two low-level terms proteolysis and
ECM/cytoskeleton, can now be studied in more detail by
specialists in the field with respect to the relationship between
the known functions of the genes and the processes in which they
are involved. This combination of all three genes was only found
in AD, and any of these three was found as a hub gene only in the
AD genomic network.

However, BIN1 was also present in the transcriptomic
[community 0 (C0)], proteomic (C1), and methylomic (C7)
levels of PD, representing mainly ECM and Development
and Signal Transduction/Transport processes but also one for
Autophagy and Apoptosis. PICALM was also part of C0 in
the PD transcriptomic network. In HD, the proteomic network
showed both, BIN1 and PICALM in C0, which represent Signal
Transduction/Transport processes like SNARE Binding and
Vesicle. In ALS, none of these genes were involved in any
considered community.

The Hub Gene APOE
APOE, the well-known risk gene for late onset AD, was found
on the genomic level in AD in a community associated with

the low-level terms cholesterol and lipoprotein, but also on the
transcriptomic level of ALS associated with the low-level terms
complement/coagulation cascade and immune response.

The complement cascade stimulates phagocytes to clear
microbes and damaged cell materials, it promotes inflammation,
and attacks the pathogen’s cell membrane. It, thus, combines
innate and adaptive immune responses and additionally
integrates the coagulation system into the defense response
against other organisms (Kenawy et al., 2015). In addition,
some of the early components of this cascade play a
beneficial role in synapse elimination during the development
of the nervous system, although excessive complement-mediated
synaptic pruning in the adult or injured brain may be detrimental
in multiple neurogenerative disorders (Schartz and Tenner,
2020). A correlation between ALS and the complement system
has been frequently described (Carpanini et al., 2019; Kjældgaard
et al., 2021), but a connection to APOE still remains elusive.

Here, our study may provide a good starting point for
exploring the community to which APOE belongs and the genes
to which it is linked in this network. The fact that APOE is
among the top three nodes according to all four measures of
centrality implies that it plays an important role in this network,
as it is among the three most interconnected genes, has direct
links to other very important genes in the network, and plays
an important role in mediating between pairwise-linked genes
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TABLE 6 | Accumulated number of low-level terms per NDD and per omics-layer for the hallmark Signal Transduction/Transport.

Per disease Per omics-layer

Low-level term AD PD ALS HD Total SNP DEG Prot Meth

Signal transduction/ Cell communication 4 4 2 3 13 3 3 2 5

transport Neuronal signaling 1 1 0 0 2 0 1 1 0

Synapsis 6 5 0 2 13 3 3 3 4

Ion channel 1 0 0 2 3 0 1 0 2

Voltage-gated channel 4 2 0 1 7 1 2 0 4

Neurotransmitter secretion 2 1 0 2 5 1 2 2 0

SNARE binding 2 3 1 1 7 1 2 3 1

Receptor activity 3 1 0 0 4 2 0 0 2

Receptor recycling 1 1 0 0 2 0 0 2 0

Axonal Transport 0 2 0 1 3 0 0 0 3

Vesicle (exo- endocytosis,

clathrin coat, extracellular

exosome)

5 6 2 2 15 2 4 5 4

Transmembranal transport (small

molecules, e.g., AA)

2 3 0 1 6 1 3 0 2

Trans-Golgi-network (retrograde) 1 1 1 1 4 0 2 0 2

ER to Golgi transport

(anterograde)

1 1 0 0 2 0 1 0 1

(Cardiac) muscle action potential 1 0 0 1 2 1 0 0 1

Total 34 31 6 17 88 15 24 18 31

Expected 34 26 10 18 88 10 31 21 27

The column for the total number of low-level terms found refers to both the sum across all four NDDs and the sum across all four omics-layers. This table is intended to provide summary

information about the accumulated data—the number of individual low-level terms per omics-layer for each disease can be found in the Supplementary Table 3. SNP, genomic level;

DEG, transcriptomic level; Prot, proteomic level; Meth, methylomic level; AA, amino acids.

TABLE 7 | Accumulated number of low-level terms per NDD and per omics-layer for the hallmark Immune System.

Per disease Per omics-layer

Low-level term AD PD ALS HD Total SNP DEG Prot Meth

Immune system Immune response 1 1 1 1 4 0 2 0 2

Defense response to other

organisms

2 1 1 1 5 1 3 0 1

Cytokine 2 0 0 1 3 1 0 0 2

Interferon 2 1 1 2 6 1 3 0 2

Complement and coagulation

cascade

2 0 2 2 6 0 3 3 0

Inflammation 2 0 0 0 2 0 1 1 0

Leukocyte activation 2 0 0 0 2 1 0 1 0

Total 13 3 5 7 28 4 12 5 7

Expected 11 8 3 6 28 3 10 7 9

The column for the total number of low-level terms found refers to both the sum across all four NDDs and the sum across all four omics-layers. This table is intended to provide summary

information about the accumulated data—the number of individual low-level terms per omics-layer for each disease can be found in the Supplementary Table 3. SNP, genomic level;

DEG, transcriptomic level; Prot, proteomic level; Meth, methylomic level.

in the network, while it is also among the three nodes that have
the shortest paths to all other nodes in the network. Although
APOE has not been previously reported to be associated with the
complement and coagulation cascades, it is strongly associated
with a subnetwork of genes that are significantly overrepresented
in this very process. About one third of the directly linked 19
genes are directly involved in the complement cascade (C1QB,

C1QC, C3, C4A, C4B, CFH); another third is involved in
cholesterol synthesis and transport (ABCA1, ABCB1, HMGCR,
LDLR, MSR1, NPC2); A2M disrupts inflammatory cascades but
also is involved in the lipoprotein metabolism; BACE2, CTSB,
and PSEN are involved in the proteolytic processing of the
amyloid precursor protein; CP is a metalloprotein that binds
most of the copper in plasma and is involved in the peroxidation
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TABLE 8 | Accumulated number of low-level terms per NDD and per omics-layer for the hallmark Metabolic Processes.

Per disease Per omics-layer

Low-level term AD PD ALS HD Total SNP DEG Prot Meth

Metabolic processes Lipid 2 2 0 1 5 0 2 0 3

Cholesterol 2 1 0 1 4 2 1 0 1

Sphingolipid 1 2 0 0 3 0 2 0 1

Fatty acid oxidation (Mt.) 2 1 0 3 6 0 1 3 2

Carboxylic acid (Mt.) 1 0 1 1 3 0 1 1 1

Lipoprotein 2 0 1 1 4 1 0 3 0

Protein 0 0 1 0 1 0 1 0 0

Branched AA degradation 2 2 0 1 5 0 3 2 0

Proteoglycan 1 2 0 0 3 1 2 0 0

Carbohydrate 3 2 1 2 8 0 2 4 2

Glycosylation 1 0 0 0 1 0 1 0 0

Nucleotide 3 1 0 0 4 1 1 1 1

NADH (Mt.) 1 0 0 0 1 0 0 1 0

Homeostasis 1 0 0 1 2 0 1 1 0

Antioxidant (Mt.) 2 3 1 0 6 0 2 4 0

Respiratory chain complex (Mt.) 2 4 2 3 11 0 4 5 2

Total 26 20 7 14 67 5 24 25 13

Expected 26 20 7 14 67 7 23 16 20

The column for the total number of low-level terms found refers to both the sum across all four NDDs and the sum across all four omics-layers. This table is intended to provide summary

information about the accumulated data—the number of individual low-level terms per omics-layer for each disease can be found in the Supplementary Table 3. Mt, mitochondrial;

SNP, genomic level; DEG, transcriptomic level; Prot, proteomic level; Meth, methylomic level; AA, amino acids.

of Fe (II) transferrin to Fe (III) transferrin. PCYOX1 cleaves the
thioether bond of prenyl-L-cysteines, and PSRC1may participate
in p53-mediated growth suppression.

Discussion of Methodological Approach
We attempted to limit the data included in this study to those
derived from brain tissue whenever possible. For this reason, and
because of the generally greater availability of data, we analyzed
data in this study mainly from patients in the late stages of their
respective NDD. This results in better comparability and less
noise within the data but should be considered in the analysis
and conclusions drawn from these studies, as effects occurring
mainly in early stages of disease progression may not be apparent
in this analysis.

It should also be noted that we included only data of studies
that were published and, furthermore, available in PubMed,
Google Scholar, the GWAS Catalog (Buniello et al., 2019),
the GEO database (Barrett et al., 2013), the Expression Atlas
(Papatheodorou et al., 2018), PDMethDB (Wang C. et al., 2020)
or the EWAS Atlas (Li M. et al., 2019). Therefore, as pointed
out in Pan et al. (2005), this introduces some language bias, as
our methodology did not include searching for results published
in other than the English language in, e.g., local journals, which
was shown to influence the strength of p-values between, e.g.,
Chinese and non-Chinese studies (Pan et al., 2005; Tang, 2005).
Also, we did not consider unpublished as well as unsignificant
data. However, as our approach was mainly aimed for giving
a comprehensive and broad overview and, therefore, mainly
focused on those genes that were found as significant in, at least,

two experiments, regardless of the exact strength of the actual p-
value, we consider this problem of publication bias as a minor
one for our approach as the number of overexaggerated and
false-positive disease associations should be strongly reduced by
this methodology.

For some approaches used in this study, it was necessary
to choose between different possible approaches, e.g., for the
hallmarks to be used or the definition of hub genes. In
addition, the network creation of the louvain algorithm is non-
deterministic and, therefore, subject to a random influence in the
creation of the networks. To minimize this random influence,
we applied the louvain algorithm with the input shuffled 100
times anew for each of the analyzed networks, and then chose
the iteration that produced the highest modularity. With this
approach, we found that the modularity between the different
iterations did not change much; however, taking the best of
100 runs makes the results of the louvain community creation
more reliable.

The definition of hallmarks and hub genes involves some
flexibility, so we have attempted to define hallmarks in light
of previous definitions of hallmarks for neurodegeneration
(e.g., Ramanan and Saykin, 2013) and of our actual observed
subprocesses in the functional analyses. As there are myriads
of centrality measurements for nodes in a network, we took
centrality measurements into account that were connected to
the number of direct links between a node and other nodes,
the mediation role of a node in a network, and to the sum of
the shortest paths to all other nodes in the network, respectively
(Freeman, 1977, 1978; Freeman et al., 1979). In addition,
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we chose to include the eigenvector centrality of each node
(Newman, 2010; Bonacich, 2015), which gives a centrality score
to each node that is proportional to the sum of the centrality
scores of each node’s neighbors to cover some varieties of ways
for defining centrality of a node in a network.

CONCLUSION

The results of this study present a comprehensive picture drawn
from the results of the analysis of 234 studies across four
neurodegenerative disorders and four omics layers. Roughly
summarizing, the 69 low-level terms we chose to categorize into
6 hallmarks show a significantly different distribution across
the different omics layers, but not across the four diseases,
which might be due to the inclusion of mainly late-stage disease
data for broadening the database. The number of genes in the
intersection of two diseases and the correlation of their regulatory
direction was mainly distinctive between the transcriptomic and
proteomic levels.

However, the possibilities for further analysis arising from this
study are, at least, as important as the results just mentioned. For
example, the communities found, and the processes associated
with them can be compared with regard to the direction of
regulation of the communities, the presence and absence of
processes at certain levels/diseases, or, also, with regard to the
hub genes found, as we have already exemplified with three
examples in the discussion. Consequently, we not only provide
an overview—the big picture of neurodegeneration—but also
many new starting points for further research going deeper into
individual communities or even genes within these communities.
We achieve this by providing comprehensive illustrations as well
as all relevant tables for exploring specific communities and their
associated genes. Ultimately, identifying the hub genes and the
other genes involved in the different clusters may make it easier
to develop therapeutics by both getting a better idea of which

protein can be targeted in a chosen process but, at the same time,
whether too many other important processes could be disturbed
by the potential inhibition or amplification.
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