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Brain pathologies are characterized by microscopic changes in neurons and

synapses that reverberate into large scale networks altering brain dynamics

and functional states. An important yet unresolved issue concerns the impact

of patients’ excitation/inhibition profiles on neurodegenerative diseases

including Alzheimer’s Disease, Frontotemporal Dementia, and Amyotrophic

Lateral Sclerosis. In this work, we used The Virtual Brain (TVB) simulation

platform to simulate brain dynamics in healthy and neurodegenerative

conditions and to extract information about the excitatory/inhibitory balance

in single subjects. The brain structural and functional connectomes were

extracted from 3T-MRI (Magnetic Resonance Imaging) scans and TVB

nodes were represented by a Wong-Wang neural mass model endowing

an explicit representation of the excitatory/inhibitory balance. Simulations

were performed including both cerebral and cerebellar nodes and their

structural connections to explore cerebellar impact on brain dynamics

generation. The potential for clinical translation of TVB derived biophysical

parameters was assessed by exploring their association with patients’

cognitive performance and testing their discriminative power between

clinical conditions. Our results showed that TVB biophysical parameters

differed between clinical phenotypes, predicting higher global coupling and

inhibition in Alzheimer’s Disease and stronger N-methyl-D-aspartate (NMDA)

receptor-dependent excitation in Amyotrophic Lateral Sclerosis. These

physio-pathological parameters allowed us to perform an advanced analysis

of patients’ conditions. In backward regressions, TVB-derived parameters

significantly contributed to explain the variation of neuropsychological

scores and, in discriminant analysis, the combination of TVB parameters
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and neuropsychological scores significantly improved the discriminative

power between clinical conditions. Moreover, cluster analysis provided a

unique description of the excitatory/inhibitory balance in individual patients.

Importantly, the integration of cerebro-cerebellar loops in simulations

improved TVB predictive power, i.e., the correlation between experimental

and simulated functional connectivity in all pathological conditions supporting

the cerebellar role in brain function disrupted by neurodegeneration. Overall,

TVB simulations reveal differences in the excitatory/inhibitory balance of

individual patients that, combined with cognitive assessment, can promote

the personalized diagnosis and therapy of neurodegenerative diseases.

KEYWORDS

brain dynamics, excitatory/inhibitory balance, Alzheimer’s Disease, Frontotemporal
Dementia, Amyotrophic Lateral Sclerosis, MRI, connectivity

Introduction

Neuroscience is showing a growing interest in merging
results at different scales of complexity to achieve a global and
comprehensive knowledge of the brain and its mechanisms.
In this context, brain modeling can be used to bridge the
gap between cellular phenomena and whole-brain dynamics,
both in physiological (i.e., healthy) and pathological conditions
(D’Angelo and Gandini Wheeler-Kingshott, 2017). The Virtual
Brain (TVB) (Sanz-Leon et al., 2013, 2015) is a neuroinformatic
platform recently developed to simulate brain dynamics starting
from individual structural and functional connectivity (SC and
FC, respectively) matrices constructed from MRI (magnetic
resonance imaging) data. TVB has been used to characterize
brain dynamics in healthy subjects (Schirner et al., 2018) but also
to explore pathological mechanisms in neurological diseases,
such as epilepsy (Jirsa et al., 2017), stroke (Falcon et al.,
2016), brain tumor (Aerts et al., 2018), and Alzheimer’s Disease
(Zimmermann et al., 2018; Stefanovski et al., 2019).

Neurodegenerative pathologies ranging from Alzheimer’s
Disease, Frontotemporal Dementia, and Amyotrophic Lateral
Sclerosis are reportedly characterized by a disrupted balance
between excitation and inhibition.

Glutamate and GABA concentrations are relevant to
the excitatory/inhibitory balance. An increase or decrease in
their concentrations can lead to hyper/hypo excitation or
inhibition, possibly contributing to neurodegeneration. Indeed,
hyperexcitation is thought to play a pivotal role in Alzheimer
Disease, Frontotemporal Dementia, and Amyotrophic Lateral
Sclerosis pathogenesis (Benussi et al., 2019; Maestú et al., 2021;

Abbreviations: expFC, experimental Functional Connectivity; FC,
Functional Connectivity; PCC, Pearson Correlation Coefficient; SC,
Structural Connectivity; simFC, simulated Functional Connectivity; TVB,
The Virtual Brain.

Pradhan and Bellingham, 2021), but multiform and sometimes
contradictory results based on empirical observations make
it difficult to gain an overall agreement on the neural
mechanisms and the evolution of hyperexcitation over the
course of the disease. In addition, despite some controversies,
increasing findings are supporting GABAergic remodeling as
an important feature of Alzheimer’s Disease condition (Bi
et al., 2020). GABAergic dysfunction is less explored in
Frontotemporal Dementia and Amyotrophic Lateral Sclerosis,
but it has been demonstrated that baseline GABA levels can
influence response to therapies in Frontotemporal Dementia
patients (Adams et al., 2021) while impaired cortical inhibition
due to GABAergic dysfunction can affect Amyotrophic
Lateral Sclerosis progression (Zanette et al., 2002). Predicting
treatment effectiveness for Alzheimer’s Disease, Frontotemporal
Dementia, and Amyotrophic Lateral Sclerosis patients remains
problematic, and the lack of meaningful biomarkers for patients’
classification worsen the situation.

Despite the importance of excitatory/inhibitory balance
disruption in pathologies, excitation/inhibition experimental
determination, e.g., evaluating GABA and glutamate
concentrations, in single subjects is yet to reach clinical
adoption because of longer acquisition times, the need for
spectral editing techniques not implemented on clinical
scanners and the lack of community guidelines and protocols
standardization. Since TVB is designed to extract information
about connectivity and network parameters including those
linked to inhibition/excitation pathways in single human
subjects, starting from data that can be acquired with clinical
scanners, it has a true potential to foster personalized and
precision medicine, especially in those neurodegenerative
conditions mentioned above.

It is important also to highlight that TVB analysis should
include not only cerebral nodes and their structural connections
to one another, but also the cerebellum. Recently, it was shown
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that integrating cerebro-cerebellar connections can improve
TVB predictive capability in healthy subjects (Palesi et al., 2020).
This is in line with the increasing evidence supporting cerebellar
involvement not only in motor learning and coordination
(D’Angelo, 2019) but also in cognitive processing (Timmann
and Daum, 2007; Timmann et al., 2010; Castellazzi et al.,
2018; Casiraghi et al., 2019). Cerebellar impairment has been
revealed in Alzheimer’s Disease (Castellazzi et al., 2014; Jacobs
et al., 2018; Palesi et al., 2018), Frontotemporal Dementia
(Pizzarotti et al., 2020), and Amyotrophic Lateral Sclerosis
(Prell and Grosskreutz, 2013).

In this work, we exploited TVB capabilities to (i)
characterize each group of subjects by providing personalized
excitation/inhibition profiles and (ii) assess the cerebellar
impact on brain dynamics generation in Healthy Controls
and in Alzheimer’s Disease, Frontotemporal Dementia,
and Amyotrophic Lateral Sclerosis. TVB simulations were
performed using the Wong-Wang model (Deco et al.,
2014), which allowed us to derive a set of subject-specific
biophysical parameters able to describe global brain dynamics
and the excitatory/inhibitory balance in local networks. We
evaluated the potential for clinical translation of the biophysical
parameters obtained from TVB simulations by exploring their
association with patients’ cognitive performance and testing
their discriminative power between clinical conditions and
neuropsychological domains. This work, overall, can contribute
to the progress of personalized and precision medicine by
providing a unique description of the excitatory/inhibitory
balance at single-subject level, opening new perspectives for
brain modeling in neurodegenerative diseases.

Materials and methods

In this work individual’s subject analysis was conducted as
described in Figure 1 and simulations were performed in three
networks (Palesi et al., 2020): whole-brain network, cortical
subnetwork, and embedded cerebro-cerebellar subnetwork (see
section networks, Figure 2).

Subjects

Sixty patients affected by neurodegenerative diseases
were recruited at the IRCCS Mondino Foundation, as
part of a study on cognitive impairment published in
Palesi et al. (2018), Castellazzi et al. (2020), Lorenzi et al.
(2020), and Pizzarotti et al. (2020). The study was carried
out in accordance with the Declaration of Helsinki with
written informed consent from all subjects. The protocol was
approved by the local ethic committee of the IRCCS Mondino
Foundation. Patients underwent a complete diagnostic
workup including neuropsychological assessment, MRI (and

electroneuromyography in patients with motor neuron
impairment) to obtain an exhaustive phenotypic profiling
and a correct etiological definition of each subject. Based on
the most recent diagnostic criteria subjects were classified
into three groups: 15 Alzheimer’s Disease patients (McKhann,
2012) (6 females, 70 ± 7 years), 15 Frontotemporal Dementia
patients (4 females, 69 ± 7 years) [including behavioral
Frontotemporal Dementia (Rascovsky and Grossman, 2014)
and Primary Progressive Aphasia (Gorno-Tempini et al.,
2011)], 15 Amyotrophic Lateral Sclerosis (de Carvalho et al.,
2011) patients (7 females, 67 ± 8 years). In detail, diagnosis
of Alzheimer’s Disease was made according to the criteria of
the National Institute of Neurological and Communicative
Disorders and Stroke and Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA) workgroup
(McKhann, 2012); Frontotemporal Dementia diagnosis
was supported according to Rascovsky diagnostic criteria but
not determined by the cognitive profile and no patient was
excluded based on neuropsychological profile if diagnostic
criteria were still met; Amyotrophic Lateral Sclerosis diagnosis
was made in patients fulfilling Awaji criteria (de Carvalho
et al., 2011) and this group included patients with Amyotrophic
Lateral Sclerosis and mild cognitive impairment. In addition,
15 Healthy Controls (8 females, 64 ± 11 years) were enrolled
on a voluntary basis as reference group. All Healthy Controls
underwent clinical assessment to exclude any cognitive or
motoneuron impairment. For all subjects, exclusion criteria
were: age > 80 years, a diagnosis of significant medical,
neurological (other than Alzheimer’s Disease, Frontotemporal
Dementia, Amyotrophic Lateral Sclerosis) and psychiatric
disorder, pharmacologically treated delirium or hallucinations
and secondary causes of cognitive decline (e.g., vascular
metabolic, endocrine, toxic, and iatrogenic). Table 1 shows
demographic, clinical, and neuropsychological data.

Neuropsychological examination

All subjects underwent a neuropsychological examination
based on a standardized battery of tests to assess their
global cognitive status [Mini-Mental State Examination
(MMSE); Folstein et al., 1975] and different cognitive domains:
attention [Stroop test (Caffarra et al., 2002a), Trail Making
test A and B (Giovagnoli et al., 1996), Attentive Matrices
(Spinnler, 1987)], memory [Digit and Verbal span, Corsi
block-tapping test, Logical Memory test (Spinnler, 1987),
Rey-Osterrieth complex figure delayed recall (Caffarra et al.,
2002b), Rey’s 15 words test (Carlesimo et al., 1996)], language
[phonological (Carlesimo et al., 1996) and semantic (Novelli
et al., 1986) verbal fluency], logical-executive functions
[(Raven’s Matrices 1947; Carlesimo et al., 1996), Winconsing
Card Sorting test (Laiacona et al., 2000), Frontal Assessment
Battery (Appollonio et al., 2005)] and visuospatial skills
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FIGURE 1

Schematic representation of modeling workflow. MRI is used to obtain the structural and experimental functional connectivity matrices (SC and
expFC) needed for TVB construction and optimization. From top left, clockwise: diffusion weighted images are preprocessed and elaborated to
yield whole-brain tractography. An ad hoc parcellation atlas combining AAL atlas and SUIT is used to map the SC matrices obtained from
whole-brain tractography parcellation (top weight matrix, bottom distance matrix). The Virtual Brain (TVB) is constructed using the SC matrix for
edges and neural masses for nodes. TVB simulations of neural activity allow to extract BOLD signals for each node leading to define the
simulated functional connectivity (simFC) matrix. TVB optimization is performed through model inversion by comparing the simFC with the
expFC. Model parameters, highlighted with circles, and the corresponding equations are shown at the bottom.

[Rey-Osterrieth complex figure copy (Caffarra et al., 2002b)].
For each test age-, gender-, and education-corrected scores
were computed and then transformed into equivalent
scores ranging from 0 (pathological) to 4 (normal) on
the basis of the equivalent score standardization method
(Capitani and Laiacona, 1997). For each cognitive domain,
a weighted score was derived from the average of the
equivalent scores of the tests belonging to that specific
cognitive domain.

Magnetic resonance imaging
acquisitions

All subjects underwent MRI examination using a 3T
Siemens Skyra scanner with a 32-channel head coil. The
protocol included resting-state fMRI (T2

∗-weighted GRE-
EPI sequence, TR/TE = 3,010/20 ms; 60 slices, acquisition
matrix = 90 × 90, voxel size = 2.5 × 2.5 × 2.5 mm3

isotropic, 120 volumes) and diffusion weighted (DW)

imaging [SE-EPI sequence, TR/TE = 10,000/97 ms, 70
slices with no gap, acquisition matrix = 120 × 120, voxel
size = 2 × 2 × 2 mm3 isotropic, 64 diffusion-weighted
directions, b-value = 1,200 s/mm2, 10 volumes with no
diffusion weighting (b0 image)]. For anatomical reference,
a whole brain high-resolution 3D sagittal T1-weighted scan
[3DT1 sequence, TR/TE = 2,300/2.95 ms, TI = 900 ms, flip
angle = 9◦, 176 slices, acquisition matrix = 256 × 256, in-plane
resolution = 1.05 × 1.05 mm2, slice thickness = 1.2 mm]
was also acquired.

Preprocessing and tractography of
diffusion data

For each subject, a mean b0 image was obtained averaging
the 10 volumes acquired with no diffusion weighting.
DW data were denoised and corrected for Gibbs artifact
(Tournier et al., 2019) and eddy current distortions, and
aligned to the mean b0 image using the eddy tool [FMRIB
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FIGURE 2

Networks connectivity matrices. Columns 1 and 2 show the experimental structural (SC) and functional connectivity (FC) matrices, which were
used as input for TVB simulations in four different groups: healthy (HC), Alzheimer’s Disease (AD), Frontotemporal Dementia (FTD), and
Amyotrophic Lateral Sclerosis (ALS). For each group, matrices of a randomly chosen subject are reported as an example. Columns 3–5 show the
simulated FC obtained at single-subject level with three different networks: whole-brain, cortical subnetwork (Cerebral) and embedded
cerebro-cerebellar subnetwork (Cerebro-Crbl). In the whole-brain network simulations were performed using whole-brain nodes and
connections (whole-brain nodes and edges are colored); in the cortical subnetwork only cerebral cortex nodes and connections were
considered (cortical nodes and edges are colored); in the embedded cerebro-cerebellar subnetwork cerebral cortex nodes were considered
taking into account the influence of cerebro-cerebellar connections (cortical nodes and cerebellar edges are colored).

Software Library (FSL)1; Andersson and Sotiropoulos, 2016].
A binary brain mask was obtained from the mean b0 image
using the brain extraction tool (Smith et al., 2006) and
DTIFIT algorithm (FSL) was used to generate individual
fractional anisotropy (FA) and mean diffusivity (MD) maps.
3DT1-weighted images were segmented using MRtrix32

1 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki

2 http://www.mrtrix.org

(Patenaude et al., 2011) as white matter (WM), gray matter
(GM), subcortical GM, and cerebrospinal fluid (CSF) masks.
30 million streamlines whole-brain anatomically constrained
tractography (Smith et al., 2012) was performed with MRtrix3,
estimating fibers orientation distribution with multi-shell
multi-tissue constrained spherical deconvolution (CSD)
and using probabilistic streamline tractography (Tournier
et al., 2012). As in previous works (Palesi et al., 2017,
2020), a correction of spurious cerebro-cerebellar tracts
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TABLE 1 Demographics, clinical, and neuropsychological data
(means, SDs, and group differences).

Measures HC AD FTD ALS P-value

Males/females 7/8 9/6 11/4 8/7 0.201

Age (years) 64 (11) 70 (7) 69 (7) 67 (8) 0.494

Education (years) 10 (3) 8 (3) 10 (4) 9 (5) −

Memory 3.0 (0.4) 0.7 (0.7) 1.6 (0.7) 2.6 (0.6) <0.001*

Executive-function 2.9 (0.6) 0.8 (1.1) 1.0 (0.9) 1.9 (0.9) <0.001*

Attention 3.4 (0.5) 1.1 (1.0) 1.3 (1.2) 2.0 (0.8) <0.001*

Language 3.5 (0.5) 1.1 (1.3) 1.3 (1.0) 2.9 (1.2) <0.001*

Visuospatial skills 3.7 (0.8) 1.2 (1.7) 2.2 (1.9) 2.2 (2.0) 0.002*

Gender, age, education, and neuropsychological scores are reported for each group
(HC, Healthy Controls; AD, Alzheimer’s Disease; FTD, Frontotemporal Dementia; ALS,
Amyotrophic Lateral Sclerosis) as mean values and standard deviations in brackets.
Significant threshold is set at p< 0.05.
*Refers to significant group differences assessed with Kruskal-Wallis.

was performed excluding the ipsilateral connections from the
whole-brain tractogram.

Preprocessing of fMRI data

fMRI preprocessing was carried out combining SPM123,
FSL and MRtrix3 commands in a custom MATLABR2019b
script. Marchenko-Pastur principal component analysis (MP-
PCA) denoising (Ades-Aron et al., 2020) was firstly performed,
followed by slice-timing correction, realignment to the mean
functional volume and affine registration to the 3DT1-weighted
volume. These steps were followed by a polynomial detrend
and a 24 motion parameters regression (Friston et al., 1996).
A subject-specific CSF mask was extracted from the 3DT1
segmentation, eroded using a 99% probability threshold, and
constrained to areas within the ALVIN (Automatic Lateral
Ventricle delIneatioN) mask of the ventricles (Kempton et al.,
2011). These corrections were performed to avoid the risk
of capturing signals of interest from adjacent GM voxels,
and nuisance regressors identified within the restricted CSF
mask were removed using a component-based noise correction
(compCor) approach (Behzadi et al., 2007; Muschelli et al.,
2014). Temporal band-pass filtering (0.008–0.09 Hz) was
finally applied.

Structural and functional connectivity

Connectomes of SC and FC were estimated combining a
parcellation atlas with whole-brain tractography and rs-fMRI
signals of each subject, respectively. An ad hoc GM parcellation
atlas was created combining 93 cerebral (including cortical

3 https://www.fil.ion.ucl.ac.uk/spm

and deep GM structures) and 31 cerebellar (SUIT, A spatially
unbiased atlas template of the cerebellum and brainstem)
labels (Diedrichsen et al., 2009) in MNI152 space. Each GM
parcellation was considered as a node for the connectivity
analysis. The atlas was transformed to subject-space inverting
the normalization from the 3DT1-weighted volume to the
MNI152 standard space. The parcellation atlas applied to the
whole-brain tractography led to two types of SC matrices:
a distance matrix containing the length of tracts connecting
each pair of nodes, and a weight matrix in which connections
strengths (number of streamlines) were normalized by the
maximum value per each subject. The time-course of BOLD
signals was extracted for each node and the experimental FC
matrix (expFC) was computed as the Pearson’s correlation
coefficient (PCC) of the time-course between each pair of
brain regions. Matrix elements were converted with a Fisher’s
z transformation and thresholded at 0.1206 (Palesi et al., 2020).

Brain dynamics simulation with the
virtual brain

TVB workflow includes several steps: (1) incorporation of
subject SC matrices; (2) selection of a mean field/neural mass
mathematical model; (3) simulation of the rs-fMRI time-course
per node and creation of the simulated FC matrix (simFC);
(4) model parameters tuning to achieve the best matching
between simFC and expFC matrices; (5) final simulation of brain
dynamics with the optimal model parameters as described in
detail by Deco et al. (2014).

Computational model from neuronal activity to
large-scale signals

The Wong-Wang model (Deco et al., 2014) implemented as
highly optimized C code (Schirner et al., 2021) was chosen to
simulate whole-brain dynamics. This dynamic mean field model
simulates the local regional neuronal activity as the result of a
network composed of interconnected excitatory and inhibitory
neurons coupled through NMDA and GABA receptor types.
Details of the Wong-Wang model can be found in Deco et al.
(2014). Briefly, brain dynamics are described by the following
set of coupled non-linear stochastic differential equations:

I(E)i =WE I0 + w+ JNMDA S(E)i + G JNMDA
∑
j

Cij S
(E)
j − Ji S

(I)
i

(1)

I(I)i = WI I0 + JNMDA S(E)i − S(I)i (2)

r(E)i = H(E)
(
I(E)i

)
=

aE I(E)i − bE

1− exp
(
− dE

(
aE I

(E)
i − bE

))
(3)
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r(I)i = H(I)
(
I(I)i

)
=

aI I
(I)
i − bI

1− exp
(
− dI

(
aI I

(I)
i − bI

)) (4)

dS(E)i (t)
dt

= −
S(E)i
τE
+

(
1− S(E)i

)
γ r(E)i + σvi (t) (5)

dS(I)i (t)
dt

= −
S(I)i
τI
+ r(I)i + σ vi (t) (6)

where ri
(E,I) denotes the firing rate of the excitatory (E) and

inhibitory (I) populations, Si
(E,I) identifies the average excitatory

or inhibitory synaptic gating variables at local area, i, and
Ii
(E,I) is the input current to the excitatory and inhibitory

populations at local area, i. All parameters described in
Supplementary Table 1 were set as in Deco et al. (2014),
except those that are tuned during parameters optimization, as
follows: parameter space exploration was performed for global
coupling (G), which is a scaling factor denoting long-range
coupling strength, and local parameters defining the strength
of inhibitory (GABA) synapses (Ji), the strength of excitatory
(NMDA) synapses (JNMDA) and the strength of local excitatory
recurrence (w+). Thus, this model retains information on
both global brain dynamics and local excitatory/inhibitory
balance and is particularly interesting for the investigation of
pathological conditions.

For each set of parameters combination, resting-state
BOLD fMRI time-courses were simulated over 6 min length
using a Balloon-Windkessel hemodynamic neurovascular
coupling model (Friston et al., 2000) and the simFC
was computed as described for the expFC (see section
“Structural and functional connectivity”). Parameters
were adjusted iteratively until the best fit, i.e., the highest
correlation, between expFC and simFC was achieved
(Supplementary Figure 1).

Networks
To investigate the impact of the cerebellum on brain

dynamics generation, simulations were performed using three
different combinations of connections and nodes (Figure 2):

• Whole-brain network: whole-brain nodes and connections.
• Cortical subnetwork: cerebral cortex nodes and

connections (excluding cerebro-cerebellar connections).
• Embedded cerebro-cerebellar subnetwork: cerebral cortex

nodes but also considering cerebellar nodes and hence the
cerebro-cerebellar connections.

For each of these three networks predictive power was
evaluated as the mean PCC between expFC and simFC
matrices in different clinical conditions (Healthy Controls,
Alzheimer’s Disease, Frontotemporal Dementia, Amyotrophic
Lateral Sclerosis).

Statistic

Statistical tests were performed using SPSS software version
21 (IBM, Armonk, New York, United States).

Excitation/inhibition role in neurodegeneration
To assess whether biophysical parameters derived from

TVB differ according to the clinical condition, optimal model
parameters were tested for normality (Shapiro-Wilk test) and
differences between groups were assessed with non-parametric
tests (Kruskal-Wallis across all groups and Mann-Whitney
between each pair of groups) when they did not present a
Gaussian distribution.

A multiple regression analysis was performed to investigate
the relationship between individual scores of the 5 cognitive
domains (attention, memory, language, logical-executive
functions, visuospatial skills) and the optimal model parameters.
Neuropsychological scores in each cognitive domain were
considered as dependent variables while model parameters
combined with age, gender, and group category were used as
predictors in a backward approach. The regression algorithm
automatically removed one or more predictors to identify which
of them significantly (p < 0.05) explained neuropsychological
scores variance in all subjects together.

Moreover, to assess the relevance of these parameters in
discriminating between normal and pathological conditions,
a discriminant analysis was performed using the group as the
dependent variable and considering as independent variables,
in turns: (i) model parameters alone, (ii) neuropsychological
scores alone, and (iii) a combination of both. To visualize
and assess the sensitivity and specificity of the best
discriminative variables, receiving operating characteristics
(ROC) curves and corresponding areas under the curve (AUC)
were calculated.

Finally, a k-mean cluster analysis was performed to
reconstruct subjects-specific excitation/inhibition profiles. The
number of clusters was an input parameter, arbitrarily set equal
to 4, matching the number of variables considered (i.e., the 4
model parameters). A frequency analysis of the clusters in terms
of clinical groups enabled us to reach a deeper understanding
of their respective excitatory/inhibitory balance profiles. This
percentage of subjects belonging to one of the clusters in
each clinical group was used to qualitatively describe the
occurrence of specific patterns of excitatory/inhibitory balance
in the population.

Cerebellar role in brain dynamics in
neurodegeneration

PCC obtained with the three networks were normally
distributed (Shapiro-Wilk test), thus parametric tests were
used to compare them between different conditions. First,
to assess TVB predictive power for each clinical condition,
a one-way ANOVA was performed between the PCC of
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each network across groups (Healthy Controls, Alzheimer’s
Disease, Frontotemporal Dementia, Amyotrophic Lateral
Sclerosis). Then, to assess the impact of each specific network
on TVB predictive power, a multivariate general linear
model (GLM) with Bonferroni correction was chosen
to compare PCC values of the three networks within
each group.

Code and data accessibility

All codes used for this study are freely available.
The optimized TVB C code can be found at https:
//github.com/BrainModes/fast_tvb. Dataset will be available at
10.5281/zenodo.5796063.

Results

Excitation/inhibition role in
neurodegeneration

Both global (G) and local (Ji, JNMDA, w+) parameters were
adjusted iteratively to optimize the model fit to empirical data.
Optimal model parameters were found across the whole-brain
network of each subject.

Group differences in the virtual brain
parameters

The biophysical parameters derived from TVB were
compared between groups to assess whether, at group
level, their value could differ according to the clinical
condition. Both global and local biophysical parameters
showed significant differences between groups (Table 2 and
Figure 3A): Alzheimer’s Disease patients showed higher G
and Ji compared to Healthy Controls and Frontotemporal
Dementia (p < 0.05); Amyotrophic Lateral Sclerosis patients
showed higher JNMDA than Healthy Controls (p < 0.05);
no statistically significant differences were found when
comparing Healthy Controls and Frontotemporal Dementia
with other groups.

Relationship between the virtual brain
parameters and neuropsychological scores

Parameters used in backward regressions, significantly
explained the variation of scores in different neuropsychological
domains. The explained variance of each neuropsychological
domain was progressively reduced by simplifying the
regression model through the removal of one or more
predictors and ranged from ∼20 to ∼8%. For each cognitive
domain, a different combination of features was necessary
to significantly (p < 0.05) explain a percentage of the
variance (Table 3).

Discriminative power of the virtual brain
parameters and neuropsychological scores

The discriminative power of TVB parameters and
neuropsychological scores is reported for all comparisons
(Healthy Controls vs. Alzheimer’s Disease, Healthy Controls vs.
Frontotemporal Dementia, Healthy Controls vs. Amyotrophic
Lateral Sclerosis, Alzheimer’s Disease vs. Frontotemporal
Dementia, Alzheimer’s Disease vs. Amyotrophic Lateral
Sclerosis, Frontotemporal Dementia vs. Amyotrophic
Lateral Sclerosis) in Table 4. TVB parameters always
yielded a poorer discriminant power (about 70%) than
that offered by neuropsychological scores (about 90%). When
neuropsychological scores were complemented by TVB
values as joint independent variables, the discriminative
power increased in all classifications reaching 100% when
distinguishing between Alzheimer’s Disease and Healthy
Controls, and between Frontotemporal Dementia and
Amyotrophic Lateral Sclerosis. To visualize all these results,
ROC curves are reported in Figure 4.

A personalized description of the
excitatory/inhibitory balance

Each of the four clusters identified with the k-means analysis
was characterized by a different combination of values of TVB-
derived biophysical parameters, as reported in Figure 5A and
Supplementary Figure 2. Considering the biophysical meaning
of each parameter derived from the simulation, we can describe
the k-means clusters as follows:

• Cluster 1 is mainly characterized by medium to strong
overexcitation (medium to high values of JNMDA).
• Cluster 2, in addition to showing strong overexcitation

(very high values of JNMDA), is characterized by a high
global coupling strength (medium to high values of G)
and medium to strong overinhibition (medium to high
values of Ji).
• Cluster 3 is the only one characterized by medium or

low values of G, Ji, and JNMDA and high values of local
excitatory recurrence (w+).
• Cluster 4 is mostly characterized by overinhibition (high

values of Ji) and high global coupling strength between
nodes (higher values of G).

All groups were represented in more than one clusters, as
shown in Figure 5B. The distribution of subjects belonging to
different condition across clusters revealed that: cluster 1 was
more frequent in Healthy Controls (20%) and Amyotrophic
Lateral Sclerosis (26.7%) than in Alzheimer’s Disease and
Frontotemporal Dementia (both 6.7%); cluster 2 was less
present in Healthy Controls (13.3%) than in pathological
conditions (Alzheimer’s Disease = 33.3%, Frontotemporal
Dementia = 33.3%, and Amyotrophic Lateral Sclerosis = 20%);
cluster 3 was mostly composed of Healthy Controls subjects
(46.7%), somewhat frequent in Frontotemporal Dementia
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TABLE 2 Optimal model parameters and Pearson correlation coefficients per group.

TVB_parameters HC AD FTD ALS P-valuea

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

G 0.887 (0.226) 0.137 (0.236) 0.980 (0.248) 0.993 (0.281) 0.047*◦

Ji 2.473 (0.268) 2.753 (0.275) 2.520 (0.293) 2.580 (0.371) 0.047*◦

JNMDA 0.137 (0.020) 0.147 (0.024) 0.143 (0.026) 0.152 (0.023) 0.106♦

w+ 1.587 (0.238) 1.477 (0.280) 1.527 (0.312) 1.430 (0.247) 0.274

PCC Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Whole-brain 0.342 (0.010) 0.297 (0.076) 0.343 (0.064) 0.312 (0.070) 0.285

Cerebral 0.347 (0.097) 0.342 (0.077) 0.392 (0.080) 0.341 (0.056) 0.241

Cerebro-Crbl 0.353 (0.109) 0.337 (0.087) 0.396 (0.084) 0.348 (0.061) 0.283

p-valueb 0.725 <0.001·† <0.001·† 0.022·†

Model optimal biophysical parameters (G, global coupling; JNMDA , excitatory synaptic coupling; w+ , local excitatory recurrence; Ji , inhibitory synaptic coupling) and Pearson Correlation
Coefficients (PCC) between experimental and simulated FC for all groups (HC, Healthy Controls; AD, Alzheimer’s Disease; FTD, Frontotemporal Dementia; ALS, Amyotrophic Lateral
Sclerosis) and networks (whole-brain, cerebral subnetwork, and embedded cerebro-cerebellar subnetwork = Cerebro-Crbl).
Values are expressed as mean values and standard deviation in brackets.
Significant threshold is set at p< 0.05.
aGroup differences assessed with Kruskal-Wallis for optimal model parameters and one-way ANOVA for PCC.
bPCC differences between networks assessed with GLM.
*Refers to significant difference between Healthy Controls and Alzheimer’s Disease assessed with Mann-Whitney.
◦Refers to significant difference between Alzheimer’s Disease and Frontotemporal Dementia assessed with Mann-Whitney.
♦Refers to significant difference between Healthy Controls and Amyotrophic Lateral Sclerosis assessed with Mann-Whitney.
·Refers to p< 0.003 between whole-brain and cortical networks.
†Refers to p< 0.01 between whole-brain and embedded networks.

FIGURE 3

Boxplots of optimal biophysical parameters and Pearson correlation coefficients (PCC). (A) Boxplots of optimal biophysical parameters derived
from TVB (global coupling, G, excitatory synaptic coupling, J_NMDA, local excitatory recurrence, w+, inhibitory synaptic coupling, Ji) across
groups (Healthy Controls, Alzheimer’s Disease, Frontotemporal Dementia, and Amyotrophic Lateral Sclerosis). The asterisk (*) indicates a
significant difference (Mann-Whitney, p < 0.05) between groups (see Table 2 for details). (B) Boxplots of Pearson correlation coefficients (PCC)
between experimental and simulated FC for all groups (Healthy Controls, Alzheimer’s Disease, Frontotemporal Dementia, Amyotrophic Lateral
Sclerosis) and networks (whole-brain network, Whole_brain, cortical subnetwork, cerebral; embedded cerebro-cerebellar subnetwork,
Cerebro-Crbl). Asterisks (*) indicate a significant difference (p < 0.05) between networks (see Table 2 for details).

(33.3%) and hardly present in Amyotrophic Lateral Sclerosis
(6.7%) and Alzheimer’s Disease subjects (0%); cluster 4 was the
most frequent in Alzheimer’s Disease (60%) and Amyotrophic
Lateral Sclerosis (46.7%) and less frequent in Healthy Controls
(20%) and Frontotemporal Dementia (26.7%).

Cerebellar role in brain dynamics in
neurodegeneration

To understand the role of the cerebellum in
neurodegeneration, we performed TVB simulations using
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TABLE 3 Backward regressions results.

Predictors Explained
variance

Significance

Memory Ji 8.4% 0.028

Executive-function Group, gender, age,
w+, G

Group, gender, age, G

19.9%

19.8%

0.037

0.018

Group, age, G 19.5% 0.008

Group, age 18.5% 0.004

Attention Group, Ji, gender, age 16.9% 0.040

Group, Ji, age 16.7% 0.019

Group, Ji 15% 0.011

Group 12% 0.008

Language Group, G 10.8% 0.044

G 8.7% 0.025

Visuospatial skills Group, Ji 10.7% 0.045

The variance explained by the parameters used in backward regressions is calculated with
the R2 index. Significant threshold is set at p< 0.05. For each cognitive domain a different
combination of features significantly explains a percentage of the variance (ANOVA).

three different networks: (i) Whole-brain network, (ii) Cortical
subnetwork, (iii) Embedded cerebro-cerebellar subnetwork as
in Palesi et al. (2020). For each of these three networks, the
predictive power was evaluated as the mean PCC between
expFC and simFC matrices in Healthy Controls and in the
pathological groups: Alzheimer’s Disease, Frontotemporal
Dementia, Amyotrophic Lateral Sclerosis.

Predictive power of the virtual brain
simulations

TVB simulation performed both in Healthy Controls and
pathological conditions led to good fit values between the expFC
and simFC (Table 2). No differences were found between PCC
values of each network across clinical groups, but significant
differences were found in each group comparing PCCs of the
three networks. For all the pathological groups, PCC values
obtained with the embedded cerebro-cerebellar subnetwork
were significantly higher (p < 0.01) than those obtained with

the whole-brain network, while PCCs of the cortical subnetwork
were significantly higher (p < 0.003) than those of the whole-
brain network in Alzheimer’s Disease and Frontotemporal
Dementia (Table 2 and Figure 3B). No differences were found
between the three networks in Healthy Controls.

Discussion

For the first time, in this work we characterized the
excitatory/inhibitory profile in neurodegenerative (Alzheimer’s
Disease, Frontotemporal Dementia, Amyotrophic Lateral
Sclerosis) conditions integrating cerebro-cerebellar connections
in TVB. Importantly, by adopting the Wong-Wang model
to model brain dynamics, we gained information on local
excitatory/inhibitory balance at the single subject level.

Excitation/inhibition role in
neurodegeneration

Hyper-excitation and over-inhibition underly
different neurodegenerative mechanisms

Parameters derived from TVB simulations using the Wong-
Wang model yield information on global brain dynamics and on
the local excitatory/inhibitory balance. In particular, the global
scaling factor G denotes the strength of long-range connections,
and higher global coupling means a greater weighting of
the global over the local connectivity. The remaining three
parameters define the balance between excitation and inhibition
in the simulated network: JNMDA represents the strength of
excitatory synapses in the network, Ji denotes the strength of
inhibitory synapses and w+ the strength of recurrent excitation.

Our results revealed that different clinical groups were
characterized by specific TVB parameters providing new clues
for the interpretation of the dysfunctional mechanisms in
local microcircuits.

TABLE 4 Classification results (AUC, sensitivity and specificity) for group comparisons.

TVB_PARAMS NPS TVB + NPS

AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec.

HC vs. AD 76.7% 0.800 0.733 93.3% 0.867 1.000 100% 1.000 1.000

HC vs. FTD 63.3% 0.600 0.667 90% 0.800 1.000 93.3% 0.867 1.000

HC vs. ALS 76.7% 0.733 0.800 85.7% 0.769 0.933 89.3% 0.846 0.933

AD vs. FTD 73.3% 0.533 0.933 80% 0.800 0.800 80% 0.867 0.733

AD vs. ALS 66.7% 0.600 0.733 96.4% 1.000 0.933 96.4% 1.000 0.933

FTD vs. ALS 56.7% 0.533 0.600 96.4% 1.000 0.933 100% 1.000 1.000

AUC, Areas under the curve; Sens., sensitivity; Spec., specificity are reported for all classifications. (HC, Healthy Controls; AD, Alzheimer’s Disease; FTD, Frontotemporal Dementia; ALS,
Amyotrophic Lateral Sclerosis) performed with different independent variables: TVB-derived biophysical parameters alone (TVB_params), neuropsychological scores alone (NPS), and a
combination of both (TVB+ NPS).
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FIGURE 4

Classification analysis. ROC curves were calculated for each classification (Healthy Controls vs. Alzheimer’s Disease, Healthy Controls vs.
Frontotemporal Dementia, Healthy Controls vs. Amyotrophic Lateral Sclerosis, Alzheimer’s Disease vs. Frontotemporal Dementia, Alzheimer’s
Disease vs. Amyotrophic Lateral Sclerosis, Frontotemporal Dementia vs. Amyotrophic Lateral Sclerosis) with their corresponding groups of
variables (TVB parameters alone, neuropsychological scores alone, TVB parameters combined with neuropsychological scores). AUC values
confirmed that TVB parameters alone (blue) always yielded a poorer discriminant power than that offered by neuropsychological scores alone
(green). The combination of TVB parameters with neuropsychological scores improved the discriminative power in all classifications reaching
100% when distinguishing between Alzheimer’s Disease and Healthy Controls and between Frontotemporal Dementia and Amyotrophic Lateral
Sclerosis.

To date, patterns of altered FC in Alzheimer’s Disease
from a resting-state networks perspective have been reported
mainly in the default mode network (DMN) (Hohenfeld et al.,
2018; Ibrahim et al., 2021), although a wider involvement has
been suggested by our group in previous work (Castellazzi
et al., 2014). Our data demonstrated that G and Ji were
higher in Alzheimer’s Disease patients compared to Healthy
Controls suggesting that Alzheimer’s Disease subjects were
characterized by increased global coupling and overinhibition.
This increased G-value in our Alzheimer’s Disease group could
be interpreted as a compensatory mechanism counteracting
altered cerebral connectivity, but it might also underly the
hypersynchrony typically characterizing disrupted networks
in patients (Castellazzi et al., 2014; Maestú et al., 2019).
Furthermore, our data shows an increased inhibition suggesting
that GABAergic dysfunction plays a role in Alzheimer’s Disease
pathology, which is in line with the novel hypothesis that
GABAergic remodeling might be an important feature of
neurodegeneration (Bi et al., 2020).

It is worth noting that Alzheimer’s Disease showed
higher G and Ji also compared to Frontotemporal Dementia
patients, strengthening the tenet that the pathophysiological
mechanisms underlying the two diseases are different. Indeed,
Frontotemporal Dementia showed G and Ji values similar to
Healthy Controls, consistent with the similarity of cortical
neural synchronization in Frontotemporal Dementia and
Healthy Controls (Nardone et al., 2018).

Finally, Amyotrophic Lateral Sclerosis patients were
characterized by an increased JNMDA, which is in line with
the cortical hyperexcitability frequently reported in this
pathological condition (Pradhan and Bellingham, 2021).

The virtual brain-derived biophysical
parameters help to explain cognitive
performance

TVB-derived biophysical parameters combined with age,
gender, and group category significantly explained the variance
of neuropsychological scores both in Healthy Controls and
pathological groups. This suggests that the levels of excitation,
inhibition and global coupling are associated with cognitive
performance in the different clinical conditions.

The clinical relevance of TVB parameters is further
highlighted by results of the discriminant analysis. The
discriminative power of neuropsychological tests alone was
always higher than the one obtained with TVB parameters
alone. However, when neuropsychological measures were
combined with TVB parameters, the discriminative power
improved, reaching in some cases 100% of accuracy.
Importantly the performance of our classification was
satisfactory not only to distinguish Healthy Controls from
patients, but also to differentiate patients belonging to different
neurodegenerative conditions. This opens an interesting
perspective for the development of new diagnostic tools
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FIGURE 5

Excitation/inhibition profiles. (A) Each cluster was characterized by a typical excitation/inhibition profile. The color-bar (from blue to red)
represents the scale from low to high of each TVB-derived biophysical parameter. (B) Visual representation of cluster distributions across
groups (Healthy Controls, Alzheimer’s Disease, Frontotemporal Dementia, and Amyotrophic Lateral Sclerosis). Cluster numbers are reported on
the x-axis while cluster frequencies in each condition are reported on the y-axis. Each dot represents a single subject.

combining TVB parameters with neuropsychological scores in
future machine learning approaches.

The excitatory/inhibitory balance in
single-subject

For each subject, TVB predicted the optimal
parameters, providing a subject-specific description of the
excitatory/inhibitory balance that could be analyzed at
group level (as discussed above) or used to establish cluster
membership in a data-driven approach.

While at group level there were noticeable differences
in excitatory/inhibitory parameters, when considering
single-subjects’ profiles, K-means clusters were not group

specific; this suggests an heterogeneous excitatory and
inhibitory balance across subjects that could be exploited for
future personalized interventions. Considering the biophysical
meaning of TVB parameters, cluster 1 was mainly characterized
by overexcitation and was more frequent in Healthy Controls
and Amyotrophic Lateral Sclerosis. As well as being consistent
with the fact that hyperexcitability is a well-known feature
of Amyotrophic Lateral Sclerosis patients (Brunet et al.,
2020; Pradhan and Bellingham, 2021), the presence of some
Healthy Controls subjects in this cluster is not surprising.
Indeed, the effect of aging on the glutamatergic system is
currently under investigation (Segovia et al., 2001), and
even if glutamate is mostly reported to decrease with age
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(Roalf et al., 2020), age-related effects on glutamatergic release
and uptake processes and NMDA receptors activation could
be differentially modulated in some healthy subjects. Even in
cluster 2 we found some Healthy Controls, which presented not
only high excitation but also high global coupling strength. This
high G-value could be due to an increased strength of long-
range connectivity or increased synchrony between nodes. It is
worth noting that cluster 2 was more common in pathological
conditions than in Healthy Controls, and this is in line with the
frequent observation of hyperexcitation and hypersynchrony
in Alzheimer’s Disease (Henstridge et al., 2019; Maestú et al.,
2019, Maestú et al., 2021), Frontotemporal Dementia (Hughes
et al., 2018; Benussi et al., 2019), and Amyotrophic Lateral
Sclerosis (Dukic et al., 2019; Pradhan and Bellingham, 2021).
Cluster 3 was the most related to Healthy Controls, while the
number of patients was marginal (0 for the Alzheimer’s Disease
group). This cluster is mainly characterized by high recurrent
excitation; interestingly, alterations of this property are less
explored as potential mechanisms in clinical conditions. Only
a few network models have been developed to account for the
influence of recurrent excitation and to explore its changes in
pathologies. Strong self-excitation was shown to be required in
network models to achieve satisfactory simulations of decision
making and working memory tasks (Wong and Wang, 2006),
in line with our evidence of high recurrent excitation in Healthy
Controls. Moreover, in a previously proposed computational
model applied to Alzheimer’s Disease the variation of local
recurrent excitation has been suggested as a brain mechanism
employed to compensate for alterations induced by other types
of synapse loss (Bachmann et al., 2020). Unfortunately, nothing
is known about recurrent excitation in network models of
Frontotemporal Dementia or Amyotrophic Lateral Sclerosis,
but the presence of Frontotemporal Dementia and Amyotrophic
Lateral Sclerosis patients in cluster 3 prompts to explore the
effect of this parameter in clinical conditions other than
Alzheimer’s Disease. Finally, cluster 4 was mostly associated
with Alzheimer’s Disease patients, followed by Amyotrophic
Lateral Sclerosis, Frontotemporal Dementia and Healthy
Controls. While convergent findings are increasingly supporting
the role of a GABA function increase in Alzheimer’s Disease (Li
et al., 2016; Govindpani et al., 2017; Bi et al., 2020), GABAergic
dysfunction is mostly described as an overall decrease of cortical
inhibition in Frontotemporal Dementia and Amyotrophic
Lateral Sclerosis. Our results suggest the possibility of an
increased GABAergic activity not only in Alzheimer’s Disease
patients, as already observed in literature, but also in subsets of
subjects affected by other neurodegenerative conditions.

It is important to point out that Frontotemporal Dementia
patients appeared to be the most distributed between clusters,
without a main cluster membership, and this evidence reflects
the heterogeneity of our Frontotemporal Dementia cohort,
which is in line with the wide spectrum of neurotransmitters
deficits which has been already observed in Frontotemporal
Dementia (Murley and Rowe, 2018).

Cerebellar role in neurodegeneration

Cerebellar impairment has been consistently observed
in neurodegenerative diseases, although the cerebellum has
been rarely considered in neurodegenerative conditions.
Disease-specific clusters of cerebellar atrophy have been
found in Alzheimer’s Disease, Frontotemporal Dementia, and
Amyotrophic Lateral Sclerosis (Gellersen et al., 2017; Pizzarotti
et al., 2020). Functional connectivity alterations (Castellazzi
et al., 2014; Jacobs et al., 2018) and WM disruption (Toniolo
et al., 2020) characterize cerebro-cerebellar loops in Alzheimer’s
Disease patients. Abnormal network connectivity between
cerebellum and cerebral cortical regions has been confirmed
in the main subtypes of Frontotemporal Dementia (Chen
et al., 2019, 2020) (behavioral-variant, semantic dementia,
and progressive non-fluent aphasia). In Amyotrophic Lateral
Sclerosis the functional reorganization following motor
neuronal loss increases cerebellar activation in motor tasks
with respect to controls (Prell and Grosskreutz, 2013), while
a widespread pattern of WM abnormalities has been reported
together with WM volume reduction (Chen et al., 2018).

In our work, the integration of cerebro-cerebellar

connections in the structural matrix improved the predictive
power of TVB simulations in pathological conditions,

supporting the concept of a cerebellar involvement in
neurodegenerative conditions and confirming the sizeable
contribution of cerebro-cerebellar connectivity to simulated
brain dynamics (Palesi et al., 2020). This improvement
was especially evident in Amyotrophic Lateral Sclerosis,
which is a long-range motor neuron disease. This calls
for future work to establish whether this result reflects a
higher cerebellar recruitment determined by Amyotrophic
Lateral Sclerosis functional reorganization (Prell and

Grosskreutz, 2013). Studies evaluating the impact of
cerebellar integration not only on static FC simulations,
as performed in this work, but also on dynamic resting-
state FC simulations (Hansen et al., 2015; Kong et al.,
2021) are warranted.

Study considerations

One potential concern about the present study is the
small sample size. However, it should be noted that one of
the most interesting aspects of TVB is to uncover subject-
specific characteristics in clinical groups. In this perspective,
the use of a small sample does not detract relevance from
this study, also considering that other TVB applications on
small cohorts can be found in literature (Aerts et al., 2018;
Schirner et al., 2018). An interesting perspective would be
to extend this investigation to a larger cohort of subjects
and cluster TVB parameters with MRI features and other
clinical data. This would allow to explore the existence of
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yet unrecognized categories of patients affected by dementia.
Thus, while our study can be considered a first step,
future studies could benefit from increasing the number
of recruited subjects or analyzing open-source large-scale
clinical datasets.

A technical aspect to consider is also that, in this study,
whole brain parcellation was performed combining the AAL
atlas with SUIT in order to account for the cerebellum. The
different parcel sizes may influence structural/functional
connectivity and brain dynamics (Proix et al., 2016). In
this context, it is important to point out that the influence
of parcellation size on topological and functional brain
properties is still not fully understood. Importantly, few studies
focused on this interesting issue and structural/functional
organization appeared to be robust changing the anatomical
parcellation atlases used, while quantitative measures (e.g.,
graph theoretical metrics) seemed to be modulated by
the adopted parcellation approach (de Reus and van
den Heuvel, 2013). Moreover, attention has never been
focused on cerebro-cerebellar loops, and currently only
SUIT has been validated while other cerebellar atlases are
still under development. Parcellation-dependent variance in
both experimental and simulated data are currently under
investigation (Domhof et al., 2021).

Conclusion

TVB-derived biophysical parameters provided a unique
description of the excitatory/inhibitory balance both
at group and single subject levels. An extremely high
performance was achieved in patients’ discrimination
combining TVB parameters and neuropsychological
scores. Moreover, the integration of cerebro-cerebellar
connections in TVB improved the predictive power
of the model in neurodegeneration. Overall, this work
opens new perspectives for the use of TVB to explore
neurodegenerative mechanisms, supports the involvement
of the cerebellum in determining brain dynamics in
neurodegenerative diseases, and suggests a novel approach to
obtain physiological information relevant to future personalized
diagnosis and therapy.
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