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Alzheimer’s disease (AD) is a common neurodegenerative disease. The major problems
that exist in the diagnosis of AD include the costly examinations and the high-invasive
sampling tissue. Therefore, it would be advantageous to develop blood biomarkers.
Because AD’s pathological process is considered tightly related to autophagy; thus,
a diagnostic model for AD based on ATGs may have more predictive accuracy than
other models. We obtained GSE63060 dataset from the GEO database, ATGs from the
HADDb and screened 64 differentially expressed autophagy-related genes (DE-ATGs).
We then applied them to Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses as well as DisGeNET and PaGenBase enrichment
analyses. By using the univariate analysis, least absolute shrinkage and selection
operator (LASSO) regression method and the multivariable logistic regression, nine DE-
ATGs were identified as biomarkers, which are ATG16L2, BAK1, CAPN10, CASP1,
RAB24, RGS19, RPS6KB1, ULK2, and WDFY3. We combined them with sex and age
to establish a nomogram model. To evaluate the model’s distinguishability, consistency;,
and clinical applicability, we applied the receiver operating characteristic (ROC) curve,
C-index, calibration curve, and on the validation datasets GSE63061, GSE54536,
GSE22255, and GSE151371 from GEO database. The results show that our model
demonstrates good prediction performance. This AD diagnosis model may benefit both
clinical work and mechanistic research.

Keywords: Alzheimer’s disease (AD), autophagy, DEGs, nomogram, LASSO

HIGHLIGHTS

- A diagnostic model for Alzheimer’s disease (AD) based on screening autophagy-related genes
(ATGs) may have more predictive accuracy than other models.

- Nine candidate genes were identified and combined with sex and age to establish
a nomogram model.

- The validation of this model suggested good agreement between predictions and observations.

- This AD diagnostic model was considered helpful for clinical work and provided a new
perspective on mechanistic research for AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease with
the cardinal symptoms of anterograde memory decline and
the impairment of learning and cognition (Soria Lopez et al.,
2019). The most common type of senile dementia, AD has
an insidious onset and progressive development (Dong et al.,
2021; Li et al, 2021). According to 2018 statistical data, over
50 million patients have been diagnosed with AD, and this
number is projected to reach 80 million by 2030 (Reddy and
Oliver, 2019). Undoubtedly, this increase will bring great burdens
and serious challenges for patients, their families, and society
(Marrone et al., 2020).

Currently, AD diagnosis requires multidimensional methods.
Frequently used clinical diagnostic methods include the
Mini-Mental State Examination (MMSE), neuroimaging,
electroencephalogram (EEG) analysis and laboratory analyses,
such as testing for amyloid B-peptide (AB) in cerebrospinal
fluid (Cassani et al., 2018; Khan et al., 2020; Mintun et al.,
2021). Some of these tests are invasive, unconventional,
and costly, making them unacceptable for some patients,
particularly elderly individuals (Ralbovsky et al., 2019). In
addition, because AD cannot be cured currently and the mean
survival time after diagnosis is just 4-8 years among those
over 65 (2022), diagnosis at an early stage is critical. Therefore,
an accurate and easily implemented method is needed to
diagnose and prevent AD.

Due to numerous studies have shown that trace amounts
of AP can be observed in peripheral blood (Blennow and
Zetterberg, 2018), blood analysis holds potential for AD
diagnosis. Furthermore, blood sampling is minimally invasive,
convenient, and easy for patients to accept (Alawode et al.,
2021). However, merely depending on the detection of AP
levels in the blood is inadequate due to its low specificity
(Chang et al, 2021). Therefore, seeking other AD-specific
blood biomarkers has become the focal point of researchers
(Nous et al., 2021).

Autophagy is a dynamic autodigestive recycling of
intracellular proteins and senescent organelles under certain
physiological or pathologic conditions and is needed for
cell survival and health (Parzych and Klionsky, 2014).
For instance, an organism utilizes autophagy to adapt to
metabolic stress and prevent genetic injury. Autophagy
functions in the processes of inflammation, cancer,
neurodegenerative diseases, cardiovascular disorders, and

Abbreviations: A, p-peptide; AD, Alzheimer’s disease; ALP, autophagy-lysosome
pathway; ATGs, autophagy-related genes; ATG16L2, autophagy-related protein
16-2; AUC, area under the curve; BAK1, BCL2 Antagonist/Killer 1; BP, biological
process; CAPNI10, calpain 10; CASP1, caspase-1; CC, cellular component; DCA,
decision curve analysis; DE-ATGs, differentially expressed autophagy-related
genes; DEGs, differentially expressed genes; EEG, electroencephalogram; FDR,
false discover rate; GEO, gene expression omnibus; GO, gene ontology; HADDb,
human autophagy database; KEGG, kyoto encyclopedia of genes and genomes;
LASSO, least absolute shrinkage and selection operator; MF, molecular function;
MMSE, mini-mental state examination; NLRP3, NOD-like receptor pyrin 3;
PD, Parkinson’s disease; RAB24, RAB24, member RAS oncogene family; RGS19,
regulator of G protein signaling; ROC, receiver operating characteristic; RPS6KB1,
ribosomal protein S6 kinase B1; ULK2, Unc-51 like autophagy activating kinase 2;
WDFY3, WD repeat and FYVE domain containing 3.

aging (Levine and Kroemer, 2019). In mammals, there are
three types of autophagy macroautophagy, microautophagy
and chaperone autophagy, with macroautophagy the major
type used to eliminate extracellular AR deposition, which is
most implicated in AD (Li et al, 2017; Zamani et al.,, 2019).
Increasing data indicate that in the neural system, lysosomes
are involved in degrading misfolded proteins, aggregated
proteins, and damaged organelles (Cerri and Blandini, 2019).
If the autophagy-lysosome pathway (ALP) is injured, it may
result in misfolded AP deposition, a critical mechanism in
AD development. Another key mechanism is the abnormal
accumulation of empty autophagic vesicles (Kerr et al., 2017).
Therefore, some researchers suggested that autophagy holds
promise for diagnosing and treating AD (Xu et al., 2021). This
study aims to establish a diagnostic model based on differentially
expressed autophagy-related genes (DE-ATGs) in peripheral
blood. With this new model, we expect to improve the accuracy
and convenience of AD diagnosis and offer more candidate
biomarkers both for clinical work and a new perspective on
mechanistic research for AD.

MATERIALS AND METHODS

Microarray Datasets

Gene Expression Omnibus (GEO)' is an open-access database
that includes genetic chips and high-throughput sequencing
datasets. We chose two datasets, GSE63060 and GSE63061,
according to the following criteria: (1) contains samples of both
AD patients and healthy persons; (2) samples are all derived
from peripheral blood; and (3) the number of samples is no
less than 100. The GSE63060 dataset based on the GPL6947
platform was set as the training set, including 145 samples of
peripheral blood cells extract from AD patients and 104 samples
from healthy persons. The GSE63061 dataset was set as the
validation set, which was based on the GPL10558 platform,
including 139 blood samples from AD patients and 134 samples
from healthy individuals.

Data Processing and Screening of
Differentially Expressed

Autophagy-Related Genes

The human autophagy database (HADD)* collects information
from papers published in PubMed and other public biological
databases and supplies a list of directly or indirectly AD-
correlative genes and proteins (Moussay et al., 2011). A total
of 222 autophagy-related genes (ATGs) were acquired from the
HADD. By using the justRMA function in the limma software
package (Ritchie et al., 2015), we normalized the expression
profile of the training set GSE63060. By using the ComBat
function in the sva software package (Gautier et al., 2004),
we removed the batch effect and adjusted the background,
acquiring the differentially expressed genes (DEGs) with a
false discovery rate (FDR) less than 0.05 (Huang et al., 2009;

Thttp://www.ncbi.nlm.nih.gov/geo/
Zhttp://www.autophagy.lu/
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Wang and Wang, 2020). Finally, we identified the intersection
of ATGs and DEGs as DE-ATGs, which were analyzed
in further steps.

Comprehensive Analysis of Differentially

Expressed Autophagy-Related Genes

DAVID (Huang et al, 2009)* and Metascape (Zhou et al.,
2019)* are two comprehensive databases that play important
roles in the annotation and visualization of genes, as well
as the enrichment of pathways. The Gene Ontology (GO)
function enrichment analysis is composed of three main terms:
biological process (BP), cellular component (CC), and molecular
function (MF). And the Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis mainly specializes in the
enrichment of pathway analysis. DAVID database was utilized
to perform a functional analysis of the DE-ATGs, including GO
and KEGG. Moreover, Metascape database was also employed
to perform DisGeNET and PaGenBase enrichment analyses.
P-value < 0.05 was set as the cut-off criteria and the top-ten-
counts-terms were selected.

Establishment and Evaluation of the
Prognosis With a Risk Scoring Model
Based on Differentially Expressed
Autophagy-Related Genes

Considering the influence of age and sex on AD development
(Podcasy and Epperson, 2016; Muzammil et al., 2021), we
set these factors as research variants. In the R environment
(version 3.6.1), the tableone package (0.12.0) was applied to
screen out the potential factors associated with the diagnosis
of AD, and DE-ATG, whose p-value was less than 0.05, was
considered statistically significant. Then, we adopted a least
absolute shrinkage and selection operator (LASSO) regression
analysis with the glmnet package (4.1.1), aiming at simplifying
the parameter of our model to avoid overfitting (Zhang
et al., 2020). We chose the fittest X and deleted some
genes that partially exhibited collinearity to minimize bias.
After a multivariable logistic regression analysis of the LASSO
regression-produced influencing factors, we chose the relative
parameters whose p-values were less than 0.05 as the final
parameters of the predictive model. We calculated the risk
score through a linear combination of each ATG expression
level (o) multiplied by the corresponding coefficient (B). The
formula was risk score = o1*B; + oy *By + ... + A, *Pau.
To evaluate the predictive accuracy of this model, we applied
the pROC (1.0.11) package using R software to calculate
the area under the curve (AUC) of each receiver operating
characteristic (ROC) curve.

Modeling and Validation of a Diagnostic

Nomogram
As asimple and easy-to-use two-dimensional image, a nomogram
is mainly applied to summarize the specific and statistically

3https://david.ncifcrf.gov/
“https://metascape.org/gp/index.html#/main/step3

significant parameters acquired from a multivariable logistic
regression analysis. In the R environment, the rms package (6.1.1)
was applied to evaluate the probability of suffering from AD.
We summarized all the independent factors analyzed by logistic
regression to build a diagnostic nomogram model for AD. To
reveal the predictive ability of the risk scoring model based on
DE-ATGs, we calculated Harrell’s concordance index, which is
the C-index, and drew a calibration curve by using the Hmisc
(4.4.2) and rms (6.1.1) packages to compare the differences
between predictions and actual observations. Furthermore, to
verify the model’s practicality and reliability, we performed
the above analyses and decision curve analysis (DCA) on the
validation dataset GSE63061. As a new tool, DCA can be applied
to the practicality of this model on clinical net benefit under
different positive thresholds (Van Calster et al., 2018). Benefit
is defined as the gain of AD patients who use the model to
diagnose AD and receive corresponding treatment, and the loss
is defined as the harm caused by the treatment to a normal
individual or patients suffering from other neurological diseases.
Additionally, net benefit refers to the disparity between the
benefit and loss.

RESULTS

Identification of Alzheimer’s
Disease-Related Differentially Expressed

Genes

An overview of this study is described in the flowchart (Figure 1).
Through the analysis of the differentially expressed profiles of
145 cases of AD patients’ blood samples and 104 cases of normal
persons’ blood samples, 3360 DEGs with an FDR less than 0.05
were found (Figure 2A). When comparing these DEGs with
the 222 ATGs collected from the HADb, 64 identical DE-ATGs
were identified (Figure 2B, and their detailed information is
shown in Supplementary Table 1). As shown in Figure 2C,
the expression levels of the 64 DE-ATGs presented an obvious
difference between the AD patients and the normal persons.
To discover the potential functional relationship of these DE-
ATGs, we utilized DAVID and Metascape to perform a functional
analysis of the DE-ATGs, including GO and KEGG. Moreover, we
also employed Metascape to perform DisGeNET and PaGenBase
enrichment analyses. As the results showed, in addition to
autophagy-related pathways, DE-ATGs were generally involved
in the BP of apoptotic process, proteolysis, NF-kB signaling
pathway. For CC enrichment analysis, DE-ATGs mainly took
part in cytosol, cytoplasm, and extracellular exosome. And
the identified MF terms were protein binding, cysteine-type
endopeptidase activity and protein kinase binding. While the
results of KEGG analytical enrichment presented that DE-
ATGs took the role in the signaling pathways of pathways in
cancer, regulation of autophagy and hepatitis B. The above
results were showed in Figure 2D through the gene ratio, count
number and p-value of genes distributed in different enrichment
pathways. The results of genetic functional analysis of DE-ATGs
through Metascape were showed in Supplementary Figure 1.
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FIGURE 1 | Overview of the workflow.

All of the above results supported these 64 DE-ATGs for
AD discrimination.

Establishment and Evaluation of the
Predictive Risk Scoring Model

Next, we used the T-test for the normally distributed variables
(T-value represents the p-value) and the Mann-Whitney test
for the non-normally distributed variables (Z-value represents
the p-value) to select discriminative gene candidates more
effectively. Thus, except for 15 genes with T-values or Z-values
greater than 0.05, 49 of the 64 DE-ATGs were identified for
further analysis (see Supplementary Table 1). Considering that a
formula containing excessive variables may lead to overfitting and
that the genes may exhibit collinearity, we reduced the candidate
genes to minimize the bias of this diagnostic model; those
genes’ expression levels were shrunk through LASSO regression
(see Figure 3A). The most suitable tuning parameter is lambda
(\), which was selected through LASSO regression analysis and
cross-validation. In Figure 3A, when log(\) moves from —8
to —2, the deviance changes accordingly. Then, we found that
when log()\) is —4.233, the minimum deviance can be reached
by relying on our model (see the dotted line on the left of
Figure 3A). Regarding the beta coeflicients (see Figure 3B),
which were obtained from LASSO, each curve represents a gene.
We made a vertical line when log()) equals —4.233 (x-axis) and
observed the corresponding y-value (beta coefficient) of each
curve. After removing the genes whose beta coefficient equaled

zero when log()\) equaled —4.233 (x-axis), 22 genes remained.
Next, we analyzed these 22 genes with logistic regression and
found that only nine key DE-ATGs with a p-value less than
0.05 were obtained: ATG16L2, BAK1, CAPN10, CASP1, RAB24,
RGS19, RPS6KBI1, ULK2, and WDFY3. Based on the methods
above, we constructed the predictive model using those nine
key DE-ATGs. The coeflicients of those nine DE-ATGs are
listed in Table 1. Thus, to calculate the risk score of each one,
the following formula was applied: Risk score = ATG16L2 x
(—1.783153) + BAK1 x (—1.248396) + CAPN10 x (—16.275216)
+ CASP1 x (—3.261934) + RAB24 x (3.608277) + RGS19 x
(1.978173) + RPS6KB1 x (1.892426) + ULK2 x (3.958774)
+ WDFY3 x (7.883500). The nomogram of this model was also
built in Figure 3C for visualization and convenient clinical use of
the diagnostic model. According to a patient’s actual measured
value of nine DE-ATGSs’ expression levels in the blood, users
could find them on the corresponding scale in the nomogram and
project to the point scale on the top to read the point of each
variant. The sum of every point is the total number of points.
The risk probability of this patient suffering from AD could be
speculated according to the bottom scale by projecting the total
points downward (Figure 3C).

Evaluation and Validation of

Autophagy-Related Predictive Features
We also drew a ROC curve (Figure 4A) to evaluate the predictive
accuracy of the AD diagnostic model. The AUC of the ROC
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FIGURE 3 | Establishment of a multipredictor nomogram and DE-ATG selection using the LASSO and logistic regression models. (A) Cross-validation to select the
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features that were reduced to 22 non-zero coefficient features by LASSO. (B) The coefficients in the LASSO regression model for key DE-ATGs. (C) Predictive
nomogram involving age, sex, and the expression profile of 9 DE-ATGs based on selected features.

curve of the training set GSE63060 was 0.836, demonstrating
the model’s good predictive ability. Subsequently, we employed
this model to validate the GSE63061 dataset, and the results
demonstrated that its AUC was 0.731, which confirmed that the
predictive accuracy of this diagnostic model was worth approving
(Figure 4B). By using the C-index to test the nomogram, the
results showed that the C-index of the training set and validation
set were 0.836 and 0.731, respectively, indicating that the model
possesses identifying ability. Additionally, the results showed that
the AUCs of a model with only the age + sex combination for
the two datasets were 0.630 and 0.642, respectively. Notably,
these values were less than those from the nomogram of the
predictive model. Our predictive model including nine key ATGs
improved predictive ability. Furthermore, the calibration curve
of the risk nomogram used for predicting the risk of AD showed

good consistency between the training set and the validation
set (Figures 4C,D). Considering that age and sex are tightly
correlated with AD, we calculated the AUC of the nomogram
when they were applied to the training set and the validation
set. The results were 0.852 for the training set and 0.746 for the
validation set, both of which displayed higher accuracy than those
without these two factors. As shown in Figure 5A, the DCA curve
showed that the threshold of the ratio was 4-100%, indicating
that the clinical net benefit was higher when compared with the
situation of either no one or all patients using this nomogram
for diagnosis. A better net benefit ratio showed a better clinical
applicative value. In Figures 5B,C, the heatmap illustrates the
expression levels of the nine selected genes ATGI6L2, BAKI,
CAPNI0, CASP1, RAB24, RGS19, RPS6KBI, ULK2, and WDFY3
in the two datasets. From these results, compared with the
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normal control group, CAPN10, CASPI1, and RPS6KBI1 were
downregulated in the AD group, while ATG16L2, BAK1, RAB24,
RGS19, ULK2, and WDFY3 were upregulated in the AD group.
Considering that autophagy-related plasmatic factors probably
share similar changes among AD, Parkinson’s disease (PD), and
stroke, we also tried to analyze GSE54536 (dataset about PD),
GSE22255 (dataset about stroke) and GSE151371 (acute CNS
injury dataset), respectively, from GEO using R software. The
calibration curves of each dataset were shown in Supplementary
Figure 2, suggesting that the predicted values of our model are
closer to the observed values in the diagnosis of AD than in other
diseases and have fine specificity.

DISCUSSION

Alzheimer’s disease is a common neurodegenerative disease
whose specific causes and pathological mechanism have not

yet been revealed (Breijyeh and Karaman, 2020). One of
the major and key pathological changes is the deposition of
AB, while the autophagy-lysosome pathway plays a crucial
role in the occurrence and development of AD by involving
the clearance of AP (Li et al., 2017). As age increases, the
expression of ATGs reduces, then the oxidative stress aggravates,
contributing to the abnormal accumulation of AB (Kerr et al,
2017). The evidently enhanced AP-induced neural toxicity
and delayed dysfunction have a close connection with the
downregulation of autophagy activity (Reddy and Oliver, 2019).
All the evidence above supports the opinion that increasing
age-induced relative autophagy functional disorders are related
to the occurrence and development of AD (Omata et al,
2014). Furthermore, different incidence rates have been reported
for males and females (Nebel et al., 2018); thus, sex was
used as a risk factor in our model. As modern precision
medicine develops, biomarkers play an increasingly important
role in the treatment and evaluation of therapeutic effects
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TABLE 1 | The coefficients and odds ratio (OR) value of 9 DE-ATGs estimated by
Logistics regression.

DE-ATGs Corresponding Odds ratio (95% p-value
coefficient (8 ) confidence interval)
ATG16L2 —2.53 0.08 (0.02,0.38) 0.002
BAK1 —2.47 0.08 (0.01,0.99) 0.043
CAPN10 —0.48 0.62 (0.42,0.90) 0.013
CASP1 -1.39 0.25(0.12,0.593) <0.001
RAB24 0.78 2.19 (1.21,3.96) 0.010
RGS19 1.79 5.97 (1.14,31.35) 0.085
RPS6KB1 1.42 4.16 (1.85,9.393) 0.001
ULK2 0.62 1.86 (1.24,2.77) 0.002
WDFY3 0.51 1.66 (1.03,2.69) 0.038

(Hampel et al., 2018). Although the advancement of research on
the diagnosis of AD that focuses on AP and phosphorylated
tau protein can be observed, there are still shortcomings that
need to be improved. At present, AD-correlated biomarkers
mainly concentrate on molecules in the cerebrospinal fluid
(Alawode et al., 2021). However, the sampling process of
cerebrospinal fluid is difficult, full of risks and arduous to operate
clinically, which is unacceptable for some patients (Ashton
et al., 2021). Because of the easy accessibility of blood samples,
researches on blood biomarkers for the diagnosis of AD and
the discovery of therapeutic targets have broad application
prospects (Wang and Wang, 2020; Nous et al., 2021). In
this study, we screened DEGs in the blood of AD patients
and combined them with autophagy to establish a diagnostic
model of AD. We also verified the predictive accuracy and
specificity of our model.

In this study, we intersected 3,360 DEGs which were acquired
from the datasets in GEO database with 222 ATGs published
by the HADD, and then screened 64 DE-ATGs. We screened
49 DE-ATGs that have a close correlation with AD occurrence
by the T-test and the Mann-Whitney test. Furthermore, we
applied LASSO regressive analysis and finally acquired the best
regression model containing 22 factors. The logistic regression
of the above results revealed nine key DE-ATGs: ATGI6L2,
BAKI, CAPN10, CASP1, RAB24, RGS19, RPS6KBI, ULK2, and
WDFY3. Combined with age and sex, the diagnostic model
of AD was established and presented as a nomogram. The
AUC value in ROC curve showed good predictive ability.
C-index of the nomogram manifested a good distinguishable
performance. The calibration curve for the model suggested
good agreement between the predictions and actual observations.
When applied this model on datasets of PD, stroke, and acute
CNS injury, the calibration curve of each dataset (Supplementary
Figure 2) suggested fine specificity. This study is the first
to combine autophagy with AD-related DEGs to establish
a diagnostic model, and reasonably evaluate its predictive
accuracy, hopes that it could be applied in the auxiliary
diagnosis of AD.

Because the preliminary screening of DEGs from AD patients’
blood is up to 3,360 genes, it cannot indicate the mutable
characteristics of AD provided that only single DEG of AD

are considered. However, after insertion with ATGs, the range
shrunk greatly and showed high specificity. However, this study
included a total of 522 sample cases; to some extent, it avoided
bias due to limited sample capacity and enhanced credibility. The
form of a nomogram could also be more easily accepted and
usable by the public.

Compared with normal controls, ATGI16L2, BAKI, RAB24,
RGS19, ULK2, and WDFY3 were upregulated, whereas CAPN10,
RPS6KBI, and CASP1 were downregulated in AD patients.
Studies have shown that starvation could induce the synthesis
of ATG16L2 protein in the hepatocarcinoma cell line Huh7 and
promote the occurrence of autophagy (Pinto et al., 2016). Patients
who suffer from non-small-cell lung cancer (NSCLC) with high
ATGI16L2 expression have a better prognosis after radiotherapy
(Yang and Liu, 2019). Based on several existing mechanistic
studies, we speculate that ATG16L2 might strengthen autophagy
in patients with AD, while the latter inhibits the abnormal
accumulation of AP and causes a simultaneous decrease in the
proinflammatory factor NOD-like receptor pyrin 3 (NLRP3)
(Bai and Zhang, 2021). NLRP3 may induce inflammation of
the microglia involved in the genesis of AD (Holbrook et al.,
2021). Another apoptosis-related protein, BAK1, is upregulated
in AD patients. However, the atypical RAB protein RAB24 is
relevant to the transportation of autophagic vacuoles, autophagy-
lysosomes, and the clearance of autophagosomes in the late
period (Yla-Anttila et al., 2015), and it is involved in ataxia,
cancer, etc. (Yla-Anttila and Eskelinen, 2018). Another research
suggests that Mir-125b was significantly down-regulated, and
the downstream apoptosis-related protein BAK1 was upregulated
in a transgenic mouse model of AD (Micheli et al, 2016).
RSG19 is one of the G protein signaling-regulated genes, and
the upregulated G protein could negatively regulate G protein-
induced signaling transduction by inhibiting the activity of
GNALIL, thus resulting in the dysfunction of cholinergic synapses
in the nervous system (Xie et al., 2005) and the participation
in the development of AD (Silver et al, 2012; Lee et al,
2016). Furthermore, RSG19 could interact with GNAI3 to
facilitate the autophagy process (Wu et al., 2014) and modify
autophagy by directly detecting extracellular nutrients (Ogier-
Denis et al., 1997; Carret-Rebillat et al., 2015; Huang et al., 2020).
ULK2 is short for Unc-51-like autophagy activating kinase 2.
Among patients with midstage AD, the ULK2 gene is expressed
at a relatively high level (Guttula et al., 2012). Ribosomal
Protein S6 Kinase (RPS6KB1) showed down-regulated in AD
patients, however, when at a low expressed level, it could
promote the growth of damaged axons caused by CNS injury
(Al-Ali et al., 2017).

The detection method based on the expression of ATGs in
peripheral blood to diagnose AD has the advantages of being
economical and easily acceptable for targeting individuals with
AD prodromal symptoms, and might be converted for clinical
application soon. The DE-ATGs candidates could also supply
novel targets for treatment and potential mechanism research.
However, this study has deficiencies in that ATGs must be
updated with the discovery of new genes; thus, there is still
room for improvement in this model. The future work also
should include collecting more clinical samples to validate the
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model and further checking the levels of the identified genes
in AD’s animal model, such as APPswe/PS1dE9 mouse model
(Miiller et al., 2021).

In summary, we combined the expression levels of nine
DE-ATGs in peripheral blood with age and sex to develop
a personalized nomogram model and apply to the diagnostic
method of AD. This model could provide a novel insight to
medical staff to make preliminarily clinical decisions and supply
evidence for future study.
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