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Depression is associated with gut dysbiosis that disrupts a gut-brain

bidirectional axis. Gray matter volume changes in cortical and subcortical

structures, including prefrontal regions and the hippocampus, have also been

noted in depressive disorders. However, the link between gut microbiota

and brain structures in depressed patients remains elusive. Neuropsychiatric

measures, stool samples, and structural brain images were collected

from 36 patients with late-life depression (LLD) and 17 healthy controls.

16S ribosomal RNA (rRNA) gene sequencing was used to profile stool

microbial communities for quantitation of microbial composition, abundance,

and diversity. T1-weighted brain images were assessed with voxel-based

morphometry to detect alterations in gray matter volume between groups.

Correlation analysis was performed to identify the possible association

between depressive symptoms, brain structures and gut microbiota. We

found a significant di�erence in the gut microbial composition between

patients with late-life depression (LLD) and healthy controls. The genera

Enterobacter and Burkholderia were positively correlated with depressive

symptoms and negatively correlated with brain structural signatures in

regions associated with memory, somatosensory integration, and emotional

processing/cognition/regulation. Our study purports themicrobiota-gut-brain

axis as a potential mechanism mediating the symptomatology of LLD patients,

which may facilitate the development of therapeutic strategies targeting gut

microbes in the treatment of elderly depressed patients.

KEYWORDS

brain-gut axis, brain image, elderly, mood disorder, Enterobacter and Burkholderia

Frontiers in AgingNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.885393
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.885393&domain=pdf&date_stamp=2022-07-27
mailto:cllu@ym.edu.tw
mailto:cllu@vghtpe.gov.tw
https://doi.org/10.3389/fnagi.2022.885393
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2022.885393/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Tsai et al. 10.3389/fnagi.2022.885393

Introduction

Major depressive disorder (MDD) is a common mental

disorder with core symptoms of depressive mood, diminished

interests, and anhedonia, resulting in significant emotional,

functional, and economic strain on both the individual and

society (Otte et al., 2016). As the global society is aging,

depression has become the most serious mental problem and a

major public health concern among older adults (Rodda et al.,

2011). It is also a major contributor to the overall global burden

of disease and is reported to be the world’s leading cause of

disability (Disease et al., 2018). Treatment for late-life depression

(LLD) shows a less favorable response to antidepressants than

depression in younger adults, and many studies have explored

various possible hypotheses to provide targets for developing

novel treatments (Alexopoulos, 2019).

Traditionally, the mechanisms underlying the

pathophysiology of depression are ascribed to disturbances in

neurotransmitters, stress hormones, inflammatory cytokines,

and neurotrophic factors (Hasler, 2010). Recently, the gut

microbiota has been proposed as an innovative field for the

development and management of depression (Liang et al.,

2018). In addition to depression, many studies have shown

that gut dysbiosis is involved in the pathogenesis of various

neuropsychiatric disorders, such as schizophrenia, autism

spectrum disorder, multiple sclerosis, Alzheimer’s disease, and
Parkinson’s disease (PD) (Morais et al., 2021). Dysregulation in

the bidirectional interactions between the gut microbiome and

brain is reported to contribute to the pathophysiology of these

neuropsychiatric disorders through neurological, metabolic,

hormonal and immunological signaling pathways (Martin et al.,
2018). In a rodent model, fecal microbiota transplantation
with “depression microbiota” derived from patients with MDD

produced depression-like behaviors in germ-free mice (Zheng

et al., 2016). Differences in gut microbiota diversity, richness and

composition at various taxonomic levels have been identified

in adult MDD patients compared to healthy volunteers (Jiang

et al., 2015; Kelly et al., 2016; Zheng et al., 2016; Lin et al., 2017).

Alterations in the gut microbiota contribute to dysregulation

along the microbiota-gut-brain axis from the ecological effects

of the gut microbiome and central humoral effects from

neuroendocrinological and neuroimmunological pathways (Liu

et al., 2019). Despite these facts, there is a paucity of information

on how changes in gut microbiota can have any effects

on the brain, particularly in depressed patient populations

(Liu et al., 2019).

Brain magnetic resonance imaging (MRI) is a non-invasive

modality with the capability of investigating alterations in and

pathologies related to brain structure, circulation, function,

and neural metabolism in vivo, which could enhance the

understanding of microbiota-gut-brain interactions (Kano et al.,

2018). In a recent meta-analysis, MDD patients, relative to

healthy volunteers, showed increased cortical thickness in the

posterior cingulate cortex, ventromedial prefrontal cortex, and

anterior cingulate cortex and decreased cortical thickness in the

gyrus rectus, orbital segment of the superior frontal gyrus, and

middle temporal gyrus (Li et al., 2020). One recent study has

explored the link between gut microbiota and brain structure in

LLD patients, showing positive associations between gray matter

(GM) volume in hippocampus/amygdala and the abundance of

Ruminococcaceae, Oscillibacter, and Lachnospiraceae at genus

level (Lee et al., 2022). However, that study was limited by

relatively small patient numbers (n= 16) and absence of control

group. In the present study, we examined the hypothesis that

alterations in gut microbiota are associated with differences in

regional brain structures related to mood regulation among

a larger cohort of LLD patients (n = 36) in comparison

with controls. Second, we explored distinction in microbial

composition and their correlations with clinical symptoms in

LLD patients.

Methods

Participants

This study was conducted at the psychiatric outpatient clinic

in a tertiary medical center. We recruited 36 patients who were

over 50 years old and fulfilled the diagnosis of MDD according

to the Diagnostic and Statistical Manual of Mental Disorders,

4th Edition (DSM-IV-TR) (American Psychiatric Association.,

and American Psychiatric Association, Task Force on DSM-

IV, 2000), made by board-certified psychiatrists. Another 17

healthy controls were enrolled through poster advertisements.

The exclusion criteria for both groups were having (i) a

diagnosis of a major neurocognitive disorder; (ii) other major

psychiatric comorbidity (such as schizophrenia or bipolar

disorder); (iii) major physical comorbidities (such as history

of organic gastrointestinal diseases, including liver cirrhosis,

fatty liver disease, peptic ulcer, inflammatory bowel disease, or

any malignancy); (iv) any known active bacterial, fungal, or

viral infection; (v) a history of receiving antibiotics, prebiotics

or probiotics within 90 days prior to enrollment; and (vi)

a history of regular usage of laxatives, gastrointestinal tract

surgery, appendectomy, or cholecystectomy in the preceding 1

year. The Mini-International Neuropsychiatric Interview was

performed by psychiatrists to exclude any individuals with

psychiatric illness in the control group (Sheehan et al., 1998).

The study was conducted in accordance with the Declaration of

Helsinki and was approved by the local ethics review committee.

All participants provided written informed consent prior to

participating in the study.

Questionnaires

For the baseline assessment, we gathered sociodemographic

data (e.g., sex, age, and education), anthropometric data (e.g.,
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weight and height) and history of constipation (defined as

fewer than 3 bowel movements/week) and diabetes mellitus.

The weight and height of the participants were measured by

an assisting nurse, and body mass index (BMI), defined as

weight (in kilograms) divided by squared height (in meters),

was calculated. All participants were assessed for depressive

symptoms, general cognitive function, quality of sleep and

diet pattern by the following questionnaires. The 17-item

Hamilton Depression Rating Scale (HAMD) is a widely used,

semistructured measure of the severity of depressive symptoms

that is rated by clinicians (Hamilton, 1960). The Montreal

Cognitive Assessment (MoCA) is a brief test to examine general

cognitive function with scores ranging from 0 to 30 (Tsai et al.,

2012). Sleep disturbance was evaluated using the Pittsburgh

Sleep Quality Index (PSQI), which demonstrates good reliability

and validity in evaluating sleep problems, and higher scores

indicate poorer sleep quality (Buysse et al., 1989). Various types

of food and beverages that were consumed during the previous

1 month and fell into one of nine categories were assessed by

using a validated semiquantitative simplified food frequency

questionnaire (SFFQ) (Huang et al., 2011).

Brain image data acquisition and
preprocessing

All brain images were acquired on a 3.0-T GE Discovery

MR750 whole-body high-speed MRI device (Discovery

MR750, GE Inc., USA). Automated shimming procedures were

performed, and scout images were obtained. A high-resolution

structural image was acquired in the axial plane using the fast

spoiled gradient-echo (FSPGR) sequence (BRAVO) on GE

equipment with parameters (repetition time [TR] = 12.23ms,

echo time [TE]= 5.18ms, inversion time [TI]= 450ms, and flip

angle = 12◦) and an isotropic 1-mm voxel (field-of-view (FOV)

= 256 × 256). All images were acquired parallel to the anterior

commissure–posterior commissure line. These slices covered

the cerebellum of each participant. To minimize the generation

of motion artifacts during image acquisition, each participant’s

head was immobilized with cushions inside the coil.

Individual high-resolution T1-weighted volumetric images

were processed using Statistical Parametric Mapping (SPM12,

Wellcome Institute of Neurology, University College London,

UK) executed in Linux-based MATLAB 2020a (MathWorks,

Natick, MA, USA) with default settings. In the current

study, the detailed voxel-based morphometry (VBM) approach

included the following: Data were first carefully checked by

an experienced radiologist to rule out any scanner artifacts,

motion problems, or gross anatomical abnormalities for each

participant. After data checking and origin identification, the

Segment Toolbox from SPM12 was applied to every T1-

weighted image to extract tissue maps corresponding to GM

and white matter (WM) and cerebrospinal fluid (CSF) in native

space. To achieve a higher accuracy of registration across

subjects, all native space tissue segments were imported into a

rigidly aligned space and iteratively registered to group-specific

templates that were generated from all structural images in

this study through non-linear warping using the Diffeomorphic

Anatomical Registration Through Exponentiated Lie Algebra

(DARTEL) toolbox. These images were resampled to 1.5-

mm isotropic voxels. Subsequently, the resliced images of

GM and GM were registered to a subject-specific template

using the DARTEL template-creation toolbox to improve

intersubject alignment, and the normalization function of the

toolbox was used to normalize the individual GM and WM

images to Montreal Neurological Institute (MNI) space (1.5-

mm isotropic voxel). Finally, the GM map of each subject

was warped using their corresponding, smooth, and reversible

deformation parameters to the custom template space and then

to the MNI standard space. For the GM volume, the warped

images of GM were modulated by calculating the Jacobian

determinants derived from the special normalization step and

by multiplying each voxel by the relative change in volume.

The modulation step was performed to correct volume changes

that might have occurred during non-linear normalization. The

warped modulated GM images were smoothed through the

convolution of an 8-mm full-width at half-maximum isotropic

Gaussian kernel before tissue volume calculation and voxelwise

group comparisons. The total intracranial volume (TIV) was

determined as the sum of GM, WM, and CSF volumes.

Microbiome data sequencing and
preprocessing

Fresh stool specimens were self-collected from both groups

and then stored in an RNA stabilizing reagent (RNALater)

at −80 ◦C until further analysis. Bacterial DNA from the

stool specimens was extracted, amplified, and sequenced, as

previously described (Li et al., 2017). The 16S ribosomal RNA

(rRNA) gene sequence libraries were generated using the V3-V4

(341F(CCTACGGGNGGCWGCAG)/805R(GACTACHVGGG

TATCTAATCC)) primer region (Sinclair et al., 2015) and

sequenced on an Illumina MiSeq sequencer (Illumina Inc., San

Diego, CA, USA). We mixed cases and controls within each

platform to reduce sequencing bias between cases and controls

caused by batch effects.

Data analysis

Sample sized calculation

The number of participants required in each group was

predetermined before the study and calculated to be at least

13 on the basis of difference of major bacterial organism
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FIGURE 1

Gray matter volume di�erences between the patients with late-life depression (LLD) and healthy controls. Blue areas indicate brain regions

where gray matter volume was significantly reduced.

between MDD and control groups based on previous literature

(Lin et al., 2017). This calculation was performed using the

Power and Sample Size Program (version 3.0.43) (Dupont

and Plummer, 1990). The estimated parameters used to reject

the null hypothesis included the population means of the

experimental and control groups being equal with a probability

(power) of 0.8, and the type I error probability associated with

this test’s null hypothesis was 0.05.

Demographic and behavioral data analysis

Categorical variables were compared using chi-square tests,

and continuous variables were compared using Student’s t-tests.

All tests were based on two-tailed alternatives. For all variables,

significance was defined as a two-tailed p value of < 0.05. All

data processing and statistical analyses were performed using

Statistical Package for Social Science software version 17 and

Statistical Analysis Software (version 9.1, SAS Institute, Cary,

NC, USA).

Brain image data analysis

Whole-brain voxelwise t-tests were used to detect differences

in local GM volume between the 2 groups. To avoid possible

edge effects around the margin between different tissue types, all

voxels with a GM probability value < 0.2 (absolute threshold;

range, 0–1) were excluded. The threshold was set at p <

0.05 (corrected for false discovery rate [FDR]) at the cluster

level with a voxelwise p < 0.001 using a combined height

and extent threshold technique based on 10,000 Monte Carlo

simulations calculated through the Analysis of Functional

NeuroImages (AFNI) program, 3dClustSim (the successor of

AlphaSim; Cox, 1996; http://afni.nimh.nih.gov/pub/dist/doc/

program_help/3dClustSim.html). Based on the results of the

Monte Carlo simulation, we considered a minimum of 30 voxels

as the threshold. The regional GM volumes were extracted

for each participant from the significant clusters in the group

comparison. Figure 1 and Table 1 show the results of the

significant difference in GM volume between groups. Compared

to the healthy control group, the LLD group had reduced GM

volume in the left (L.) temporal fusiform cortex, L. lingual

gyrus, L. postcentral gyrus, right (R.) lingual gyrus, R. temporal

occipital fusiform cortex, R. postcentral gyrus, R. cerebellar

crus II, R. cingulate gyrus, posterior division, L. cerebellar

vermis VIIIa, R. cingulate gyrus, posterior division, L. cerebellar

vermis VIIIa, L. middle temporal gyrus, L. parahippocampal

gyrus, L. middle frontal gyrus, R. lateral occipital cortex, and

L. putamen. Those areas were defined as regions of interest

(ROIs), and then Spearman’s rank order correlation analysis was

used to measure the degree of association between these ROIs

and the microbiota that characterize LLD (Please refer to the

section below).
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TABLE 1 Regional di�erences in gray matter volume between patients with late-life depression (LLD) and healthy controls (HC).

Cluster size Coordinate Harvard-Oxford cortical

x y z Structural atlas

LLD > HC - - - -

HC > LLD 459 −38 −9 −28 L. Temporal fusiform cortex

329 −20 −48 −12 L. Lingual gyrus

186 −57 −16 46 L. Postcentral gyrus

136 6 −58 −4 R. Lingual gyrus

108 46 −57 −24 R. Temporal occipital fusiform cortex

104 57 −8 45 R. Postcentral gyrus

91 48 −51 −46 R. Cerebellar crus II

85 3 −30 48 R. Cingulate gyrus, posterior division

75 0 −70 −46 L. Cerebellar vermis VIIIa

68 −62 −58 8 L. Middle temporal gyrus

60 −33 −32 −16 L. Parahippocampal gyrus

49 −50 12 33 L. Middle frontal gyrus

44 58 −63 −8 R. Lateral occipital cortex

31 −42 −80 −38 L. Cerebellar crus II

30 −24 −2 −2 L. Putamen

L, left; R, right.

Bioinformatics analysis of gut microbiota

We followed a standardized microbiome analysis

pipeline including preprocessing, quality control, taxonomic

classification and determination of microbiome diversity. In

brief, after polymerase chain reaction (PCR) amplification

and sequencing on the Illumina platform, raw fastq files

were preprocessed in QIIME2 (Bolyen et al., 2019). Pair-

end sequence primer adaptors were trimmed by cutadapt

(Martin, 2011). (via q2-cutadapt). Then, sequences were

quality filtered and denoised by the DADA2 algorithm

(Callahan et al., 2016) (via q2-dada2) to identify amplicon

sequence variants (ASVs) (Callahan et al., 2017). ASVs were

aligned to construct a phylogenetic tree by mafft (Katoh

and Standley, 2013) and fasttree2 (Price et al., 2010) (via

q2-phylogeny). The alpha- (α; Shannon) (Shannon, 1948) and

Faith’s phylogenetic diversity [FPD] (Faith, 1992) and beta- (β;

unweighted UniFrac distance) (Lozupone and Knight, 2005)

diversity metrics and principal coordinate analysis (PCoA)

were calculated from rarefied samples using q2-diversity. The

statistical analysis and figure drawing of α-diversity metrics

were implemented in the R environment by the ggplot2

(Wickham, 2009) and ggpubr (Kassambara, 2020) packages.

The taxonomic classification was conducted by a naïve Bayes

taxonomy classifier (via q2-feature-classifier classify-sklearn)

00 (Bokulich et al., 2018) through the reference sequence from

6 databases (MetaSquare, Silva, Greengenes, RDP, HOMD,

and Ezbiocloud) (Yoon et al., 2017; Sierra et al., 2020). We

also added the latest published novel species sequences to

MetaSquare without redundancy. Based on MetaSquare,

we had higher resolution in microbial taxonomy and fewer

unclassified sequences.

Analysis to determine LLD-associated
microbiota and correlations with brain
structures

Linear discriminant analysis (LDA) effect size (LEfSe)

(Segata et al., 2011) was conducted to examine which microbes

most explained the difference between LLD patients and

controls. Microbiota with LDA scores (log 10) > 2 were

considered significantly different in abundance between the

two groups. A Mantel test (Mantel, 1967) was conducted to

test for correlations between variations in GM volume and

the β-diversity distance matrix in the R environment via the

vegan package. The Mantel test statistic was the Spearman

correlation between matrices, and significance was calculated

using a permutation test with 9999 permutations. Then, the

GM regions with significant p values (<0.05) were selected

after the Mantel test to evaluate their correlations with the

depression-related microbes identified from the LEfSe test using

the Spearman method.

Results

Demographic characteristics

The mean age of adults in the present study was 65.2 ±

7.7 years old (ranging from 50–86 years). In depressed group,
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TABLE 2 Demographic and clinical data of the patients with late-life

depression (LLD) and healthy controls (HCs).

Subject characteristics LLD

(n= 36)

HC

(n= 17)

p

Sex (F/M) 28/8 9/8 0.11

Age (years) 65.6± 7.3 64.1± 7.9 0.53

Education (years) 9.7± 4.8 10.9± 5.2 0.42

BMI 23.4± 3.2 24.5± 3.2 0.23

HAMD 13.6± 7.3 1.6± 1.8 <0.001

MoCA 22.9± 5.2 24.8± 3.9 0.15

PSQI 12.4± 4.6 6.7± 3.7 <0.001

Constipation 3(8.3%) 1(5.9%) 0.712

Diabetes 2 (5.6%) 1 (5.9%) 1.00

Diet pattern

Protein 147.9± 8.3 266.1± 446.2 0.29

Dairy product 9.3± 18.0 56.4± 171.5 0.28

Vegetable 13.9± 9.1 70.6± 180.9 0.21

Fruit 13.4± 27.1 26.9± 54.3 0.34

Sugar 22.6± 20.1 38.9± 73.5 0.38

Dietary fiber 23.0± 16.9 102.5± 240.6 0.07

Sweet beverages 4.2± 10.1 6.1± 8.6 0.51

Processed foods 39.0± 33.4 47.8± 38.0 0.41

M, male; F, female; BMI, body mass index; HAMD, Hamilton Depression Scale; MoCA,

Montreal Cognitive Assessment; PSQI, Pittsburgh Sleep Quality Index.

the mean duration of illness was 18.2 ± 15.7 months (ranging

from 6–48 months), and 14 (43.8%) patients were under

regular treatment with selective serotonin reuptake inhibitors, 9

(28.1%) with serotonin-norepinephrine reuptake inhibitors, and

9 (28.1%) with agomelatine. The LLD patients exhibited more

depressive symptoms with higher HAMD scores (13.6 ± 7.3

vs. 1.5 ± 1.8, p < 0.001) and poorer sleep quality with higher

PSQI scores (12.4 ± 4.6 vs. 6.7 ± 3.7, p < 0.001) than the

controls. There was no significant difference in age, sex, BMI,

history of constipation/diabetes, educational level, or dietary

patterns between the LLD patients and controls. However, intake

of dietary fibers was marginally increased in healthy controls

than LLD patients (p= 0.07) (Table 2).

Di�erences in microbiota composition
between LLD patients and controls

The within-sample (α) phylogenetic diversity analysis

(by FPD) showed that the LLD group had significantly

lower α-diversity than the control group (Figure 2). Using

unweighted UniFrac analysis to detect the degree of microbial

phylogenetic similarity (β-diversity), the three-dimensional

plots of unweighted UniFrac analysis showed a significant

difference in the gut microbial composition between LLD

patients and healthy controls (Figure 3).

Analyses for each microbial taxon showed that the

distribution of some microbiota targets at the phylum, class,

order, family and genus levels was different between LLD

patients and healthy controls (Figure 4). Our data revealed

that several targets were more abundant in the LLD patients,

including 2 phyla (Verrucomicrobiota and Patescibacteria),

3 classes (Verrucomicrobiae, Alphaproteobacteria,

and Saccharimonadia), 4 orders (Verrucomicrobiales,

Pasterurellales, Saccharimonadales, and Micrococcales), 6

families (Akkermansiaceae, Burkholderiaceae, Pasteurellaceae,

Micrococcaceae Leuconostocaceae and Atopobiaceae) and

7 genera (Eggerthella, Blautia, Olsenella, Haemophilus,

Enterobacter, Burkholderia, and Rothia). In addition, the

healthy-enriched microbiota included 3 orders, 5 families, and

17 genera as shown in Figure 4.

Associations between microbiota taxa
di�erentiating groups and clinical
indicators

The genera Enterobacter (r = 0.426, p = 0.002) and

Burkholderia (r = 0.421, p = 0.002), among the richer genera

in the LLD patients, showed positive correlations with HAMD

scores, while the genus Sanguibacteroides, a richer genus in the

healthy controls, showed a negative correlation with HAMD

scores (r = −0.347, p = 0.011). Regarding cognitive function,

the genus Enterobacter (r = −0.336, p = 0.014) also displayed

a negative correlation with MoCA scores. Regarding sleep

disturbance, the genus Burkholderia (r = 0.284, p = 0.039)

showed a positive correlation with PSQI scores (Figure 5).

Associations between microbiota taxa
and regional brain structures

The Mantel test highlighted that Euclidean distance of

the left temporal fusiform cortex, left postcentral gyrus, right

lingual gyrus, right temporal occipital fusiform cortex, left

parahippocampal gyrus, and right lateral occipital cortex were

significantly correlated with the distances of the microbial

community composition between participants (Table 3 and

Figure 6). Subsequent analysis revealed that the genera

Enterobacter (phylum Proteobacteria), Rothia (phylum

Actinobacteria), Haemophilus (phylum Proteobacteria),

and Burkholderia (phylum Proteobacteria) were negatively

associated with GM differences. Among the healthy-enriched

genera, Lachnospiraceae_UCG_001 was found to be positively

correlated with GM volumes in left parahippocampal gyrus (r =

0.29, p= 0.03) (Figure 5).
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FIGURE 2

α-diversity in fecal samples shown as boxplots. α-diversity, measured by (A) Shannon diversity index and (B) Faith’s phylogenetic diversity (FPD),

is plotted for patients with late-life depression (LLD) (blue) and controls (red). The thick line inside the box represents the median, while the

whiskers represent the lowest and highest values within the 1.5 interquartile range (IQR). The Wilcoxon rank-sum test shows that FPD is

significantly decreased in depressed patients compared to controls. *p < 0.05 by Wilcoxon rank-sum test.

Discussion

This study characterized the gut microbiota signature in

elderly MDD patients. We confirmed that the gut microbiota

taxonomic composition and diversity were significantly different

in LLD patients compared with healthy controls. We found

that the genera Enterobacter and Burkholderia positively

correlated with depressive symptoms and negatively correlated

with brain structural signatures related to memory and

emotional processing/cognition/regulation. We may be the first

to demonstrate the linkage of the differences in microbiota taxa

with depressive symptoms and reduced GM volumes in LLD

patients when compared with controls.

Diversities of gut microbiota in LLD
patients and controls

Our study identified that LLD patients showed lower

α-diversity than controls. Differences in α-diversity of the

microbiota between depressed patients and controls has not

been consistent in the literature. While higher α-diversity was

found in adult patients with MDD than in controls in several

studies (Kelly et al., 2016; Liu et al., 2016), one study found an

opposite trend by using the Shannon index (Jiang et al., 2015).

Other studies showed no differences in α-diversity between

depressed patients and healthy controls (Naseribafrouei et al.,

2014; Zheng et al., 2016; Lin et al., 2017; Chen et al., 2018a;

Chung et al., 2019). The discrepancies among these studies

contributing to the inconsistent findings are not clear, but they

may be due to differences in patient populations (e.g., elderly

patients in the current study) and statistical methods/parameters

(Shannon index, Simpson index, phylogenetic diversity, total

observed species, Chao 1, and FPD). Similarly, inconsistent

results in previous studies have also been identified regarding

β-diversity between depressed patients and controls. Seven

studies found significant differences in β-diversity between

depressed patients and controls by using PCoA analysis and

weighted UniFrac (Kelly et al., 2016; Zheng et al., 2016; Lin

et al., 2017; Chen et al., 2018a; Huang et al., 2018; Chung

et al., 2019). Five studies found no differences in β-diversity in

participants with a depressive disorder relative to controls (Jiang

et al., 2015; Barandouzi et al., 2020). In the current study, we

demonstrated a significant difference in the β-diversity of the

gut microbiota between LLD patients and controls based on the
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FIGURE 3

16S rRNA gene data revealed significant beta-diversity between the gut microbiota from late-life depression (LLD) patients and healthy controls.

Principal coordinate analysis (PCoA) on the unweighted UniFrac distance matrix from the rarefied data was used to evaluate the presence of

clusters or groupings based upon operational taxonomic unit (OTU)-level microbial features.

three-dimensional plots of unweighted UniFrac analysis. Again,

we suspected that the choice of clinical stratification criteria to

enroll depressed patients as well as the analytic methods can be

the factors responsible for the discrepant results.

In the present study, a number of microbiota targets at the

phylum, class, order, family and genus levels showed different

distributions between LLD patients and controls. Previous

studies in adult Chinese individuals (mean age between 22

and 45 years old) consistently reported that Actinobacteria was

more abundant in MDD patients than in controls (Jiang et al.,

2015; Liu et al., 2016; Zheng et al., 2016; Lin et al., 2017;

Chen et al., 2018a; Chung et al., 2019). At the phylum level,

while we identified Verrucomicrobiota and Patescibacteria to be

increased in the LLD group. At the family level, we identified

several taxa that were more abundant in LLD patients. Some of

them have been found to be linked to mental health, including

depressive disorders, anxiety disorders, and personality traits.

In patients with active generalized anxiety disorder, a higher

relative proportion of Burkholderiaceae was reported (Chen

et al., 2019), and a higher abundance of Pasteurellaceae

was observed to be associated with greater pregnancy-related

anxiety (Hu et al., 2019) and neuroticism personality traits

in adults (Kim et al., 2018). Moreover, Micrococcaceae was

shown to be more represented in untreated patients with MDD

(Fontana et al., 2020). We demonstrated that Leuconostocaceae

and Atopobiaceae at the family level were more abundant

in the LLD patients, which had never been reported in the

previous literature for mood disorders. Whether advanced

age or other factors contribute to this discrepancy deserves

further evaluation.

Our study showed that the LLD patients exhibited higher

levels of the family Akkermansiaceae and genus Akkermansia

than the controls. This finding is interesting since recent

reports have shown reductions in the relative abundance

of Akkermansia in socially defeated mice with anxiety-

and depressive-like behavior (McGaughey et al., 2019). The

neurobiological basis of LLD symptoms has been hypothesized

to be associated with PD (Nishiwaki et al., 2020b). Furthermore,

a longitudinal cohort study suggested that neurodegeneration

and neuronal density in the mesolimbic dopamine system are

related to LLD symptoms (Wilson et al., 2013). On the other

hand, late-onset depression was observed with increased rates

of clinical and imaging features that were associated with

prodromal PD and dementia of Lewy body (Kazmi et al., 2021).

Taken together, our findings may provide indirect evidence

to support a link between LLD and parkinsonism-related
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FIGURE 4

Abundances of bacterial taxa at the genus level in the late-life depression (LLD) patient and healthy control groups, as determined with the linear

discriminant analysis (LDA) e�ect size (LEfSe) method. The taxonomic cladogram was generated based on the LEfSe and LDA scores.

LLD-enriched taxa are indicated with a positive LDA score (green), and taxa enriched in controls have a negative score (red). Only taxa meeting

the LDA significance threshold >2 are shown.
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FIGURE 5

Heatmap of Spearman’s rank correlation coe�cients of the relative abundances of di�erent gut microbiota at the genus level with clinical

indices and regions with brain morphometric di�erences. Color intensity represents the magnitude of the correlation (blue circles = negative

correlations; red circles = positive correlations).

pathophysiology. Previous studies have revealed that intestinal

mucosal dysfunction characterized by an increased translocation

of gram-negative bacteria (leaky gut) plays a role in the

inflammatory pathophysiology of depression (Maes et al., 2012).

Akkermansia muciniphila may degrade the mucus layer of the

intestine (Derrien et al., 2004) and erode the colonic mucus layer

in the absence of dietary fibers (Desai et al., 2016). The genus

Akkermansia has been suggested to increase gut permeability

and may enhance intestinal neural plexus exposure to oxidative

stress and the inflammatory response, which would further

facilitate the subsequent development of neuropsychiatric

symptoms (Nishiwaki et al., 2020a). Increased abundance of

Akkermansia genus, which is the most consistent finding in PD

(Tan et al., 2022), were identified in our LLD patients. Though

not reaching at significant levels, these LLD patients displayed a

decreased fiber intake and increased rate of constipation, which

phenomenon are also commonly displayed in PD. All these

observations would further support our speculation regarding

the potential association between LLD and PD. Despite of

the facts, the interactions among Akkermansia, fiber intake

and constipation in the PD pathogenesis are complex. For

example, fiber intake would either increase or exert no effect

on the abundance of genus Akkermansia (Verhoog et al., 2019;

Rodríguez-Lara et al., 2022). Actually, the associations between

the mentioned factors and PD development in the available

human studies are largely correlative, which correlations may or

may not be the causes leading to PD. The observed correlations

may just reflect secondary or shared common and non-specific

responses to PD, such as delayed gut transit, alterations in

appetite, or even inflammation (Tan et al., 2022). Further
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TABLE 3 Summary results of Mantel tests showing r and p values of

the matrix correlation between gray matter and β-diversity metrics.

Gray matter r p

L. Temporal fusiform cortex 0.116 0.0224

L. Postcentral gyrus 0.122 0.0434

R. Lingual gyrus 0.131 0.0213

R. Temporal occipital fusiform cortex 0.104 0.0569

L. Parahippocampal gyrus 0.241 0.0003

R. Lateral occipital cortex 0.156 0.0216

L, left; R, right.

large-scaled and longitudinal follow-up studies are necessary to

elucidate the issue.

Besides Akkermansia, we also found genera Burkholderia

and Enterobacter are richer in the LLD patients, which bacteria

are also linked with the PD development. For example, the

appendix of PD patients displayed a prominent increase in

Burkholderiales, which is reported to infect the brain via

olfactory system (Walkden et al., 2020; Li et al., 2021).

Furthermore, Burkholderiales would produce kynurenine and

quinolinate, which are proinflammatory metabolites associated

with symptom severity in PD (Kaur et al., 2019; Heilman

et al., 2020). PD patients also displayed higher levels of

Enterobacteriaceae, which were in association with the degree

of gait and postural instability (Scheperjans et al., 2015). The

3 genera Akkermansia, Burkholderia and Enterobacter enriched

in our LLD patients are all PD-related. Future longitudinal

follow-up study can be interesting to evaluate the potential

PD development among the LLD patients enriched with

Akkermansia, Burkholderia and Enterobacter.

At the genus level, we found some results consistent with

similar trends across studies, such as Eggerthella (Kelly et al.,

2016; Chen et al., 2018a), Blautia (Jiang et al., 2015), Olsenella

(Chen et al., 2018a), and Alistipes (Naseribafrouei et al., 2014;

Nishiwaki et al., 2020a), while some other reported microbiota

targets showed different directions in the associations with

depressive disorders, including Haemophilus (Nishiwaki et al.,

2020a) and Alistipes (Zheng et al., 2016). The reasons for the

discrepancies are unknown, but it might have been caused

by diverse characteristics in samples, such as age, depressive

severity, disease phenotype, comorbid conditions, diet, and

other unmeasured confounding factors among patients, and by

different study designs.

Correlations of microbiota abundance
and clinical characteristics

We found significant correlations between the abundance

of some gut microbiota and clinical characteristics of LLD.

The richness of the genus Enterobacter was related to a

higher severity of depressive symptoms and poor cognitive

performance in the present study, and a higher abundance

of the family Enterobacteriaceae was consistently found in

patients with either MDD or bipolar disorder (Jiang et al.,

2015; Guo et al., 2018). Since cognitive impairment is frequently

observed in patients with LLD and is also associated with

a greater likelihood of developing all-cause dementia (Diniz

et al., 2013), it is worth exploring the links between the

microbiome and mood/cognition in the elderly population

in future research. Moreover, we found that the richness of

the genus Burkholderia was associated with 2 core symptoms

of depressive disorder, i.e., higher severity of depression and

poor sleep quality. Burkholderia is involved in the metabolism

of tryptophan, a precursor for serotonin in mood regulation

(O’Mahony et al., 2015), which may contribute to depression

through themicrobiota-gut-brain axis pathway. Previous studies

have shown a trend association in the genus Blautia and a

significant association between depression scores and the family

Peptostreptococcaceae, genus Prevotella, genus Klebsiella, genus

Sutterella and genus Eggerthella (Lin et al., 2017; Chung et al.,

2019). In addition, the abundance of the genus Faecalibacterium

was found to be either negatively (Jiang et al., 2015) or positively

(Chen et al., 2018b) associated with depressive symptoms.

The reasons for the widely inconsistent results across studies

remain unclear. It is mandatory to identify aspects of the gut

microbiome and other biological factors/metabolites associated

with MDD to delineate MDD heterogeneity.

Correlations of gut microbiota with
regional GM volumes

To the best of our knowledge, this is the first study to

reveal significant correlations between regional GM volumes

and gutmicrobiota in LLD patients when compared with healthy

controls. Specific microbial taxa found to characterize LLD

in the present study showed negative correlations with GM

volumes in several cortical and subcortical brain regions that

are mainly involved in memory, somatosensory integration,

and emotion processing, recognition, and regulation (Kawasaki

et al., 2012; Saarimaki et al., 2016).

Previous studies have already demonstrated that MDD

patients show both cortical and subcortical structural

differences, such as reduced GM volumes in some of the

same brain regions mentioned above (Reinecke et al., 2015).

Our findings provide further evidence to support the link

between brain structural changes and gut microbiota, which

would strengthen the role of the microbiome-gut-brain axis

in the pathogenesis of mood disorders. We identified that

reduced GM volume in the left postcentral gyrus was linked

with a higher abundance of the genera Haemophilus, Rothia,
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FIGURE 6

Scatterplots of Euclidean distance. The associations between fecal microbiome β-diversity (Euclidean distance centered log-transformed

counts) and the gray matter distance separating pairs of late-life depression (LLD) patients or healthy controls in the (A) left postcentral gyrus,

(B) right lingual gyrus, (C) left parahippocampal gyrus, (D) right fusiform cortex, (E) left fusiform cortex, and (F) right lateral occipital cortex. Each

point represents a pair of LLD patients or healthy controls.

and Burkholderia. Notably, a smaller left postcentral gyrus has

been suggested as an imaging marker for higher severity of

depression among adult MDD patients by a large working group

composed of 20 international cohorts worldwide (Schmaal et al.,

2017). Reduced volume in the left temporal fusiform cortex

was associated with a higher abundance of the genera Rothia,

Enterobacter, and Burkholderia. Both the temporal fusiform

cortex region and postcentral gyrus (also belonging to the

somatosensory cortex) are crucial regions for emotional

processing/recognition and multisensory integration (Kawasaki

et al., 2012; Saarimaki et al., 2016). In addition, reduced volumes

in the right lingual gyrus, right temporal occipital fusiform

cortex, and right lateral occipital cortex were correlated with

the abundance of the same bacterial genera (genus Haemophilus

and genus Rothia). The lingual gyrus, parahippocampal gyrus

and lateral occipital cortex are involved in facial emotional

expression and emotion regulation (Reinecke et al., 2015).

Interestingly, we found that the abundance of the genus Rothia

was negatively correlated with most regions showing GM

volume reduction. Rothia species are gram-positive bacteria

that normally inhabit the human oral cavity and respiratory

tract and are usually associated with dental caries, septicemia,

and even central nervous system infections (Goldman et al.,

1998). Regarding mental disorders, Rothia species were found

to be statistically more prevalent in children with autism

spectrum disorder than in healthy controls (Forsyth et al.,

2020). Furthermore, microbiota from the oral cavity can affect

neurocognition through proinflammatory cytokines (Ranjan

et al., 2018). We then speculated that Rothia species might be

involved in systemic inflammation and the immune response in

the pathogenesis of brain disorders.

A recent study by enrolling 16 Caucasian LLD

patients without controls showed that the genera

Lachnospiraceae_NK4A136, Oscillibacter, and unclassified

Ruminococcaceae were positively associated with the GM

volume in hippocampus and amygdala (Lee et al., 2022). We

identified genus Ruminococcus, genus Lachnospiraceae and

family Oscillospiraceae, were significantly enriched in healthy

controls than in LLD. Among these bacteria, we found the genus

Lachnospiraceae_UCG_001 is positively correlated with gray

matter volumes (r = 0.29, p = 0.03) in left parahippocampal

gyrus. However, no significant association could be found

between genus Ruminococcus, family Oscillospiraceae and gray

matter volumes. Such results may suggest that the changes

of these taxa may contribute to the pathophysiology of LLD,

partly through the alterations in GM volume. Nevertheless,

the differences in age, patient numbers, ethnicity, and study

design (presence of control group) may contribute to the
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discrepancies between the two studies. Further large-scaled

studies are mandatory to clarify this issue.

In the current study, we found that Enterobacter and

Burkholderia were the 2 unique genera correlated with both

clinical characteristics of depression and reduced regional brain

volumes. This finding may imply the potential role of these

2 specific microbes as precise targets for future microbiota-

directed interventional therapies.

The biological mechanisms underlying the observed

relationships between gut microbiota and brain structural

differences remain to be determined. The interactions

between gut microbiota and the brain may be meditated

by neurodevelopment, neuroendocrine systems, microbial

metabolites, and immune-related molecular pathways resulting

in the observed phenomena (Diaz Heijtz et al., 2011). It has

been suggested that neurotoxic and inflammatory metabolites

generated by altered gut microbiota reach the brain, resulting in

neuroplastic changes in brain structures in somatosensory brain

regions (Labus et al., 2017). Recent structural brain imaging

studies have also provided evidence that support an interaction

between gut microbiota and the brain through the mentioned

pathway. For example, in healthy women, patients with irritable

bowel syndrome, or elderly patients with cirrhosis, there were

significant correlations between increased metabolites, pro-

inflammatory cytokines/endotoxin, and structural differences in

brain regions (Labus et al., 2017; Liu et al., 2019).

There are several limitations in this study. First, the sample

size of the study was moderate and inadequate for subgroup

analyses. A sex effect related to how the gut microbiota

contributed to the observed results cannot be excluded since

both sexes were enrolled. Fiber intake was marginally increased

in our control subjects. Dietary fibers would interact with

gut microbiota, leading to the production of key metabolites

such as short-chain fatty acids, and impacts gut microbial

ecology (Makki et al., 2018). Therefore, the difference in fiber

intake between the groups may be resulted from the differences

in food intake or the depression per se. Additionally, gut

microbial metabolites were not measured to explore potential

mediators during the process of depression development and

GM differences. Furthermore, all the identified correlations

were cross sectional, and no conclusion relating to causality

can be made from the current findings. The observed brain

volume differences could be consequences of altered signaling

to the brain through microbiota, the depressive illness itself,

or both (Liu et al., 2019). Finally, the depressed patients

in this study were mainly elderly followed up in outpatient

clinics and without regular usage of laxatives. Thus, the current

findings may not be applicable to depressed patients at a

younger age, those under hospitalization, or with comorbidity

with constipation. Furthermore, we did not enquire the exact

frequency of bowel habit per week. And chronic constipation

is more commonly identified in depressed individuals than

non-depressed individuals (Ballou et al., 2019). Also, defecating

frequency could impact the richness and composition of gut

microbiota (Kwon et al., 2019). Therefore, future studies to

investigate interactions among the stool frequency, depression,

and gut microbiota are mandatory.

Conclusions

In summary, this is, to our knowledge, the first report

showing an association of gut microbial composition and

regional brain GM volumes in elderly adults with MDD. The

presence of the genera Enterobacter and Burkholderia was

significantly correlated with depressive symptoms and reduced

GM volume in regions associated with memory, somatosensory

integration, and emotional processing. Nevertheless, future

research is warranted to identify heterogeneous phenotypes

of depression based not only on gut microbiota but also on

metabolomics and brain signatures. It is crucial to obtain more

robust features serving as reliable biomarkers to apply precise

microbial interventions to reach adequate management for

mental health in the elderly population.
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