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Background: In longitudinal designs, the extraneous influence of retest effects can
confound and obscure estimates of developmental change. The current study provides
a novel approach to independently parameterize short-term retest effects and long-term
developmental change estimates by leveraging a measurement burst design and three-
level multilevel modeling. We further employ these short- and long-term slopes as
predictors of cognitive status at long-term follow-up assessments.

Methods: Participants included 304 older adults from Project MIND: a longitudinal
measurement burst study assessing cognitive performance across both biweekly
sessions and annual retests. Participants were classified as either Healthy controls (HC)
or Cognitively Impaired, not Demented (CIND) at baseline, the final burst assessment
(Year 4), and at an additional four-year follow-up (Year 8). Response time inconsistencies
(RTI) were computed at each burst occasion for a simple choice response time (CRT)
task and a one-back response time (BRT) task. Three-level multilevel models were
employed to simultaneously examine change in RTI for both CRT and BRT across weeks
within years, as well as across years, in order to dissociate within-individual retest effects
(short-term) from developmental (long-term) change slopes. Individual slopes were then
extracted and utilized in a series of multinomial logistic regression equations to contrast
short- vs. long-term RTI change as predictors of cognitive status.

Results: Separately parameterizing short- and long-term change estimates yielded
distinct patterns of variation. CRT RTI remained stable across short-term weekly
assessments, while significantly increasing across years. In contrast, BRT RTI decreased
significantly across short-term assessments but showed no change across long-term
assessments. After dissociating change estimates, short-term BRT as well as long-term
CRT and BRT estimates predicted cognitive status at long-term follow-ups; increases in
RTI, suggesting either an inability to benefit from retest or process-based developmental
decline, were associated with an increased likelihood of being classified as CIND.
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Conclusions: We showcase an innovative approach to dissociate retest effects from
developmental change across and within individuals. Accurately parameterizing these
distinct change estimates can both reduce systematic bias in longitudinal trend estimates
as well as provide a clinically useful tool by utilizing retest effects to predict cognitive
health and impairment.

Keywords: retest effects, practice vs. developmental change, longitudinal measurement burst design, cognitive
aging, multilevel modeling (MLM)

PARAMETERIZING PRACTICE IN A
LONGITUDINAL MEASUREMENT BURST
DESIGN TO DISSOCIATE RETEST
EFFECTS FROM DEVELOPMENTAL
CHANGE: IMPLICATIONS FOR AGING
NEUROSCIENCE

The analysis of change has posed numerous seemingly intractable
problems for both clinicians and researchers studying human
development, prompting contentions as to whether change
could, or even should, be measured (e.g., Cronbach and Furby,
1970; Willett, 1988). Such debates motivated a fundamental
conceptual shift in which developmental change became
viewed as a continuous process that fluctuates over time, as
opposed to mere increments between pre-post testing occasions
(Willett, 1988). This reconceptualization, paired with Baltes and
Nesselroade’s (1979) assertion that one of the primary objectives
of developmental research was to directly identify intraindividual
change (i.e., exploring within-person processes), facilitated the
development of increasingly sophisticated methodologies aimed
at providing richer and more accurate parameterizations of
between- and within-person change processes. The current
study aims to further extrapolate upon these methodologies by
employing innovative solutions to some of the more persistent
problems inherent in modeling development.

Within aging neuroscience, where developmental outcomes
are of central interest, longitudinal designs afford the
opportunity to directly observe both age- and process-related
change. Such designs allow researchers to avoid the biases
inherent in cross-sectional inferences of change (see Baltes
and Nesselroade, 1979; Hofer and Sliwinski, 2006; Schaie,
2008)—which employ between-subjects comparisons within
age-heterogeneous samples to draw conclusions about the
nature of age-graded development—and more appropriately
approximate the conceptualization of change as a continuous
and oscillatory process (Willett, 1988; Singer and Willett, 2003).
However, while advances in conceptual and technical approaches
have undoubtedly improved the ability to index change, many
problems remain that continue to obfuscate the understanding
and measurement of development.

Implicit in the reconceptualization of change as a continuous
and intraindividual process is the understanding that change
is modulated by a confluence of multiple influences occurring
across both short and long temporal intervals. There is a
pressing need to dissociate these processes, and their potentially

confounding impact on true underlying development, to
fully understand moderators of short- and long-term change.
Of particular interest, retest effects—changes in performance
attributable to previous exposure to the testing materials,
environment, and procedures—perturb estimates of aging and
development by systematically biasing inter- and intraindividual
change trajectories in longitudinal designs (Hoffman et al., 2011).
Retest effects, encompassing the more specific delineation of
practice effects (i.e., improvements attributable to the repetition
of the same or similar materials), are an oft-cited criticism of
longitudinal designs and represent an enduring problem in the
field of aging neuroscience (e.g., Schaie, 1965; Baltes, 1968).
Retest effects have long been known to confound estimates of
change across both short- (e.g., between first and second retest
occasions) and long-term intervals (e.g., across many years of
retest occasions; Thorndike et al., 1928; Ferrer et al., 2004;
Wilson et al., 2006; Rabbitt et al., 2009). Given that longitudinal
designs offer the only direct way of indexing intraindividual
development, overcoming this susceptibility to retest effects is of
critical importance to developmental researchers.

Appropriate quantification and parameterization of retest
effects are crucial for understanding their unique value as an
individual differences predictors. The magnitude of retest effects
has shown to be differentiable depending on both test (e.g.,
complexity, modality) and test-taker characteristics (e.g., IQ,
age, personality, mood, motivations; Bartels et al., 2010). The
parameterization of retest effects may therefore serve as a useful
cognitive variable, indicative of both an individual’s current
capacity and predicted cognitive trajectory. While the findings
in this domain are equivocal, some evidence suggests that an
individual’s ability to benefit from practice is informative of their
prospective cognitive health and disease risk—with smaller than
expected practice effects in older adults potentially presaging
cognitive decline, poorer response to intervention, and greater
risk of Alzheimer’s-related pathology (Duff et al., 2017; De
Simone et al., 2021). For persons with mild cognitive impairment
(MCI), inclusive of amnestic MCI (a-MCI), there is considerably
more controversy as to whether these individuals can benefit
from retest effects and, if so, across which cognitive domains
(see Duff et al., 2017 for review). These contentions are further
complicated as there is currently no widely accepted approach for
reliably and accurately modeling variance due to retest. However,
a recent investigation by De Simone et al. (2021) found that
lacking the expected benefits from practice on episodic memory
tests was an accurate prognostic indicator of late conversion to
Alzheimer’s disease in a-MCI patients. Distinguishing among
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individuals who will remain stable a-MCI vs. progress to
dementia is both a pressing objective and imposing challenge,
given the known lability and heterogeneity of this relatively broad
cognitive classification (Ganguli et al., 2004; Malek-Ahmadi,
2016). Among other benefits, innovations in parameterizing and
dissociating retest from development could facilitate a deeper
understanding of the utility of retest effects as sensitive predictors
for distinguishing between- and within-person differences in
cognitive function.

Formal attempts to control for retest effects have centered
upon three basic approaches: (1) materials, (2) research design,
and (3) quantitative modeling. A common method of material
manipulation used by researchers—the use of alternate forms
in cognitive testing—attempts to account for the most basic
of practice effects (i.e., repeated exposure to the same testing
material). However, this strategy has shown variable effectiveness
depending on the construct being tested (Watson et al.,
1994; Uchiyama et al., 1995; Benedict and Zgaljardic, 1998)
and fails to address issues attributable to the more general
impact of retest effects (e.g., previous exposure to the testing
environment, procedure, etc.). Therefore, various longitudinal
design considerations have been implemented to address this
more encompassing definition of retest effects and control for
their impact on developmental change.

Traditional longitudinal designs typically consist of widely-
spaced measurement occasions (e.g., spanning years) in an
effort to capture the timescale by which normative age-graded
changes take place. However, in such instances, aging and
retest effects are entirely conflated (e.g., 1-year increments
in chronological age for a design specifying one-year retest
intervals spanning five occasions), posing a particular challenge
for modeling distinct and unbiased estimates of either process.
Consequently, the failure to account for retest effects often
leads to inaccurate characterizations of the rate and pattern
of developmental change (e.g., change is underestimated), can
cause violations ofmodeling assumptions (e.g., age convergence),
and may undermine subsequent attempts of understanding
change through regression or correlation analyses (Sliwinski
et al., 2010a). More intricate longitudinal designs, such as
waitlist control designs, attempt to address retest effects at
the group level by employing a hold-out sample. Thorvaldsson
et al. (2006), for example, utilized a waitlist control design
to evaluate retest effects within several standardized cognitive
performance domains. Initially, the researchers randomly
selected one-third of their total sample to be assessed on
their cognitive performance between the ages of 70–81. The
remaining two-thirds of participants were prescribed as the hold
out sample, to be assessed at a later date. From ages 85 to
99 years the cognitive performance of both the participants
who were previously assessed (i.e., ‘‘original’’ participants),
and a random selection of the remaining two-thirds of
participants (i.e., ‘‘waitlist’’ participants), were then assessed
concurrently. The comparison of cognitive performance between
the original participants and waitlist participants facilitates an
estimation of group-level retest effects. However, while this
approach reasonably quantifies the average retest effects in
a population, it precludes the investigation of intraindividual

change and forces researchers to adopt questions of change
that accommodate a between-person design (Thorvaldsson et al.,
2006; Hoffman et al., 2011). Ultimately, when intraindividual
change is of interest, controlling for retest via design decisions
is exceptionally challenging. Indeed, the nature of repeated-
measures data presumes the influence of retest effects as
unavoidable (Salthouse’s, 2013) and thus cannot be overcome
by study design changes alone. Therefore, in addition to careful
design considerations, adept statistical modeling approaches are
also needed to more effectively address the impact of retest
effects.

Advanced quantitative modeling techniques attempt to parse
the effects of retest and aging into separately estimated model
parameters. These quantitative approaches frequently consist of
hierarchical or more sophisticated computational models (e.g.,
multilevel modeling, latent growth curve modeling, etc.) that
estimate both maturational influences (e.g., aging) along with
retest effects as separate parameters within a single analytic
model of intraindividual change (e.g., Ferrer et al., 2004;
Salthouse et al., 2004; Rabbitt et al., 2008). Although potentially
informative, these modeling techniques remain subject to
common, underappreciated pitfalls and assumptions that must
be explicitly addressed. For instance, satisfying assumptions
of age-convergence—that cross-sectional age differences and
longitudinal age changes converge onto a common trajectory—is
necessary in order to obtain meaningful parameter estimates of
aging and retest. Hoffman et al. (2011) assert that failing to test
and meet age-convergence assumptions can lead to significant
bias and increased Type 1 error rates in the estimation of retest
effects. This is particularly the case for traditional longitudinal
designs that often leverage equal interval designs where age and
retest occasion are perfectly correlated. Disconcertingly, most
studies that attempt to directly model retest effects often fail to
explicitly test for age-convergence assumptions (Sliwinski et al.,
2010b). Furthermore, while retest models attempt to estimate a
‘‘test naïve’’ aging trajectory that is dissociated from retest effects,
these models are, in actuality, estimating aging trajectories
by holding retest effects constant across time. This implicit
assumption, that retest effects are invariant in magnitude across
time, is potentially spurious when considering that retest effects
are (1) often most pronounced between the first and second
measurement occasion (Collie et al., 2003; Bartels et al., 2010;
Scharfen et al., 2018), (2) potentially affected by ceiling effects
(Calamia et al., 2012), (3) influenced by individual differences in
the amount and rate of time-dependent forgetting (MacDonald
et al., 2006), and (4) showcase interindividual differences in
magnitude dependent on test- and test-taker variables (Bartels
et al., 2010). Thus, while the combination of both analytical
and methodological advances has clearly informed the extant
literature, there are notable gaps remaining vis-a-vis optimal
approaches for effectively distinguishing retest effects from
change.

Researchers are evidently presented with numerous
permutations of both design and analytic strategies that provide
differential advantages and disadvantages when investigating
longitudinal change in cognition; however, when dissociating
and parameterizing retest effects is of critical interest, a
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recent recommendation suggests combining the advantages
of the seldom-used measurement burst design alongside the
well-known utility of multilevel modeling (Sliwinski, 2008;
Hoffman et al., 2011; Jones, 2015). Measurement burst designs
can explicitly measure retest effects by examining variability
across both short-term intervals—such as narrowly spaced retests
(e.g., daily, weekly) in which meaningful age-based change is
unlikely to occur—as well as long-term periods (e.g., yearly) over
which durable age-based developmental changes commonly
unfold. This design avoids common pitfalls of more traditional
longitudinal designs, including concerns of age-convergence
and equal-interval measurement occasions, and provides the
opportunity for more nuanced statistical analysis. Specifically,
multilevel modeling can be used to partial these distinct levels of
variability into separate slope parameters, separately estimating
and dissociating the impact of short-term retest-related change
from more durable developmental change.

Unfortunately, many current investigations of retest effects
employ two-level multilevel models for a research objective that
is optimally addressed using three-level nested data. Specifically,
for measurement burst designs and multilevel modeling to be
utilized effectively for modeling retest, the innovative application
of three-level multilevel models is required to systematically
dissociate variance within-persons across short-term retest
occasions (level 1) and long-term developmental intervals (level
2), as well as between-persons (level 3). Investigating two-level
models by inappropriately aggregating three-level data not only
yields an inaccurate dissociation of retest and developmental
change but also generates criticism regarding the leveraging of
short-term retest intervals as proxies for retest effects altogether.
Salthouse’s (2013), for example, has suggested that employing
short-term slopes as indices of retest effects is contingent
upon having identified positive, moderately strong associations
between short- and long-term change estimates—an intuitive
assumption given the expectation that shorter-term retest
gains should be positively linked to longer-term developmental
increases as well. In contrast to this expectation, Salthouse’s
(2013) reported a modest negative association between retest and
long-term change in cognition. Notably, however, these findings
were based upon a two-level analysis of change (i.e., a latent
change analysis) from a data set characterized by at least three
nested levels—sessions (level 1), within occasions (level 2), within
persons (level 3). Failing to properly account for the nestedness
inherent within a dataset can result in parameter estimates that
are confounded with extraneous sources of information and
violate modeling assumptions (e.g., data dependency) which
can result in inaccurate probability estimates and confounded
estimates of short- and long-term change. This is especially
problematic when the research questions and/or conclusions
are predicated upon having accurately quantified variance at
select levels. Thus, when considering the viability of using
short-term change slopes as indicators of retest effects, utilizing a
measurement burst design and a three-level modeling framework
will provide a more accurate dissociation and quantification of
retest and developmental variance.

Using data from ProjectMental Inconsistency in Normals and
Dementia (MIND), an innovative longitudinal measurement

burst design study, the current study employed advanced
quantitative models to dissociate short-term retest effects and
long-term developmental change and investigated the relative
predictivity of retest and change for differentiating cognitive
status subgroups at long-term follow-up assessments. Given that
retest and developmental change represent non-independent
time structures, we utilized three-level multilevel modeling
to separately estimate within-individual change in cognitive
function across short-term weekly retests (level 1) and long-term
yearly bursts (level 2), as well as between-individual differences
(level 3) in cognitive performance. The use of a three-level
hierarchical modeling structure, paired with the previously
suggested measurement burst design, represents a critical
extension of the existing literature that simultaneously
parameterizes within-person change across both short-term
biweekly assessments (i.e., retest) as well as across longer-term
annual assessments (i.e., developmental age-based change).
Specific research objectives included: (1) disaggregating short-
(weekly) from long-term (annual) change slopes to estimate and
empirically evaluate the patterns and association among these
estimates of retest and development; and (2) leveraging these
dissociable estimates of change, obtained during the course of
the 4-year measurement burst study, as independent individual-
differences predictors of cognitive status indexed at Year 4 (the
conclusion of the burst design) and Year 8 (the conclusion of the
Project MIND study). The first objective was accomplished by
investigating change in response time inconsistencies (RTI) for
two select cognitive measures—a simple choice response time
(CRT) task and a more complex 1-back choice response time
(BRT) task—using three-level multilevel models. By specifying
random effects in these multilevel models, it was possible to
derive person-specific change slopes that were extracted to
address our second research question which used multinomial
logistic regression models to contrast short- and long-term RTI
change as predictors of cognitive status at Year 4 and 8 of the
study.

Increasing evidence suggests that RTI represents a dissociable
dimension of performance relative to mean Response Time
(RT) (MacDonald and Stawski, 2015, 2020) that may better
capture underlying changes in physiological and cognitive
processes (Dixon et al., 2007; de Ribaupierre and Lecerf, 2018).
Previous research also suggests that within-person variability is
differentially sensitive to cognitive status groups, such that RTI
was most pronounced in subjects with more severe cognitive
impairment (Strauss et al., 2007; MacDonald and Stawski,
2020). The utilization of RTI is particularly beneficial for
the current investigation that leverages lability in cognitive
performance—which is particularly sensitive to retest effects and
generally resistant to floor and ceiling effects—as a proxy for
cognitive health status.

MATERIALS AND METHODS

Participants
Participants were 304 community-dwelling Caucasian older
adults aged 64–92 years (M = 74.02; SD = 5.95) who were
concerned about their cognitive functioning but had not been
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diagnosed with a neurological disorder. This study was approved
by the University of Victoria Human Research Ethics Board
and was conducted in accordance with institutional guidelines.
Participants (208 female and 96 male) resided in Victoria,
Canada and were recruited through local media advertisements
(radio and newspaper). Participants were generally well-educated
(M = 15.15; SD = 3.14; range = 7–24 years of education),
performed well on the Mini-Mental State Examination (MMSE;
Folstein et al., 1975) (M = 28.74; SD = 1.23; range = 24–30), and
were in relatively good health (total number of chronic health
conditions: M = 2.92; SD = 1.91; range = 0–10). Exclusionary
criteria at intake included physician-diagnosed dementia or an
MMSE score of less than 24, drug or alcohol abuse, psychotropic
drug use, current psychiatric diagnosis, a history of significant
head injury (e.g., loss of consciousness greater than 5 min),
other neurological or major medical illnesses (e.g., Parkinson’s
disease, cancer, heart disease), severe sensory impairment (e.g.,
difficulty reading newspaper-size print, difficulty hearing a
normal conversation), and lack of fluency in English.

Procedure
Participants were initially screened for inclusion and exclusion
criteria via a telephone interview. Baseline testing occurred
across seven sessions (one group and six individuals) scheduled
over approximately 3 months. The group testing session was
held at the university in our laboratories and the individual
testing sessions were conducted in the participant’s home.
The first two sessions (one group and one individual) were
used to obtain demographic and health information and to
administer cognitive measures. Participants then completed a
burst evaluation, consisting of five individual biweekly testing
sessions that varied across days of the week and times of
the day. Within these sessions, participants completed various
assessments including cognitive performance measures such as
RT tasks that were designed to assess short-term fluctuations in
response speed. The entire testing battery was repeated annually
four times. During each annual wave, the cognitive measures
(inclusive of the burst RT tasks) were identical, and the order
of presentation did not vary. However, for each subsequent year
after baseline, four (rather than five) biweekly testing sessions
were completed, yielding up to 17 total assessments for each
individual (see Figure 1). Follow-up demographic and cognitive
assessments were then conducted four years following cessation
of the burst portion of the study (i.e., at Year 8) to evaluate
long-term change in participants’ cognitive status. Eighty percent
of participants (N = 242) completed all four bursts and attrition
rates were 11.0%, 3.5%, and 4.5% of the sample between years
1–2, 2–3, and 3–4, respectively. The attrition rate between Year
4 and Year 8 was 26%, with 61% of the original sample (N = 185)
completing Year 8.

Cognitive Status
Cognitive status was ascertained for each year of study
according to participant’s performance on five cognitive tasks.
The cognitive performance tasks consisted of indicators for
perceptual speed (WAIS-R Digit Symbol Substitution; Wechsler,
1981), verbal fluency (Controlled Associations; Ekstrom et al.,

1976), vocabulary (Extended Range Vocabulary; Ekstrom et al.,
1976), episodic memory (Immediate free word recall; Hultsch
et al., 1990), and inductive reasoning (Letter Series; Thurstone,
1962). Participants were classified as cognitively intact healthy
controls (HC) or cognitively impaired, not demented (CIND)
based upon deficits (1.5 SDs relative to age and education
norms) spanning the five distinct cognitive domains. The age and
education norms were obtained from 445 adults aged 65–94 years
from the Victoria Longitudinal Study (Dixon and de Frias, 2004);
this normative comparison sample for deriving cognitive status
classifications was partitioned into four age and education groups
(age = 65–74 years and 75+ years; education = 0–12 years and 13+
years) with means and standard deviations computed for each of
the five cognitive reference measures. Participants classified as
CIND were further subdivided as CIND-S based on deficits for a
single cognitive measure or as CIND-M based on deficits across
two or more of the cognitive reference tasks. A more thorough
methodological account of Project MIND, inclusive of the testing
and cognitive status classification procedures, can be found in
Bielak et al. (2010).

Response Time
RT tasks were presented on a Panasonic CF-48 laptop computer
(Intel Pentium III 800-MHz processor, MS-DOS operating
system Version 4.10.2222) with a 14′′ color screen. The computer
processor controlled the stimulus presentation and timing for
each RT task. Participants responded to stimuli by pressing
keys on a custom-designed response console consisting of an
aluminum enclosure encompassing four response keys in a linear
array. This response box was interfaced with the laptop through
a PCMCIA Game Port, directly accessible by the CPU, in order
to ensure millisecond timing latency (±1 ms). The RT tasks were
programmed using C++ and were run on MS-DOS.

Choice Response Time (CRT)
Participants were presented with four plus signs displayed in a
horizontal row along with a response input device containing
four spatially-mapped keys. On each trial, following a 1,000 ms
delay, a box replaced one of the plus signs. For each trial,
participants were asked to respond to the location of the box as
quickly as possible. Ten practice trials were followed by 60 test
trials. The response latencies of the 60 test trials were used for
analysis (Bielak et al., 2010).

One-Back Choice Response Time (BRT)
The BRT task used the same display, response box, and
stimulus presentation design as the CRT task. However, for
each trial, participants were asked to respond to the location
of the box on the ‘‘previous’’ trial. A total of 10 practice trials
followed by 61 test trials were administered. As participants
did not respond on Trial 1, it was omitted and only the
response latencies of the remaining 60 test trials were used
for analysis.

Data Preparation
Outliers and Missing Values
All RT data were examined for outliers by examining the
distributions of raw latency scores at the individual level.
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FIGURE 1 | Parameterization of retest and developmental change using three-level multilevel modeling and a measurement burst design.

Exceptionally slow or fast responses were removed and
considered likely to represent sources of measurement error (e.g.,
accidental key press). Valid lower bound response times have
been provided by previous research (150 ms; Hultsch et al.,
2002), and valid upper bounds were identified by calculating
intraindividual means and standard deviations for each task
and measurement occasion; for each individual, any trials
that exceeded their personal mean by three or more standard
deviations were removed. For each of the CRT and BRT
tasks at Year 1, a total of 91,200 trials were possible across
individual assessments (60 trials per administration of each RT
task), sessions (five biweekly retests), and persons (n = 304;
60 × 5 × 304 = 91,200). For the CRT task, 0.13% of trials
were excluded due to missing values, 1.43% due to incorrect
responses, and 1.78% due to trimming outliers, leaving 96.65%
usable trials. For the BRT task, 0.20% of trials were excluded
due to missing values, 10.46% due to incorrect responses,
and 2.42% due to trimming outliers, leaving 86.93% usable
trials. This data preparation procedure for eliminating outliers
represents a conservative approach to examining intraindividual
variability in RT performance by reducing within-subject
variation.

Computation of Response Time Inconsistency (RTI)
RTI was indexed using residualized intraindividual standard
deviation (ISD) estimates. The residualized ISD estimates
were computed across RT trials for each session and burst,
residualizing select confounds from the raw data by fitting a
multilevel model in order to dissociate within- and between-
subject sources of variation (MacDonald and Stawski, 2020).
Removing systematic confounds yields RTI estimates that are
not conflated with mean age differences in response speed,
developmental change, or practice effects at the trial-to-trial level
(Stawski et al., 2019; MacDonald and Stawski, 2020). For each
session and burst, the computed residualized ISD scores were
then linearly transformed into standardized T scores (M = 50,

SD = 10). See Hultsch et al. (2008) for a full description of this
procedure.

Statistical Procedure
The nested three-level data structure for the present study is
characterized by weekly assessments (level 1) nested within
annual bursts (level 2) nested within persons (level 3). Using the
‘‘nlme’’ package in R (Pinheiro et al., 2022), we addressed the
first research objective by fitting three-level multilevel models to
predict change in RTI for both CRT and BRT across sessions
(biweekly assessments), bursts (annual retests), and persons.
Multilevel modeling decomposes total variability into within- vs.
between-person sources. Moreover, this multilevel framework,
coupled with the current measurement burst design, facilitates
parsing of intraindividual variability from intraindividual change
(Nesselroade, 2002), thereby separately yet simultaneously
indexing retest effects and developmental change, respectively.

Variance decomposition in CRT and BRT RTI across
weeks, years, and persons was based upon preliminary
fully unconditioned models. Two independent, conditioned
longitudinal models were then fit to examine change in CRT
and BRT RTI separately. Equation 1 demonstrates the modeling
of average linear change in CRT RTI as a function of weekly
and yearly assessments (fixed slope effects) and the variability
of change across individuals (random slope effects). Response
time inconsistencies on the CRT task (CRT RTIijk), for a given
week (i), year (j), and person (k), were modeled as a function
of that individual’s performance at baseline testing, plus their
average individual rate of change per each additional week and
year examined (the slopes), plus an error term (ε). A number
of random effects were also modeled, with the level-1 residuals
[Var(εijk)] reflecting within-person week-to-week variability,
and the level-2 residuals [Var(µ0jk)] indexing within-person
variability across the annual retest bursts. Variance in the level-3
residuals [Var(υ00k)] index between-person stable variability
averaged across all biweekly retests and annual burst assessments.
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Select fixed effects of interest include population estimates for
the average CRT RTI score (γ000), the average biweekly retest
(i.e., practice) effect (γ100) as well as the average yearly retest
(i.e., long-term developmental change) effect (γ010).

Equation 1

Level 1 CRT RTIijk = β0jk + β1jkWeekijk + εijk
Level 2 β0jk = δ00k + δ01kYearjk + µ0jk

β1jk = δ10k + µ1jk

Level 3 δ00k = γ000 + γ001Agek + γ002Sexk + υ00k
δ01k = γ010 + γ011Agek + γ012Sexk + υ01k
δ10k = γ100 + υ01k

Weekly (Level 1) and yearly (Level 2) linear effects were
centered at baseline (e.g., the first week for Year 1). Person (Level
3) covariates included age at baseline (γ001; centered at age 74)
and sex (γ002; centered as 0 = males/1 = females) Parameter
estimates were derived using full information maximum
likelihood (FIML) estimation, using all available data under the
assumption of missing at random (MAR; Grand et al., 2016).

For the second research question, we employed polytomous
(multinomial) logistic regression to examine changes in RTI
(both short-and long-term) as predictors of cognitive status in
Year 4 and Year 8. Healthy controls served as the referent group
for each model. Due to the small values of bi-weekly change
(i.e., retest) estimates for both CRT and BRT (a consequence
of millisecond temporal scaling), we rescaled these values as
seconds to facilitate the interpretability of model point estimates
and odds ratios.

RESULTS

Patterns of Retest and Development
Across Time
Sample characteristics are reported inTable 1. To address the first
researchobjective, and toprovide an indexof the data dependency
inherent in our repeated measures design, unconditional models
were first fit to decompose the total variability into within-person
(weekly and yearly) and between-person sources. Of the total
variability in CRTRTI across the sample, 68% reflected variability
between-persons, whereas 6% and 26% reflected within-person
variability across years and weeks, respectively. Comparable
patterns were found for BRT RTI in which 75% of the total
variability was between-persons, 7% within-persons across years,
and 18% within-persons across weeks.

Conditioned longitudinal change analyses were then fit using
three-level multilevel models to dissociate retest (i.e., short-
term) from developmental (i.e., long-term) change estimates.
Specifically, these models derived separate estimates of within-
person change across both weeks and years, with the former
estimate indexing change due to retest and the latter change
due to developmental processes (see Figure 1). Between-person
differences at baseline and across years were also explored, with
random intercept and slope effects estimated to facilitate the
derivation of individual slopes for use in subsequent logistic
regression equations.

TABLE 1 | Sample characteristics as a function of baseline cognitive status.

HC CIND-S CIND-M
Baseline N = 136 N = 88 N = 80

Age (years) 73.3 (5.4) 73.8 (6.0) 75.5 (6.6)
Sex (% males) 29 26 43
Education (years) 15.9 (3.1) 15.2 (3.1) 14.3 (3.2)
MMSE score 29.0 (1.0) 28.7 (1.1) 28.3 (1.5)
aMedications 5.8 (3.5) 5.4 (3.3) 6.5 (8.9)
bRisk Factor (% without) 84 83 73
CIND Classification Year 4 N = 138 N = 62 N = 45
CIND Classification Year 8 N = 112 N = 40 N = 33

aSelf-reported number of total prescribed medications. bPresence of risk factor
(Significant Hearing Loss, Neurological and/or Cardiac Condition). HC, Healthy
Controls; CIND-S, Cognitively Impaired, not Demented based on single task
deficit; CIND-M, Cognitively Impaired, not Demented based on >2 task deficits;
MMSE, Mini-Mental State Examination (Folstein et al., 1975).

Two separate models, controlling for age and sex, were
fit to evaluate CRT RTI and BRT RTI independently as
cognitive outcomes. Analyses revealed notable differences
between retest and developmental change parameter estimates
within each model, as well as between the two models.
Specifically, population estimates for the CRT outcome model
indicated non-significant short-term change in RTI (β = -0.02,
p > 0.05), with this stability across week-to-week assessments
connoting the absence of practice effects. However, RTI
significantly increased across years in the study (β = 0.15,
p = 0.005), demonstrating increasing cognitive variability in
CRT performance over longer developmental trajectories. In
contrast, our BRT model yielded an inverse pattern, perhaps
reflecting the inherent differences in cognitive demands between
the BRT and CRT measures. Within BRT, a task that requires
higher-order cognitive processes (e.g., executive functioning),
significant short-term declines in RTI (β = -0.06, p < 0.0001)
exemplified the expected benefits of practice in reducing
performance inconsistencies across week-to-week assessments.
Yet, non-significant change in long-term RTI slopes (β = −0.09,
p > 0.05) demonstrated stability in patterns of BRT consistency
across years. Regardless of RT task, short and long-term change
slopes—reflecting the presence of retest vs. developmental
change—yielded distinct sources of information. Of note, age
significantly predicted between-person differences in both the
CRT (β = 0.21, p < 0.001) and BRT (β = 0.28, p < 0.001) tasks,
such that increasing age resulted in increased inconsistencies for
each RT task. Sex did not significantly predict RTI (p > 0.05) in
eithermodel. The fixed effects from these conditionedmodels are
displayed in Table 2.

Retest and Developmental Change as
Predictors of Cognitive Status
The aforementioned results summarized our fixed effects which
describe the aggregated rates of change in the sample. However,
we also estimated random effects in order to derive individual
estimates of short- and long-term change for use as predictors
of cognitive status. Specifically, to assess whether individual
differences in retest effects and developmental change predicted
cognitive status at long-term follow ups (Years 4 and 8),
person-specific residuals were used to derive individual slope
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TABLE 2 | Fixed effects for CRT and BRT three-level multilevel models.

CRT RTI BRT RTI

Predictors β CI p β CI P
Intercept 7.44 6.91–7.96 <0.001 7.23 6.57–7.89 <0.001
Short-Term −0.02 −0.05–0.00 0.082 −0.06 −0.09 to −0.04 <0.001
Long-Term 0.15 0.05–0.25 0.005 −0.09 −0.02–0.02 0.124
Age 0.21 0.16–0.26 <0.001 0.34 0.28–0.40 <0.001
Sex −0.24 −0.87–0.38 0.439 0.25 −0.54–1.04 0.534

estimates for entry as predictors in several multinomial logistic
regressionmodels. These models investigated whether individual
differences in short- and long-term rates of change in CRT
and BRT RTI were predictive of CIND status upon conclusion
of the burst portion of Project MIND (Year 4), as well as at
the termination of the study (Year 8). At both Year 4 and
Year 8 follow-up assessments, four separate multinomial logistic
regression models, controlling for age and sex, were fit for
each of our four RTI-related predictors: short-term CRT RTI,
short-term BRT RTI, long-term CRT RTI, and long-term BRT
RTI. These models were fit independently to avoid potential
issues of collinearity between the short- and long-term slope
estimates within each cognitive measure. Parameter estimates for
these RTI predictors are presented in Table 3.

Short-term change slopes in CRT, indexing retest effects in
the present study, were not significantly predictive of CIND
status at either Year 4 or Year 8. However, short-term practice-
related gains in BRT RTI were significantly associated with an
increased likelihood of being classified as CIND-S [OR = 2.26,
95% CI (1.31, 3.88), p = 0.003] and CIND-M [OR = 3.82, 95% CI
(2.14, 6.84), p < 0.001] at Year 4, as well as CIND-M at Year 8
[OR = 2.50, 95% CI (1.26, 4.98), p = 0.009].

In contrast, elevated yearly RTI was associated with increased
odds of being classified as CIND relative to HC for both CRT
and BRT. Long-term developmental slope estimates for CRT
RTI were significantly associated with increased odds of being
classified as CIND-M [OR = 4.33, 95%CI (1.68, 11.05), p = 0.002]
at Year 4, with no significant associations at Year 8. Thus, holding
constant age and sex differences, year-to-year unit increases in
CRT RTI increased the likelihood of being classified as CIND-M
over healthy controls by 333 percent. Additionally, unit increases
in yearly BRT RTI were associated with an increased likelihood
of being classified as CIND-S [OR = 2.05, 95% CI (1.16, 3.62),
p = 0.014] and CIND-M [OR = 3.10, 95% CI (1.70, 5.68),
p < 0.001] at Year 4, as well as CIND-M at Year 8 [OR = 2.23,
95% CI (1.04, 4.77), p = 0.039].

To further inform these patterns, four separate multinomial
logistic regression models were fit using person-level baseline
MMSE scores to contrast the predictivity of long-term cognitive
status with our residualized RTI slope parameters. Specifically,
we were interested in identifying whether a simple baseline
cognitive measure would significantly contribute to model fit or
show comparatively accurate long-term predictions of cognitive
health status. Across all models, baseline MMSE performance
neither significantly contributed to model fit nor predicted
cognitive status at long-term follow ups, underscoring the utility
of retest effects as more sensitive prognostic indices of cognitive
health.

Our models also identified age as a significant predictor
of CIND status, with increasing age generally facilitating an
increased likelihood of being classified as cognitively impaired.
Specifically, at Year 4, age significantly predicted both CIND-S
and CIND-M for three of four models (with the exception of
yearly CRT RTI which predicted CIND-M only). At Year 8, age
was a significant predictor of CIND-M only, regardless of RT
task or weekly or yearly RTI. Depending on the model, older age
significantly predicted cognitive status such that each additional
year beyond age 74 resulted in a 5%–10% increased likelihood of
cognitive impairment, relative to controls. Sex (male or female)
did not significantly predict cognitive status in any of the eight
models.

Finally, to further delineate associations between individual
slopes of short- and long-term change, we computed simple
bivariate correlations for both CRT and BRT RTI. Correlations
between short- and long-term individual BRT RTI slopes were
significant and strong at the two-tailed level (r = 0.87, p< 0.001).
For CRT RTI, short- and long-term change slopes shared a more
modest but still significant association (r = 0.39, p< 0.001).

DISCUSSION

The current investigation showcases an innovative approach for
studying practice effects in community-dwelling older adults
using both novel design considerations and advanced statistical
methodology. By utilizing a measurement burst design—in
which data were collected across weeks within years, as well
as across years—and employing three-level multilevel models,
we were able to (a) dissociate short-term retest effects from
long-term developmental change, (b) demonstrate that within-
person change across these varying temporal intervals yields
distinct patterns of variation, and (c) leverage these retest and
change slopes as predictors of cognitive impairment status.
The difference in slope estimates between short- and long-term
change, and their respective predictive utility, highlights both
(a) the advantage of the current approach for dissociating retest
effects from developmental change, as well as (b) the promise of
employing retest as a proxy for individual differences in cognitive
health.

RetestCanBiasEstimatesof
DevelopmentalChange
An enduring criticism of longitudinal research concerns the
presence of retest effects which may obfuscate the magnitude,
shape, and even estimated direction of developmental change.
Although retest-related gains are thought to bias development
and age-related changes in cognitive performance (Wilson et al.,
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TABLE 3 | Multinomial logistic regression: weekly and annual RTI in relation to the likelihood of cognitive impairment status at Year 4 and Year 8.

Year 4 Year 8

CIND-S CIND-M CIND-S CIND-M

Variable OR 95% CI 95% CI OR 95% CI 95% CI OR 95% CI 95% CI OR 95% CI 95% CI
LB UB LB UB LB UB LB UB

Weekly CRT RTI 1.36 0.80 2.34 1.16 0.62 2.17 1.78 0.93 3.40 1.30 0.61 2.77
Yearly CRT RTI 1.81 0.76 4.34 4.33* 1.70 11.05 1.55 0.48 4.98 0.93 0.27 3.22
Weekly BRT RTI 2.26* 1.31 3.88 3.82** 2.14 6.84 1.94 0.99 3.81 2.50* 1.26 4.98
Yearly BRT RTI 2.05* 1.16 3.62 3.10** 1.70 5.68 1.68 0.81 3.51 2.28* 1.04 4.77

Note. Age is baseline age centered at 74 years. Sex is categorically coded with females (1) as the reference category. Healthy controls (HC) serve as the reference category.
CIND-S, cognitively impaired-not demented for a single cognitive outcome; CIND-M, cognitively impaired-not-demented for two or more cognitive outcomes; LB, lower bound;
UB, upper bound; CRT, choice reaction time; BRT, 1-back choice reaction time; RTI, response time inconsistency. *p < 0.05; **p < 0.001.

2006; Hoffman et al., 2011; MacDonald and Stawski, 2020), retest
effects are seldom systematically measured or controlled for, due
in part to the limitations of existing designs and quantitative
methodologies (Sliwinski and Mogle, 2008; Salthouse’s, 2013).
Therefore, novel longitudinal approaches that consider the
impact of retest effects and the utilization of advanced modeling
approaches are needed to adequately distinguish within-person
developmental change from retest-related change.

We investigated the extent to which weekly change
(i.e., influencedbyretest effects) andyearly change (i.e., influenced
by aging and development) reflect comparable or distinct sources
of information. Consistent with expectations, distinct and
divergent patterns were present between the weekly short-term
and annual long-term change slopes in both RT tasks. Non-
significant, stable change in RTI in the CRT task over short
retest intervals was differentiated from significant long-term
performance declines. This is consistent with the understanding
that simple psychomotor abilities (e.g., sensorimotor speed,
processing speed) are less susceptible to the influence of retest
and showcase normative declines with aging (Salthouse, 1996;
Duff et al., 2017). For RTI in the BRT task, our sample showed
the expected benefits of retest with significant short-term
performance gains but demonstrated non-significant change
over longer retest intervals. These patterns are also congruent
with previous research, as the BRT task—which draws uponmore
executive processes (e.g., updating)—is increasingly susceptible to
practice-related gains pursuant to repeated exposure (Grand et al.,
2016). The use of such a task helps bolster the idea that placing
more demands on cognitive processing resources may provide a
more sensitive evaluation of retest effects. Such disparate patterns
observed in the fixed effects for both the simplerCRT task, and the
more cognitively demanding BRT task, indicate that the within-
person change slopes acrossweekly and annual temporal intervals
reflect non-redundant sources of information.Neglecting toparse
cognitive performance according to these distinct time structures
would bias slope estimates, confounding retest effects with
developmental change. These results corroborate previous
research demonstrating the important and considerable impact
of retest on developmental change slopes (e.g.,Wilson et al., 2006;
Hoffman et al., 2011; Jones, 2015) and suggest that related but
unique associations exist between these constructs. Moreover,
overlooking the potential influence of retest effects may mask
underlying cognitive symptomatology or early detection of
cognitive decline.

The non-significant developmental slope in BRT RTI may,
despite our systematic parsing of short-term retest-related
variance from long-term parameter estimates, be indicative of
the more enduring, generalized impact of retest—which has
shown to exert influence across much longer retest (e.g., years)
intervals (Rabbitt et al., 2004; Salthouse et al., 2004). However, an
alternative explanation is that the observed long-term BRT RTI
stability is a consequence of collapsing individual performance
information across all cognitive status groups onto one linear
trajectory. The heterogeneity in cognitive status produces
diverging trajectories of RTI among CIND subgroups (see
MacDonald and Stawski, 2020), yet yields a relatively flat sample
average slope when combined. Notably, the shape andmagnitude
of the sample average slope are less consequential to our key
research focus, which is concerned with evaluating whether
a) there are individual differences in short- and long-term
change, and b) these individual differences in slopes are linked
to cognitive status. Therefore, the choice to model the data as an
average slope, irrespective of cognitive status (i.e., not including
a CIND status moderator), was intentional in order to derive
person-specific slopes (reflecting individual deviations in change
from the population average) which could predict cognitive status
at long-term follow-ups.

UtilizingRetest as aPredictor of
ProspectiveCognitive Impairment
The focus of our second research objective was to investigate
whether the unique intraindividual slopes derived from
our models were predictive of cognitive health outcomes
(i.e., CIND), for as many as four years following the completion
of cognitive testing. We examined within-person change
directly by investigating whether an individual’s short-term
retest slope predicted long-term cognitive status, and whether
their developmental slope reflected a reliable index of process-
based change (dissociable from short-term change). A series of
multinomial logistic regression models were used to contrast
short- vs. long-term CRT and BRT RTI as individual predictors
of cognitive status at the final burst assessment wave (Year 4)
as well as an additional four years later at the conclusion of the
study (Year 8). These follow-up assessments correspond with
the natural middle and endpoints of the study and afford a novel
opportunity to investigate the differential predictive utility of our
discrete cognitive slopes.
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Using this approach, we demonstrated that the likelihood of
being classified as CIND-M relative to HC at Year 4 was over
three times greater for individuals showcasing annual increases
in CRT RTI. This result, including the non-significant predictive
ability of short-termCRTRTI change, is consistentwith the extant
literature on psychomotor function and decline. Specifically,
the basic sensorimotor demands of the comparatively less
cognitively demanding CRT task resulted in less intraindividual
variability and diminished retest fromwhich to accurately predict
long-term cognitive status. However, interindividual differences
in annualized intraindividual change may be reflective of unique
intraindividual processes (e.g., normative or pathological aging)
or characteristics (e.g., health-related comorbidities) that facilitate
more accurate predictions of cognitive impairment status at
long-term follow-up (Stawski et al., 2015). Although annualized
CRTRTIwasnot significantlypredictiveof cognitive statusatYear
8, thismaybedue inpart to therelativeheterogeneityand labilityof
CIND classifications or the relative insensitivity of developmental
CRT RTI as a proxy for underlying bio-cognitive dysfunction.

In contrast to CRT RTI, increases in intraindividual BRT
RTI across both weeks and years were significantly predictive
of cognitive status at Years 4 and 8. These patterns reflect the
expected influence of both retest and developmental performance
on long-term cognitive status. Individuals who failed to benefit
from retest and exhibited increases in their short-term BRT
RTI were significantly more likely to be classified as CIND-S or
CIND-M at Year 4, as well as CIND-M at Year 8. These predictive
patterns support the potential clinical utility of retest, where the
ability to benefit from practice is postulated to be a function
of underlying cognitive health (Galvin et al., 2005; Duff et al.,
2011, 2012). Long-term increases in annual intraindividual BRT
RTI were also associated with increased odds of being classified
as CIND-S and CIND-M at Year 4, and CIND-M at Year 8.
Independent of age and sex differences, individuals characterized
by increasing BRTRTI across short- and long-term intervals were
associated with an increased likelihood of cognitive impairment
classification. The identical trends between weekly and annual
increases in BRT RTI underscore a key finding of our study:
when appropriately parameterized, both intraindividual retest
and developmental change slopes can yield distinguishable and
meaningful predictions of long-term health outcomes.

Retest as anEarly Indicator ofCognitive
Decline
The observed discrepancies between the CRT and BRT tasks are
consistent with previous research indicating that retest effects are
test-specific (Benedict and Zgaljardic, 1998; Wilson et al., 2006).
In comparison to the CRT task, the BRT task involves increased
cognitive demands that likely involve attention,workingmemory,
and inhibitory control which are more sensitive to retest effects
(Grand et al., 2016). This dependency on executive processes not
only underscores why BRT RTI is more sensitive to retests effects
but may also help elucidate why both short- and long-term BRT
performance showcasedgreaterpredictive accuracy for classifying
CIND status at Year 8.

More generally, RTI holds considerable promise as a sensitive
marker of normal and pathological aging and has received much

attention for its promise as a proxy for central nervous system
(CNS) health and an early indicator of cognitive impairment
or decline (Hultsch et al., 2000; Bielak et al., 2010; MacDonald
et al., 2011; MacDonald and Stawski, 2020). RTI has been
shown to predict late-life deleterious health outcomes (e.g., fall
risk, vascular impairment, dementia; for review, see MacDonald
and Stawski, 2015) and may enhance our understanding of the
dynamic relationship between individual fluctuations in cognitive
performance and underlying CNS integrity (Halliday et al., 2017).
RTI has also garnered empirical support as an indicator of lapses
of attention (particularly for tasks requiring executive control
processes; West et al., 2002), processing efficiency (Eysenck and
Calvo, 1992; Brose et al., 2010), and has been shown to fluctuate
depending on perceived competence in cognitive control (e.g.,
individual differences in control beliefs for age-related changes
in cognitive performance). For example, in a recent investigation
of RTI in both CRT and BRT measures, Cerino et al. (2020)
identified that increases in perceived competence were associated
with lowerRTIon theCRT task, andhigher (i.e.,maladaptive)RTI
performance on theBRT task in older adults. Taken together, BRT
RTI may serve as a unique cognitive health indicator, sensitive to
disruptions in executive function attributable to both labile (e.g.,
momentary fluctuations in attention reflectingmental noise, daily
variations in sleep or distress) or more chronic mechanisms (e.g.,
pathological aging, dopaminergic dysregulation, declining CNS
signaling fidelity) affecting higher-order cognition. In the context
of the present study, increased RTI for the BRT (vs. CRT) task
may be a more effective proxy for these underlying bio-cognitive
disturbances, whichmay account for BRT’s increased predictivity
at both the level of retest and development across longer time
periods.

Accordingly, RTI across both short-and long-term follow-up
intervals demonstrated stronger predictivity for differentiating
CIND-M from HC, compared to CIND-S; this dose-response
pattern was expected given that the CIND-M classification
represents deficits across multiple cognitive domains and was
more likely to include impairments inexecutive function.Findings
from the logistic regression models also speak to the known
lability of cognitive impairment classifications. Specifically, the
clinical trajectory of CIND is frequently recognized as unstable
andheterogeneous,withseveral studiesdemonstratingthat single-
domain cognitive impairment classifications (e.g., CIND-S) are
associated with higher instability and increased likelihood of
reverting to HC compared to multi-domain classifications (e.g.,
Diniz et al., 2009; Loewenstein et al., 2009; Ritchie and Tuokko,
2010; Sachdev et al., 2013).

AssociationsBetweenShort- and
Long-TermChange
The ability for retest effects to be leveraged as early indicators
of cognitive decline is predicated upon having accurately
parameterized retest-effect-related variance, as well as the idea
that short-term retest occasions are associated with long-term
developmental trajectories. As some theorists have argued,
short intervals may only serve as estimates of retest effects
in longitudinal designs when the associations between short-
and long-term change are positive and at least moderately
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strong. For example, Salthouse’s (2013) reported how short-
and long-term changes across several cognitive domains were
negatively correlated, whereby individuals showing the greatest
short-term gains (between first and second sessions within one
occasion) also exhibited the largest longer-term losses (across
occasions). On the basis of such negative associations, it has
been questioned whether short-term slopes can be reliably used
as estimates of retest effects (or correspondingly as individual-
differences predictors) in longitudinal models. Notably, however,
Salthouse’s (2013) criticism was based upon a two-level latent
change analysis (assessmentswithin persons) of three-level nested
data (sessions within occasions within persons)—a fact that raises
concerns about the impact of between-context dependency on the
direction, magnitude, and significance of the reported short- and
long-term change estimates (estimated separately as two-level
structures as opposed to derived simultaneously in three-level
models) as well as their negative association.

To circumvent these concerns, in the present study we
employed a novel three-level approach that more accurately
parameterized short- and long-term change estimates, prior to
deriving unbiased estimates of the association between retest and
developmental change. For CRT RTI, we found a significant
positive correlation between short- and long-retest intervals. This
moderate correlation is indicative of shifts in the rank-order
association between changes in short- vs. long-term CRT RTI
change estimates, with the lack of significant short-term retest
effects presaging the non-significant predictivity of Year 4 and
8 cognitive status. For BRT RTI, we identified a large-magnitude
positive correlation between short- and long-term intervals; those
who exhibited greater increases in variability across short-term
retests (i.e., benefitted less from practice) also exhibited greater
annualized developmental increases in RTI (a known indicator
of various deleterious, age-related outcomes; MacDonald and
Stawski, 2015). The increased association shown in BRT RTI
further supports the potential utility of modeling short-term
intervals as retest effects in longitudinal models, and is consistent
with the reported susceptibility of BRT to retest-related effects
(Bielak et al., 2010; Grand et al., 2016). This correlation also
corroborates our logistic regression results, where individuals
who benefited more from practice were also more likely to be
cognitively intact at long-term follow-up. For both CRT and BRT
RTI, the association between retest and developmental change
slopes was positive and robust. These results are in keeping with
the findingsof other researcherswhohave advocated for theutility
of short-term intervals as a proxy for retest effects and identified
robust positive correlations between short- and long-term change
(Zimprich et al., 2004; Hoffman et al., 2011).

Implications forAgingNeuroscience
Our results highlight several notable implications for research
on cognitive aging and the cognitive neuroscience of aging:
(1) increases in RTI, even on simple psychomotor tasks, are
associated with an increased risk of cognitive impairment up
to four to eight years post-baseline assessment; (2) long-term
developmental trajectories in cognition, while not substantially
different from short-term trajectories, yield larger odds of being
subsequentlyclassifiedascognitively impaired;and(3) individuals

who not only fail to benefit from expected retest-related gains
but also worsen in performance across years are at increased
odds of being classified as cognitively impaired at follow-up.
This latter result is consistent with previous literature asserting
that retest effects can be a useful indicator of cognitive decline
(Duff et al., 2011, 2012; Jutten et al., 2020). In the present study,
the predictive utility of short- and long-term slope estimates
to independently discriminate among cognitive status groups,
even as many as four years later, speaks to the promise of
individual differences in change for distinct time structures
as predictors of future cognitive impairment. By combining
modern design and analytics, researchers can systematically
disaggregate short- from long-term within-person variability
and utilize unbiased estimates of retest and developmental
change to predict cognitive health and impairment. By using
retest effects as a proxy for cognitive health, practitioners
and individuals may be able to track inconsistencies across
short-term temporal intervals, reducing the need for rigorous
annual cognitive neuropsychological testing batteries.Harnessing
the predictive validity of retest effects, by accurately parsing
them from developmental effects, can serve as a clinically
useful, non-invasive, and inexpensive tool for earlier detection
and increasing diagnostic accuracy of cognitive impairment.
Appropriate forethought and parameterization of retest effects
are therefore paramount to both reduce systematic bias in
longitudinal trend estimates as well as harness the unique
opportunity that retest effects offer as individual-differences
predictors.

StudyStrengths andLimitations
The current study showcases several strengths including the
exploration of differing psychomotor tasks based on lower and
higher-order cognitive demands (i.e., CRT vs. BRT), sufficient
sample sizes for each cognitive status classification, the 8-year
duration of the study permitting the examination of cognitive
impairment status for both near and distal follow-up periods, as
well as the use of performance variability (i.e., RTI) which has
been suggested to serve as an important proxy of CNS integrity
(Halliday et al., 2017). The present findings replicate previous
research on the clinical utility of RTI (e.g., MacDonald and
Stawski, 2020), as well as the predictive utility of retest effects
over shorter intervals (e.g., Duff et al., 2012; Jutten et al., 2020) as
early markers of shifts in cognitive health. Furthermore, previous
researchers have suggested the use of multilevel modeling and
intensive repeated measures burst designs for addressing retest
effects in developmental research (e.g., Nesselroade, 1991;
Sliwinski, 2008; Salthouse and Nesselroade, 2010; Sliwinski
et al., 2010a; Salthouse’s, 2013); this study is among the first
to combine such intricate design recommendations along
with appropriately matching quantitative analyses (three-
level multilevel modeling) for deriving unbiased estimates
of retest and their corresponding prediction of cognitive
status.

To be sure, this study is notwithout limitations. First, cognitive
status was determined using a battery of neuropsychological
measures and a distributional CIND classification, rather than
by clinical interview. Additionally, cognitive status classifications
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were determined by performance (below 1.5 SDs based on
age and education-matched peers) on the number of tasks;
classifications were not determined by the nature of cognitive
impairment (i.e., amnestic vs. non-amnestic) and therefore this
study could not address etiology-specific impairment subtypes
(MacDonald and Stawski, 2020). Second, the sample was fairly
homogeneous and composed of relatively healthy, well-educated
individuals which may restrict generalizability. Notwithstanding,
we were able to distinguish between cognitive subgroups in this
sample which highlights the robustness of our findings. It is
likely that a more heterogeneous, less healthy sample would
produce even stronger results. It is also recommended that
additional research employ this design and modeling approach
to prospectively identify whether individual differences in retest
slopes can predict cognitive impairment or dementia progression,
without a priori knowledge of cognitive groupings. Finally, our
model’s long-term developmental change estimates may remain
biasedby retest, given thatmere-exposure effects havebeen shown
to exert influence even across longer retest intervals spanning
years (Rabbitt et al., 2004; Salthouse et al., 2004). However, the
significantpredictiveabilityofour individualdevelopmental slope
estimates for BRT RTI in identifying individuals at risk of being
CIND-S and CIND-M at long-term follow-ups highlights the
utility of these slopes as predictors of cognitive status, irrespective
of whether corresponding long-term increases in RTI are slightly
underestimated due to generalized practice effects that spanmuch
longer retest intervals.

FutureDirections
Investigators seeking to further explore dissociable patterns
between retest and development should consider modeling
non-linear trends across short- and long-term trajectories.
Additionally, exploring whether retest effects can significantly
predict subtypes of CIND (e.g., non-amnestic vs. amnestic CIND)
will further elucidate the utility of retest effects as sensitive
indicators of cognitive decline. Finally, whereas the present study
focused on RTI, future investigations may utilize our approach
to explore the dissociable patterns of retest and developmental
change using other common metrics (e.g., central tendency,
accuracy) for cognitive function.

CONCLUSIONS

The present study overviews an innovative approach for
parameterizing retest effects in longitudinal designs where
developmental outcomes in older adulthood are of interest. We
leveraged an intensive repeatedmeasurement burst design as well
as three-level multilevel modeling to operationalize retest and
developmental change directly and distinctly in the same model.
Such an approach generates more definitive, less confounded
trajectories of change by disaggregating within-person short-
and long-term cognitive performance estimates. Further, when
investigating the predictive utility of short- and long-term
change in cognitive variability, we demonstrated that both retest
effects and developmental change estimate each independently
predicted cognitive status, thereby highlighting their potential
clinical utility as well as underscoring the importance of

accurately parameterizing both retest and developmental change
in longitudinal designs. Specifically, for measures implicating
executive functioning (i.e., BRT), individuals who fail to benefit
from the expected influence of retest and instead exhibit both
short- and long-term increases in RTI are at an increased risk
of being classified as cognitively impaired up to 4 years post
data collection. Researchers and clinicians alike may adopt the
synergistic advantagesof themeasurementburstdesignand three-
level multilevel modeling to facilitate better parameterization
of retest and developmental effects and improved predictivity
of cognitive function. In doing so, retest effects may serve as a
clinically useful tool for predicting prospective cognitive status
without the need for overly long or intensive neuropsychological
testing batteries.
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