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Introduction: Globally, women with dementia have a higher disease burden than men

with dementia. In addition, women with diabetes especially are at higher risk for cognitive

impairment and dementia compared to men with diabetes. Differences in the influence

of diabetes on the cerebral vasculature and brain structure may contribute to these

sex-specific differences. We examined sex-specific patterns in the relationship between

diabetes and brain structure, as well as diabetes and cognitive function.

Methods: In total, 893 patients [age 79 ± 6.6 years, 446 (50%) women] from the

Amsterdam Ageing Cohort with available data on brain structures (assessed by an MRI

or CT scan) and cognitive function were included. All patients underwent a thorough

standardized clinical and neuropsychological assessment (including tests on memory,

executive functioning, processing speed, language). Brain structure abnormalities were

quantified using visual scales.

Results: Cross-sectional multivariable regression analyses showed that diabetes was

associated with increased incidence of cerebral lacunes and brain atrophy in women (OR

2.18 (1.00–4.72) but not in men. Furthermore, diabetes was associated with decreased

executive function, processing speed and language in women [B −0.07 (0.00–0.13),

−0.06 (0.02–0.10) and −0.07 (0.01–0.12) resp.] but not in men.

Conclusions: Diabetes is related to increased risk of having lacunes, brain atrophy

and impaired cognitive function in women but not in men. Further research is required

to understand the time trajectory leading up to these changes and to understand the

mechanisms behind them in order to improve preventive health care for both sexes.

Keywords: sex-specific analysis, brain structure, diabetes, cognitive function, vascular aging, vascular cognitive

impairment and dementia
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INTRODUCTION

The prevalence of diabetes is increasing worldwide, with an
expected rise from 537 million adults in 2021 to 783 million in
2045 (Sun et al., 2021). This not only leads to high mortality –
more than 6.7 million deaths in 2021 alone – but also to high
morbidity, including an increased risk of cognitive impairment
and dementia (Arvanitakis et al., 2004; Yaffe et al., 2004; Liu, J.
et al., 2018). However, not all individuals are similarly affected by
the complications of diabetes. As early as 1979, and as confirmed
more recently by cohort studies, it was shown that type 2 diabetes
is a stronger risk factor for ischemic heart disease and stroke
in women than in men (Kannel and McGee, 1979; Peters et al.,
2014, 2020, 2021). Women with type 2 diabetes also have a higher
excess risk of cognitive decline and vascular dementia, than
their male counterparts, although the extent of these differences
are dependent of study populations and their characteristics
(Verhagen et al., 2022).

To date, it is unclear why men and women with diabetes are
dissimilarly impacted by dementia. Since sex-related differences
in the incidence of dementia are only present in the group
with vascular dementia – not in Alzheimer’s dementia – sex-
specific patterns of cerebral vascular pathology may play a role
in mediating these differences (Hayden et al., 2006; Chatterjee
et al., 2016; Liu et al., 2018). Cerebral small vessel disease
(cSVD) – including the presence of microbleeds, white matter
hyperintensities and lacunes – is more prevalent in individuals
with type 2 diabetes than those without (Troncoso et al., 2008;
Moran et al., 2013; Geijselaers et al., 2015; Ter Telgte et al., 2018;
Wardlaw et al., 2019). Although little is known about sex-specific
susceptibility for cSVD, it seems plausible that the increased
susceptibility of women to cerebrovascular complications of
diabetes is manifested as an increased susceptibility to disease
of the smaller cerebral vessels (Jiménez-Sánchez et al., 2021). In
addition, diabetes is associated with increased rates of atrophy
(Moran et al., 2013). Again, it is not known whether there are
sex-related differences in this association, but it is known that
atrophy and cSVD are closely related, and they are sometimes
even collectively referred to as “brain structure” or “markers
for brain health” (Mahammedi et al., 2021). Our primary goal
in the present analysis is to assess if there are sex-specific
pattern in the relationship between diabetes and brain structure,
including cSVD and atrophy, and cognitive function as their
clinical correlates.

METHODS

Study Population
The Amsterdam Aging Cohort is an ongoing longitudinal cohort
study which includes patients from the outpatient geriatric
clinic at the Amsterdam University Medical Center, location
VUmc (Rhodius-Meester et al., 2021). We included 893 patients
with brain imaging who attended the memory clinic seeking
medical care between February 2016 and June 2021. During
this period, almost a patients visiting the memory clinic
(89%) were willing to participate in the study. All patients
were given a complete standardized comprehensive geriatric

assessment (CGA) by trained nurses and doctors. This included
an assessment of multiple geriatric domains, including cognition,
physical function, nutrition, revision of medication in use and
detailed medical history. Cognitive diagnosis – such as dementia
(McKhann et al., 1984; Román et al., 1993; Neary et al., 1998;
McKeith et al., 2005; Dubois et al., 2007; Rascovsky et al.,
2011), mild cognitive impairment (MCI) (Albert et al., 2013),
or subjective cognitive decline (SCD) (Studart and Nitrini, 2016)
– were evaluated in a multidisciplinary consensus meeting. Our
analysis included only patients who underwent brain Magnetic
Resonance Imaging (MRI) or Computed Tomography (CT) as
part of the diagnostic work-up. All patients gave written informed
consent for their data to be used and the study was approved by
the local Medical Ethics Committee.

Cardiovascular Risk and Disease
Diabetes mellitus (DM) was defined either as having a history of
diabetes or using antidiabetic medication. Other cardiovascular
diseases – including coronary disease, heart failure, atrial
fibrillation, and peripheral artery disease – were assessed on the
basis of medical history and double checked with the patient and
their family or carer. We dichotomized smoking status (never
smoked v. ever smoked). Blood pressure and gait speed, as well
as patient height and weight, were measured during the visit
(Odden et al., 2012). Venous blood was drawn from all patients to
measure cholesterol levels and non-fasting glucose. Medication
as provided by the patient’s pharmacy was reviewed with the
patient, and with a partner, family member or carer if necessary.

Cerebral Small Vessel Disease
Brain imaging was performed during a patient’s first visit using
CT (n = 238), 1.5T MRI (n = 162) and 3T MRI (n = 478)
devices. The scans were reviewed and scored visually by two
trained experts supervised by a clinical radiologist. Atrophy was
scored on T1 sequence using visual rating scales ranging from
0 to 4 for medial temporal lobe atrophy (MTA), and from 0 to
3 for global cortical atrophy (GCA) (Harper et al., 2015). The
average of the left and right side was used for MTA.White matter
hyperintensities were scored on FLAIR/T2 sequence using the
Fazekas scale (0–3) (Fazekas et al., 1987), and the number of
microbleeds (on susceptibility-weighted imaging) and lacunes
were counted. In this manuscript, we refer to either brain
atrophy, white matter hyperintensities, lacunes or microbleeds
collectively as “brain structure abnormalities.”

Cognitive Function
To assess whether the observed differences in brain structure also
had a functional impact, cognition was included in the analysis.
Cognitive performance was assessed in a standardized manner
by trained neuropsychologists and divided into four domains:
memory, language, executive function, and processing speed. All
patients were assessed using the Mini Mental State Examination
(MMSE) and the Geriatric Depression Scale (GDS). Memory
was tested with the auditory verbal learning test (Van Der Elst
et al., 2005) and Visual Association Test (VAT) (Lindeboom et al.,
2002). Language was tested using the Category Fluency Animals
Test (Van Der Elst et al., 2006) and the VAT naming test, a
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TABLE 1 | Patient characteristics stratified for sex.

Total Men Women P-value

n = 893 n = 447 n = 446

Age in years 79.6 ± 6.6 79.1 ± 6.4 79.9 ± 6.7 0.096

Living situation 487 (54.5%) 330 (74.0%) 157 (35.1%) <0.001

Independent, with partner 329 (36.8%) 89 (20.0%) 240 (53.7%)

Independent, alone 32 (3.6%) 10 (2.2%) 22 (4.9%)

Institutionalized 45 (5.0%) 17 (3.8%) 28 (6.3%)

Other

Level of education <0.001

Low education 180 (20.1%) 81 (18.1%) 99 (22.2%)

Medium level education 317 (35.1%) 137 (30.7%) 176 (39.4%)

Higher education or university 396 (44.3% 225 (50.4%) 171 (38.3%)

Diabetesa 176 (19.7%) 105 (23.4%) 71 (15.9%) 0.004

Antidiabetic medication

Oral 112 (12.5%) 69 (15.4%) 43 (9.6%) 0.009

Insulin 42 (4.7%) 28 (6.3%) 14 (3.1%) 0.028

Cardiovascular diseases

Coronary disease 225 (25.2%) 155 (34.8%) 70 (15.7%) <0.001

Heart failure 90 (10.1%) 56 (12.6%) 34 (7.6%) 0.014

Atrial fibrillation 153 (17.1%) 87 (19.5%) 66 (14.8%) 0.060

CVA/TIA 186 (20.8%) 111 (24.9%) 75 (16.8%) 0.003

Peripheral artery disease 33 (3.6%) 16 (3.6%) 17 (3.8%) 0.861

Cardiovascular risk factors

Alcohol consumption in units/week 1 (0–5) 2 (0–7) 1 (0–5) 0.003

Smokers or ex-smokers 505 (56.6%) 289 (64.8%) 216 (48.3%) <0.001

Hypertension 466 (52.2%) 228 (51.1%) 238 (53.2%) 0.525

Hypercholesterolemia 221 (24.7%) 115 (25.8%) 106 (23.7%) 0.473

Glucose in mmol/L 6.9 ± 2.6 6.9 ± 2.9 6.4 ± 2.5 0.302

BMI in kg/m2 25.7 ± 4.6 26.1 ± 4.2 25.3 ± 4.9 0.012

Systolic BP in mmHg 145.8 ± 21.8 144.5 ± 21.3 147.0 ± 22.3 0.100

Diastolic BP in mmHg 80.6 ± 10.4 79.7 ± 10.5 81.4 ± 10.3 0.014

LDL in mmol/L 2.56 ± 0.98 2.62 ± 0.98 2.47 ± 0.97 0.959

HDL in mmol/L 1.58 ± 0.47 1.58 ± 0.47 1.58 ± 0.47 0.101

eGFR CKD-EPI in ml/min/1.73 m² 67.2 ± 16.2 67.0 ± 16.4 67.4 ± 16.0 0.755

Statin use 525 (58.8%) 208 (46.6%) 160 (35.8%) 0.001

Blood pressure lowering agents

Diuretics 147 (16.4%) 71 (15.9%) 76 (17.0%) 0.663

RAAS-inhibition 171 (19.1%) 90 (20.2%) 81 (18.1%) 0.434

Calcium-antagonists 63 (7.0%) 37 (8.3%) 26 (5.8%) 0.148

Beta-blockers 105 (11.7%) 61 (13.7%) 44 (9.8%) 0.075

Anticoagulation

DOAC/VKA 168 (18.8%) 96 (21.5%) 72 (16.1%) 0.038

Platelet inhibition 288 (32.2%) 169 (37.9%) 119 (26.6%) <0.001

MMSE 24 (21–26) 25 (22–28) 24 (21–28) 0.008

GDS 3 (1–5) 3 (1–5) 3 (1–5) 0.093

Brain imaging

MTA or GCA > 2 493 (55.2%) 282 (63.2%) 211 (47.2%) 0.007

WMH >2 227 (25.4%) 108 (24.2%) 119 (26.6%) 0.398

Lacunes ≥ 1 204 (22.8%) 112 (25.1%) 92 (20.6%) 0.098

Microbleeds ≥ 3 163 (18.3%) 90 (20.2%) 73 (16.3%) 0.213

(Continued)
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TABLE 1 | Continued

Total Men Women P-value

n = 893 n = 447 n = 446

Cognitive diagnosis 0.085

SCD 124 (13.8%) 62 (13.9%) 62 (13.9%)

MCI 267 (29.8%) 148 (33.2%) 119 (26.6%)

Dementia 502 (56.2%) 236 (52.9%) 266 (59.5%)

Data are presented as mean ± SD, n (%) or median [interquartile range]. Differences were tested with independent t-test for continuous variables and chi-square tests for categorical

and for not normally distributed continuous variables.

BMI, body mass index; BP, blood pressure; CVA, cerebrovascular accident; DOAC, Direct Oral Anti-Coagulant; GCA, Global Cortical Atrophy; MCI, Mild Cognitive Impairment; MTA,

Medial Temporal lobe Atrophy; TIA, Transient Ischemic Attack; SCD, Subjective Cognitive Decline; VKA, Vitamin K Antagonist; WMH, White Matter Hyperintensities.
atype I or II diabetes, not specified in our data collection.

The bold values indicate the p values which are statistically significant.

component of the VAT. Processing speed was examined with
the Stroop Color-Word test (SCWT) (Van der Elst et al., 2006)
and the Trail Making Test-A (TMT-A) (Reitan, 1955). Finally,
executive function was assessed with the Behavioral Assessment
of the Dysexecutive Rule-changing test (BADS) (Burrell and
Piguet, 2015) while correcting for speed using the SCWT and
the TMT. For the purposes of the analysis, all test results were
converted to Z-scores or inverse Z-scores. A higher Z-score
indicates poorer performance.

Statistical Analysis
Baseline characteristics for men, women, and the total population
are reported as mean (SD), or median (interquartile range) for
categorical variables. Differences between groups were analyzed
using Student’s T-test, the Mann-Whitney U-test, the Kruskal
Wallis test, ANOVA and chi-square testing where appropriate.
First, logistic regression analyses were performed to assess the
association of diabetes with brain structures separately for men
and women. For the logistic regression analysis, we dichotomized
the scores of the visual rating scale and the values for microbleeds
and lacunes. A cut-off value of two or more was used for
the imaging scores of atrophy (MTA and/or CGA) and WMH
(Rhodius-Meester et al., 2017). Microbleeds were dichotomized
as present or not present, and a value of one or more was
adopted a cut-off for lacunes (Henneman et al., 2009; Jokinen
et al., 2011). Second, linear regression analyses were performed
to assess the association of diabetes with cognitive functioning
separately for men and women. All analyses were adjusted
for age (model 1), and additionally for smoking and alcohol
consumption (model 2), and hypertension and cardiovascular
disease (coronary disease, heart failure, atrial fibrillation, stroke
or TIA and peripheral arterial disease) (model 3). In addition,
we adjusted for presence of subjective complaints, mild cognitive
impairment, or dementia (data not shown). For the analyses
of functional cognitive measures, furthermore, we corrected all
models for level of education. A p-value < 0.05 was considered
statistically significant. Data were analyzed with SPSS software,
version 26 (IBM Corp, Armonk, NY, USA).

To determine whether male or female sex and CVD was
associated with a higher risk of cSVD to a greater degree than
these factors individually, we added an interaction term to the

regression analysis, testing multiplicative interaction. To assess
additive interaction, we calculated RERI (Relative Risk due to
Interaction) (Knol et al., 2007; Knol and VanderWeele, 2012).
For this analysis, when the combined risk of sex and CVD was
higher than the sum of the risks associated with the individual
factors, the interaction between sex and CVD was considered to
constitute an additional risk factor. A RERI above zero indicated
that interaction between female sex and cardiac disease had an
additional effect on the outcome; a RERI below zero indicated
that this was the case for the interaction between male sex and
cardiac disease. In the RERI analysis, we also corrected for age,
smoking, and alcohol consumption, analogous to the logistic
regression analyses. These analyses were performed in R (R Core
Team, 2020).

RESULTS

A total of 893 patients were included in the analysis (Table 1).
The mean (SD) age was 79.6 years (73–86.2) and 50% were
women. The prevalence of diabetes was 23.3% in men and 15.7%
in women (p = 0.004), and men with diabetes were more often
insulin-dependent compared to women (6.3% for men, 3.1%
for women, p = 0.03). Women lived alone more often than
men and their level of education was lower. Further, women
had a lower prevalence of cardiovascular disease, consumed less
alcohol, smoked less, had a lower body mass index (BMI) and
a slightly higher diastolic BP, and they used less statins and
anticoagulation drugs (Table 1).Women had slightly lowerMini-
Mental State Examination scores, GDS, and men had higher
brain atrophy scores. No differences in cognitive diagnosis were
observed betweenmen andwomen. Stratified analyses for sex and
diabetes showed that differences in cardiovascular risk between
men and women were more pronounced in those with diabetes
compared to the total population (Supplementary Table 1).

Sex Differences in the Relationship
Between Diabetes and Brain Structure
The sex-specific logistic regression analyses of the relation
between diabetes and brain structures showed that in women,
the presence of diabetes was significantly associated with an
increased risk of having brain atrophy and lacunes (Table 2).
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TABLE 2 | The sex-specific relation of diabetes with changes in brain structure in older men and women (N = 893).

Men, n = 447 Women, n = 446 Interactiona p-valueb

OR (95% CI) OR (95% CI) OR (95% CI)

Atrophy

Non-diabetic Ref Ref Ref

Diabetic (model 1) 1.14 (0.60–2.18) 2.16 (1.00–4.67)* 1.22 (0.50–2.94) p = 0.66

Diabetic (model 2) 1.17 (0.60–2.29) 2.46 (1.11–5.42)* 1.32 (0.46–2.79) p = 0.77

Diabetic (model 3) 1.00 (0.51–1.96) 2.18 (1.00–4.72)* 1.17 (0.48–2.87) p = 0.71

WMH

Non-diabetic Ref Ref

Diabetic (model 1) 1.20 (0.76–1.89) 1.11 (0.65–1.89) 0.88 (0.47–4.00) p = 0.70

Diabetic (model 2) 1.15 (0.72–1.84) 1.09 (0.63–1.88) 0.85 (0.45–1.60) p = 0.61

Diabetic (model 3) 1.01 (0.63–1.62) 1.04 (0.61–1.79) 0.78 (0.41–1.49) p = 0.45

Microbleeds

Non-diabetic Ref Ref

Diabetic (model 1) 0.59 (0.26–1.32) 0.82 (0.31–2.20) 1.04 (0.32–3.34) p = 0.67

Diabetic (model 2) 0.65 (0.28–1.49) 0.86 (0.31–2.32) 0.97 (0.30–3.13) p = 0.95

Diabetic (model 3) 0.46 (0.20–1.00 0.75 (0.28–2.03) 0.93 (0.29–3.01) p = 0.90

Lacunes

Non-diabetic Ref Ref

Diabetic (model 1) 1.68 (0.92–3.04) 2.60 (1.24–2.46)* 1.10 (0.49–6.91) p = 0.82

Diabetic (model 2) 1.64 (0.87–3.07) 2.72 (1.24–5.93)* 1.00 (0.41–2.10) p = 0.84

Diabetic (model 3) 1.38 (0.74–2.56) 2.40 (1.13–5.07)* 0.95 (0.37–1.91) p = 0.63

WMH, White Matter Hyperintensities.

Data are presented as OR with (95% CI).

Model 1: adjusted for age.

Model 2: adjusted for age, smoking and alcohol consumption.

Model 3: Adjusted for age, hypertension, hypercholesterolemia, and presence of CVD (coronary disease, heart failure, atrial fibrillation, CVA or TIA, peripheral arterial disease).

*p-value < 0.05.
a Interaction term (sex multiplied by diabetes) added to the logistic regression.
bStatistical significance of the interaction term in the logistic regression analysis.

Age-adjusted odds ratios were 2.16 (95% CI 1.00–4.67) and
2.60 (95% CI 1.24–2.46). However, in men, diabetes was not
associated with an increased risk of having brain structure
abnormalities. Additional adjustments for cardiovascular risk
factors and disease (model 2 and 3) did not change these effect
estimates (Table 2). Adjusting for cognitive diagnosis (subjective
complaints, mild cognitive impairment, or dementia) did not
change the effect estimates (data not shown). Diabetes was not
associated with an increased risk of WMH and microbleeds.
When adding an interaction term to the regression, we did
not find a significant interaction of sex with diabetes. When
assessing additive interaction using RERI analysis, a trend was
seen toward an increased risk for women with diabetes of
atrophy and lacunes (RERI 0.45 for the presence of atrophy and
female sex, and 0.48 for the presence of lacunes and female sex)
(Supplementary Table 2).

Sex Differences in the Relationship
Between Diabetes and Cognitive
Performance
The sex-specific linear regression analyses of the relation between
diabetes and cognitive performance showed that diabetes in
women was associated with a significantly lower score of
executive function (beta z-score 0.07; 95% CI 0.00–0.14),

processing speed (beta 0.06; 95% CI 0.90–0.95), and language
(beta 0.07; 95% CI 0.01–0.12) (Table 3). In men, diabetes was not
associated with cognitive performance. Additional adjustments
for cardiovascular risk and disease, and cognitive diagnosis did
not change the effect estimates (data for cognitive diagnosis not
shown). We observed an interaction of sex and diabetes: women
with diabetes were at increased risk for impaired processing
speed (B 0.17 (0.03–0.33), p= 0.04). We observed no interaction
between diabetes and sex in the other cognitive domains.

DISCUSSION

In this study of 893 patients attending a geriatric outpatient
memory clinic, we found that the presence of diabetes was
associated with an increased risk of having brain structure
abnormalities, specifically lacunes and atrophy, in women but
not in men. We also found an additive interaction between
female sex and these brain structure abnormalities, as tested by a
RERI analysis. This finding complements previous studies which
showed that women with diabetes may bemore at risk of multiple
forms of vascular pathology than men with diabetes, including
coronary heart disease, stroke, and vascular dementia (Huxley
et al., 2006; Peters et al., 2014; Chatterjee et al., 2016). It could be
argued that other age-mediated cardiovascular risk factors such
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TABLE 3 | The sex specific relation of diabetes with cognitive performance in older men and women (N = 893).

Men Women Interactiona p-valueb

B (95% CI) B (95% CI) B (95% CI)

Memory

Non-diabetic Ref Ref Ref

Diabetic (model 1) 0.02 (−0.09 to 0.03) 0.02 (−0.07 to 0.03) 0.09 (−0.26 to 0.46) 0.59

Diabetic (model 2) 0.03 (−0.09 to 0.02) 0.02 (−0.07 to 0.03) 0.10 (−0.26 to 0.47) 0.57

Diabetic (model 3) 0.03 (−0.08 to 0.02) 0.01 (−0.06 to 0.03) 0.10 (−0.27 to 0.47) 0.59

Executive function

Non-diabetic Ref Ref

Diabetic (model 1) −0.02 (−0.09 to 0.04) −0.07 (−0.14 to 0.00)* −0.04 (−0.36 to 0.28) 0.81

Diabetic (model 2) −0.02 (−0.09 to 0.04) −0.06 (−0.13 to 0.01) −0.03 (−0.32 to 0.32) 0.98

Diabetic (model 3) −0.01 (−0.06 to 0.06) −0.07 (−0.13 to 0.00)* −0.01 (−0.33 to 0.32) 0.97

Processing speed

Non-diabetic Ref Ref

Diabetic (model 2) −0.03 (−0.08 to 0.01) −0.06 (−0.10 to 0.02)* 0.19 (0.03 to 0.34) 0.02

Diabetic (model 3) −0.03 (−0.08 – 0.02) −0.06 (−0.10 to 0.01)* 0.18 (0.02 to 0.33) 0.03

Diabetic (model 1) −0.02 (−0.07 to 0.01) −0.06 (−0.10 to 0.02)* 0.17 (0.03 to 0.33) 0.04

Language

Non-diabetic Ref Ref

Diabetic (model 1) −0.01 (−0.06 to 0.04) −0.07 (−0.12 to 0.01)* −0.18 (−0.53 to 0.17) 0.31

Diabetic (model 2) −0.01 (−0.05 to 0.07) −0.06 (−0.12 to 0.00) −0.12 (−0.48 to 0.22) 0.14

Diabetic (model 3) 0.00 (−0.05 to 0.04) −0.07 (−0.012 to 0.01)* −0.14 (−0.49 to 0.21) 0.43

Data are presented as unstandardized B with (95% CI).

A negative B signifies a correlation with worse Z-scores, e.g. with worse cognitive performance.

Model 1: adjusted for age and level of education; Model 2: adjusted for age, level of education, smoking and alcohol consumption; Model 3: Adjusted for age, level of education,

presence of CVD (coronary disease, heart failure, atrial fibrillation, CVA or TIA, peripheral arterial disease), hypertension and hypercholesterolemia.

*p-value linear regression < 0.05.
a Interaction term (sex multiplied by diabetes) added to the logistic regression.
bStatistical significance of the interaction term in the logistic regression analysis.

The bold values indicate the p values which are statistically significant.

as hypertension and cardiac disease play a role in mediating the
relationship between diabetes and brain structure abnormalities.
However, we show that this relationship was independent of age,
lifestyle, cardiovascular risk factors, and cardiac disease.

Additionally, we found that diabetes was significantly
associated with worse cognitive performance in terms of
executive function, processing speed and language, in the women
in our population but not in the men. An interaction between
sex and diabetes was also observed for processing speed, further
strengthening the hypothesis of a true sex difference. These
findings are in line with a recent study showing that women
with diabetes have a higher risk of accelerated cognitive decline
than men with diabetes (Verhagen et al., 2022). Sex-dependent
physiology, as well as socio-cultural differences between men and
women, may be the cause of these differences. We postulate a
number of hypotheses below which may explain the association
between diabetes and brain structure abnormalities as it is seen in
women but not in men.

Pathophysiological Differences
Mechanisms which may affect susceptibility to the vascular
complications of diabetes include altered coagulation, oxidative
stress, endothelial dysfunction and impaired vasodilation
(Kautzky-Willer et al., 2016; de Ritter et al., 2020). Women with

diabetes might be in a more pro-thrombotic state than men,
which may lead to lacunes and atrophy, and a more general
decline in brain health, even when the prevalence of diabetes
is similar in both sexes (Smith et al., 2012; Neergaard-Petersen
et al., 2014). They generally also have greater levels of systemic
inflammation and more oxidative stress than men with diabetes,
leading to impaired vascular reactivity, which is specifically
associated with the occurrence of lacunes (Mrgan et al.,
2018). Sex-dependent differences in vascular physiology may
therefore render women more susceptible to the cerebrovascular
complications of diabetes, and also lead to functional decline.

Levels of central adiposity in men and women with diabetes
may also be of importance. There is evidence to suggest that
women have a poorer cardiovascular risk profile than men
when they are diagnosed with diabetes, especially when central
adiposity is measured (Paul et al., 2012; Peters et al., 2016a). This
may be the result of a longer period of development of diabetes
in women: women are more insulin-sensitive in middle age, and
their insulin sensitivity deteriorates more than inmen before they
reach the diagnosis of diabetes. A longer period of time before
a formal diagnosis of diabetes can be made may also lead to
an increased occurrence of other risk factors such as abdominal
adiposity, and to higher levels of subclinical damage mediated
by hyperglycemia (Woodward et al., 2015; Peters et al., 2016b).

Frontiers in Aging Neuroscience | www.frontiersin.org 6 June 2022 | Volume 14 | Article 885787

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Thomas et al. Sex-Specific Brain Aging and Diabetes

Abdominal adiposity is independently related to brain structure
abnormalities, including silent lacunary infarcts, and therefore
may mediate the increased prevalence in women with diabetes
by comparison with men (Yamashiro et al., 2014).

Furthermore, there is little awareness in the field of geriatrics
about the long-term cardiovascular effects of pregnancy-related
complications, as well as other women-specific factors such as
timing ofmenopause and gestational diabetes (Keskin et al., 2015;
Kuh et al., 2018). These important cardiovascular parameters are
therefore often not registered in medical files, as is the case in
our dataset (Wilkins-Haug et al., 2015). It has long been known
that menopausal status and the timing of menopause influence
cardiovascular risk, abdominal obesity, occurrence of DM, and
clinical course of dementia (Archer, 2009; Gong et al., 2021;
Hickey and Mishra, 2021). They may therefore also have affected
the clinical outcome in our study. Further studies investigating
the long-term effects of DM should therefore include sex-
specific cardiovascular risk factors to assess their impact on brain
structure and cognitive function.

Sex-Related Differences in Current Care
As a consequence of ongoing lower inclusion rates of women
in studies investigating the long-term effects of diabetes, at least
in part, it is unclear which mechanisms lead to the poorer
clinical outcome of women with diabetes (Norhammar and
Schenck-Gustafsson, 2013). However, there are several scientific
findings which may play a role. Social gender norms have a
profound influence on patients’ disease perception, moment
of referral, interpretation of symptoms and the likelihood of
receiving guideline-recommended treatment. In the case of
diabetes, evidence shows that women diagnosed with diabetes
attain glycemic targets less often, and are screened less for the
complications of diabetes (Choe et al., 2018). Risk factor targets
for co-morbid cardiovascular disease are also less often achieved
in women (Ferrara et al., 2008; Wannamethee et al., 2012;
Rossi et al., 2013; de Jong et al., 2020). Since early intervention
in diabetes improves long-term outcome, this may also have
implications for the incidence of (cerebral) complications (Group
UPDS, 1998). The same truth holds for cognitive impairment:
women with dementia are generally referred later than men
(Howard et al., 1998; Sourial et al., 2020). Women might
therefore experience delay in receiving adequate supporting care
when experiencing cognitive impairment. Hence, inequities in
the recognition and treatment of (cardiovascular) risk factors for
dementia, as well as the recognition and treatment of dementia
itself, may play a role in the occurrence of sex-related differences
in the cerebral complications of diabetes.

Strengths and Limitations
A major strength of our study is the standardized work-up
of a large group of “real-life” patients. We included a multi-
domain assessment which was part of medical routine care.
Because of this integration in regular care practice, routinely used
measurements and tools were used, facilitating the translation
of our research to clinical practice. In addition, we combined
these clinically used parameters with imaging markers as well as
extensive neuropsychological testing, bridging the gap between

etiological research and clinical practice. Our study has also
several limitations. Firstly, because of our cross-sectional design,
we cannot draw conclusions about the causality of our findings.
We balanced this with logistic regression models in which we
corrected for confounding factors. Related to this, we have no
data showing possible differences between brain structure at the
time of diagnosis of diabetes, and later life. It is possible that
women with diabetes already have worse brain health at this
time, and that it is not a direct consequence of diabetes, but
merely coexists due to other pathological processes. Furthermore,
HbA1c and time since diagnosis of DM were not included in
our dataset. We were therefore unable to assess the influence of
glycemic regulation. We did include non-fasted glucose, which
was similar for men and women, in our baseline characteristics.
Also, it is remarkable that the mean age in our sample is
similar for men and women. Since the life expectancy in women
exceeds the life expectancy in men, we would expect a higher
mean age for women. The similar age for men and women
may reflect underlying gender bias in referral to our clinic.
However, it may also be explained by other forms of sampling
bias not related sex or gender. Furthermore, as mentioned
before, women-specific pathology was hardly registered at all
in our patient files. A history of gestational diabetes, polycystic
ovary syndrome and premature menopause contribute to the
excess risk of diabetic complications and diabetes (Soedamah-
Muthu et al., 2004; Huxley et al., 2006; Peters et al., 2014).
Furthermore, preeclampsia is related to structural brain damage
later in life (Siepmann et al., 2017). Lastly, premature menopause
is additionally associated with poorer cognitive performance and
a higher risk of dementia later in life (Ryan et al., 2014). However,
the precise relationship between cerebrovascular disease and
pregnancy-related cardiovascular disease remains unclear, since
a recent review concluded that gestational hypertension is not
related to cerebral stroke (Lo et al., 2020). Finally, other factors
that affect the social position of patients and therefore their
quality of care – such as class, cultural background, and variables
associated with poorer referral and poorer health care provision
in general – were not available in our study (Vaccarino et al., 2002;
LaVeist et al., 2003).

In conclusion, this sex-specific analysis of the association
between diabetes and its cerebrovascular complications shows
that diabetes is significantly associated with brain structure
abnormalities and function in women but not in men. We can
only speculate on the nature of these differences, and whether
they are dependent on gender or sex. Although we did not
find a statistically significant interaction between female sex and
diabetes, the differences in associations for men and women
are striking and underline the importance of the sex-specific
analysis of clinical data. Further research should at least include
data on abdominal obesity and female-specific risk factors such
as pregnancy-related complications and menopause, and more
studies are needed to elucidate the mechanisms which contribute
to the association between diabetes, brain structure and cognition
in women. Elucidating the sex-specific relationships between
diabetes and cSVD may help to understand the gap in burden
of dementia and help to achieve more equity in the care for this
group of patients.
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