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Background: Alzheimer’s disease (AD) is the most common type of neurodegenerative
disease. Tau pathology is one of the pathological features of AD, and its progression
is closely related to the progress of AD. Immune system dysfunction is an important
mediator of Tau pathological progression, but the specific molecular mechanism is still
unclear. The purpose of this study is to determine the immune hub genes and peripheral
immune cell infiltration associated with the Braak stages, and the molecular mechanisms
between them.

Methods: In this study, 60 samples with different Braak stages in the GSE106241
dataset were used to screen Braak stages-related immune hub genes by using the
WGCNA package in R and cytoHubba plugin. The temporal lobe expression data in the
Alzdata database were used to verify the results. The correlation between the expression
level of immune core genes and the pathological features of AD was analyzed to evaluate
the abundance of peripheral immune cell infiltration and screened Braak stages-related
cells. Finally, we used correlation analysis of immune hub genes and immune cells and
Gene Set Enrichment Analysis (GSEA) of them.

Results: Seven genes (GRB2, HSPO0AAT, HSPA4, IGF1, KRAS, PIK3R1, and PTPN11)
were identified as immune core genes after the screening of the test datasets and
validation of independent data. Among them, Kirsten rat sarcoma viral oncogene
homolog (KRAS) and Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1) were
the most closely related to Tau and Ap pathology in AD. In addition, the ImmuneScore
increased gradually with the increase of Braak stages. Five types of immune cells
(plasma cells, T follicular helper cells, M2 macrophage, activated NK cells, and
eosinophils) were correlated with Braak stages. KRAS and PIK3R1 were the immune
core genes most related to the abnormal infiltration of peripheral immune cells. They
participated in the regulation of the pathological process of AD through axon guidance,
long-term potentiation, cytokine—cytokine receptor interaction, RNA polymerase, etc.
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Conclusion: The KRAS and PIK3R1 genes were identified as the immune hub genes
most associated with Tau pathological progress in AD. The abnormal infiltration of
peripheral immune cells mediated by these cells was involved in the Tau pathological
process. This provides new insights for AD.

Keywords: Alzheimer’s disease, Braak stage, immune hub gene, immune cell infiltration, Tau pathology

INTRODUCTION

Alzheimer’s disease (AD), the most commontype of dementia,
is a progressive neurodegenerative disease that is characterized
by impairment in multiple cognitive domains, executive
functioning disorders, and a range of neuropsychiatric symptoms
(Cummings, 2021; Seto et al., 2021). Extracellular amyloid-
B (AB) plaques and intracellular neurofibrillary tangles are
the neuropathological hallmarks of AD (Busche and Hyman,
2020; Kent et al., 2020). However, the classical amyloid cascade
hypothesis cannot explain all the pathological processes of
AD, and there is no significant correlation between the AP
compliance level and the cognitive level of patients with AD
(Giacobini and Gold, 2013; Roda et al., 2022). More importantly,
most therapeutic strategies that target different stages of the
amyloid pathway have failed to achieve expected efficacy (Long
and Holtzman, 2019; Mecocci and Boccardi, 2021). Another
important pathological feature of AD is neurofibrillary tangles
formed by the misfolding of intracellular Tau protein. This
abnormal folding of Tau protein is associated with neuronal loss
and synaptic dysfunction (Malpetti et al., 2020). As the disease
progresses, Tau pathology spreads in a relatively stereotypic
progressive pattern. According to the distribution stage, Braak
et al. proposed that Tau pathology to be divided into six different
stages, which are closely related to the severity of cognitive
impairment and neuronal loss of patients with AD (Chung et al.,
2021; Roda et al., 2022). Therefore, exploring the pathogenesis
of Tau pathologic progression may provide important targets for
preventing or delaying AD progression.

Recently, the important role of immune system dysfunction
in aging or neurodegenerative diseases has attracted extensive
attention (Passaro et al.,, 2021). In the central nervous system
(CNS), microglia are the most important innate immune cells.
They originate from myeloid progenitors in the yolk sac and
play a physiological role in the clearance of abnormal aggregates,
signal transduction, maintenance of homeostasis, and synaptic
plasticity (Cisbani and Rivest, 2021). In AD, microglia can be
activated by misfolded proteins and participate in a series of
pathological processes, such as neuroinflammatory initiation, Ap
aggregation, and neuron loss (Ennerfelt and Lukens, 2020; Qian
et al., 2021). Recent studies on patients with AD and animal
models have proved that microglia are important vectors in
the transmission of Tau pathology (Hopp et al., 2018; Pascoal
etal., 2021). What's more, the interaction between the peripheral
immune system and the CNS also exists in AD (Passaro et al.,
2021). In a healthy state, peripheral immune cells are restricted to
enter the CNS by the presence of structures, such as blood-brain
barrier (Greenhalgh et al., 2020). When the barrier permeability
increases due to aging, trauma, infection, neurodegeneration,

etc., peripheral immune cells, such as monocytes, macrophages,
neutrophils, and T cells can infiltrate into the brain and affect
glial and neuronal function (Greenhalgh et al., 2020). In the
brain of patients with AD, extravascular T cells were detected,
specifically in the hippocampus, and the abundance of T
cells was correlated with tau pathology without AB pathology
(Merlini et al., 2018). Another study confirmed that T cells
infiltration abundance in the brain of patients with AD was
positively correlated with p-Tau levels (Zotova et al, 2013).
These data strongly suggest a close relationship between immune
system dysfunction and AD-associated Tau pathological process.
However, understanding the molecular biological mechanism of
immune system-driven abnormal Tau propagation accelerates
AD progression remains unclear.

In this study, we used weighted gene co-expression network
analysis to identify immune hub genes closely associated with
Braak stages in AD and then validated by using independent
datasets. In addition, we analyzed the abundance of peripheral
immune cell infiltration in the brain associated with Braak
stages in AD through the CIBERSORT algorithm. Finally, the
correlation between immune hub genes and the abundance of
peripheral immune cell infiltration was analyzed. This study
will provide an important basis for exploring the cellular and
molecular mechanisms related to the Tau pathological process of
AD from the perspective of immunology.

MATERIALS AND METHODS

Data Collection and Processing

The GSE106241 data file was downloaded from the NCBI Gene
Expression Omnibus public database (GEO, https://www.ncbi.
nlm.nih.gov/geo/) annotated by GPL24170 as a Series Matrix
File. The dataset included data on gene expression profiles from
60 human temporal cortical tissue samples with varying degrees
of AD-related neurofibrillary pathology. The AD pathological
features, such as Braak stages, a, B, and y—secretase activity,
and APj_4; levels of each sample were downloaded from the
GEO database to perform Pearson’s correlation analysis with
Braak stages-related immune hub genes (https://ncbi.nlm.nih.
gov/geo/geo2r/?acc=GSE106241). The AlzData database was a
full collection of current high-throughput omics databases,
such as genomics (GWAS and Whole Exome Sequencing),
Proteomics, Functional genomics, and Transcriptomes data (Xu
et al., 2018). In this study, we selected transcriptome expression
data of temporal cortical from AlzData as a validation dataset,
including 39 healthy controls and 52 patients with AD. In
addition, the expression level of the Braak stages-related immune
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hub gene at the single-cell level in the brain was analyzed and
visualized through the AlzData database.

Construction of WGCNA

Based on the genetic and clinical data in GSE106241, a weighted
messenger RNA (mRNA) co-expression network was constructed
using the WGCNA package in R. First of all, we used the
gene expression spectrum to calculate the Median Absolute
Deviation (MAD) of each gene, and removed the first 50% of
the smallest MAD genes. Then, we used the goodSamplesGenes
method of R software package WGCNA to remove outlier genes
and samples. WGCNA was further used to build a scale-free
co-expression network. After the acquisition of an appropriate
power (B = 6), the adjacency matrix was transformed into the
topological overlap matrix (TOM). Third, hierarchical clustering
was performed to identify modules, and the eigengene was
calculated. Finally, we calculated the correlation between Braak
stages and each module through Pearson’s correlation analysis.

Gene Ontology Functional, Kyoto
Encyclopedia of Genes and Genomes
Pathway Enrichment, and

Protein-Protein Interaction Network
Analysis

Functional enrichment was analyzed through the STRING online
tool to investigate GO cellular components (CC), biological
process (BP), molecular function (MF), and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways related to potential
immune-related pathogenesis of Braak stages in AD. The
interaction score was 0.4. The false discovery rate (FDR)
was < 0.05. The protein-protein interaction (PPI) network
was constructed through the NetworkAnalyst based on the
STRING interactome with a 900 confidence score (https://www.
networkanalyst.ca/) (Xia et al., 2015).

Immune-Related Hub Genes Selection
and Validation

Then, the total of 2,483 immune-related genes list was download
from the Immunology Database and Analysis Portal (ImmPort)
(https://www.immport.org/home) to screen out the DEIRGs
(Bhattacharya et al., 2014). The cytoHubba plugin was adopted
to screen out immune-related hub genes through three different
algorithms [Edge Percolated Component (EPC), Maximum
Neighborhood Component (MNC), and Degree]. In total, 91
temporal lobe transcriptomic data (39 healthy controls and 52
patients with AD) from the AlzData database were used as a
validation dataset to analyze the difference in immune hub genes
between the AD and HC groups.

Immune Cell Infiltration Abundance
Analysis

In this study, CIBERSORT was used to assess the abundance of 22
types of immune cells in 60 samples with different Braak stages.
CIBERSORT is an analytical algorithm that uses normalized
gene expression profiles to assess the abundance of specific cells

in complex tissues (Newman et al., 2015). After evaluating the
abundance of 22 types of immune cells in each sample, we
performed differential analysis and correlation analysis according
to the Braak stages of the samples.

Gene Set Enrichment Analysis

The Gene Set Enrichment Analysis (GSEA) was used to identify
the different signal pathways between the high and low levels
of immune hub genes in GSE106251. The annotated gene set
c2.cp.kegg.v7.1.symbols.gmt was chosen as the reference gene list.
The cut-off value for the GSEA was set as p < 0.05.

Statistical Analysis

Statistical analysis and graphs were performed using Sangerbox
online software (http://sangerbox.com/) and GraphPad Prism 5.0
software. A value of p less than 0.05 was considered statistically
significant. Multiple testing corrections were made using the
Bonferroni correction and Duncan’s multiple range test.

RESULTS

WGCNA Was Established to Screen

Genes Associated With Braak Stages

The WGCNA method was used to identify genes associated
with Braak stages. First of all, we screened the top 50% highest
variance of the expression profile (a total of 9,386 genes) from 60
samples for WGCNA analysis. Then, the scale-free network was
constructed with a p value equal to 6 (R? = 0.74) (Figures 1A,B).
Finally, a total of 14 co-expression modules were identified
(Figure 1C). The connectivity was calculated and cluster analysis
was performed among the 14 modules (Figure 1D). To further
analyze the association between the models and phenotype, we
calculated the correlation coefficients of each model with Braak
stages. The results showed that the blue module (r = —0.32,
p = 0.01) was the most negatively and the dark gray module
(r = 0.31, p = 0.02) was the most positively associated with the
Braak stage (Figures 1E-G). In total, 5,374 genes from these two
modules were selected for the next analysis.

Enrichment Analysis of Braak
Stages-Related Immune Gene in AD and
PPI Network Analysis

We intersected the above Braak stages-related immune genes
screened by WGCNA with immune gene in the ImmPort
database to screen out Braak stages-related immune genes.
Among them, there were 260 Braak stages-related immune
genes (Figure 2A and Supplementary Table 1). The enrichment
analysis of GO cellular components revealed that these
genes were mainly located at the extracellular region, cell
surface, proteasome complex, MHC protein complex, etc.
(Figure 2B). The biological processes of each of them were
associated with signal transduction, cytokine-mediated signaling
pathway, response to cytokine, cellular response to cytokine
stimulus, etc. (Figure 2C). The enrichment analysis of GO
molecular function showed that Braak stage-related immune
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genes were involved in signaling receptor binding, growth
factor activity, cytokine activity, peptide antigen binding, etc.
(Figure 2D). The KEGG enrichment analysis revealed that
these genes were involved in AD, antigen processing and
presentation, natural killer cell-mediated cytotoxicity, B-cell
receptor signaling pathway, etc. (Figure 2E). The PPI network
of the 260 Braak stages-related immune genes was constructed
(Figures 2F,G). These results strongly suggest the role of
immune-related genes in the pathological progression of
Braak stages in AD.

Screening of Braak Stages-Related and

Validation in Database

The cytoHubba plugin was adopted to screen out Braak stages-
related immune hub genes through three different algorithms
(EPC, MNC, and Degree). The top 15 hub genes, filtered by
the EPC algorithm, were CD86, HSPA4, FOS, GRB2, PTPN11,
Kirsten rat sarcoma viral oncogene homolog (KRAS), PTPRC,
CXCL12, TLR2, Phosphoinositide-3-Kinase Regulatory Subunit
1 (PIK3R1), IGF1, JUN, HSP90AAI1, STAT3, and SOCS3
(Figure 3A). The DEGREE screened out TLR2, FOS, GRB2,
HSPAS, IGF1, PTPRC, STAT3, HSP90AAL, JUN, CD86, PIK3R1,
PTPN11, KRAS, HSPA4, and SOD1 (Figure 3B). TLR2, FOS,

GRB2, HSPAS, IGF1, PTPRC, STAT3, HSP90AA1, JUN, CD86,
PIK3R1, PTPN11, KRAS, HSPA4, and SODlwere found out
by the MNC (Figure 3C). Finally, the co-existing gene of
the three algorithms was selected as the hub gene, such as
CD86, HSPA4, FOS, GRB2, KRAS, PTPNI11, PTPRC, TLR2,
PIK3R1, IGF1, JUN, HSP90AA1, and STAT3 (Figure 3D). After
that, we then validated these Braak stages-related immune hub
genes by using the temporal lobe transcriptome data of 39
healthy controls and 52 patients with AD from the Alzdata
database. The results showed that the expression levels of GRB2,
HSP90AA1, HSPA4, IGF1, KARS, PIK3R1, and PTPNI11 were
significantly decreased in the AD group compared with the HC
group (Figures 3G-J,L-N), and the expression levels of CD86,
FOS, JUN, PTPRC, STAT3, and TLR2 were not statistically
different between the AD and HC groups (Figures 3E,EK,O-
Q.

Correlation Analysis of Braak
Stages-Related Immune Hub Genes With
Pathological Features of AD

We further analyzed the correlation between Braak stages-
related immune core genes and AD pathological features, such
as Braak stages, a, P, y-secretase activity, and AB;_4, levels.
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The expression levels of GRB2 (r = —0.321, p = 0.002),
HSP90AA1l (r = —0.359, p < 0.001), IGF1 (r = —0.191,
p = 0.07), KRAS (r = —0.344, p < 0.001), PIK3R1 (r = —0.467,
p < 0.001), and PTPN11 (r = —0.291, p = 0.005) were
negatively correlated with the grade of Braak stages (Figures 4A-
G). The expression level of STAT3 was positively correlated
with Braak stages (r = 0.264, p = 0.012) (Figure 4H). In
amyloidogenic APP processing, we found that the y-secretase
activity was negatively correlated with the expression level
of KARS (r = —0.40, p = 0.002) and PIK3R1 (r = —0.35,
p = 0.009). The B-secretase activity was negatively correlated
with the expression level of GRB2 (r = —0.36, p = 0.006),
KRAS (r = —0.63, p < 0.001), PIK3R1 (r = —0.49, p < 0.001),
and was positively correlated with PTPNI1 expression level
(r = 044, p < 0.001). In addition, the APj_4 levels were

negatively correlated with KRAS (r = —0.29, p = 0.029) and
PIK3R1 (r = —0.31, p = 0.019). However, the expression level
of KRAS (r = —0.34, p = 0.011) was negatively correlated with
the a-secretase activity in non-amyloidogenic APP processing
(Figure 4I). Accordingly, we found that KRAS and PIK3R1
were not only involved in the Tau pathologically related
Braak stages, but also closely related to the regulation of
AP pathology.

Abundance of Immune Cell Infiltration in
Patients With AD With Different Braak
Stages

Subsequently, we estimated the abundance of 22 kinds of immune
cell infiltration in the GSE106241 samples by CIBERSORT
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to explore the role of the peripheral immune system in
the progression of Braak stages in AD. We found that the
ImmuneScore, which represents the total level of immune
cells infiltration, increased with the increase of Braak stages
(Figures 5B,C). In immune cell subtype analysis, four kinds
of immune cells were significantly different in different
Braak stages (Figure 5A). Among them, the Braak stages
were negatively correlated with the abundance of follicular
helper T cells (r = —0.337, p = 0.008), activated NK cells
(r = —0.226, p = 0.082), and eosinophils (r = —0.348,
p =0.008) (Figures 5E,G,H). The abundance of M2 macrophages
was positively correlated with Braak stages (Figure 5F). In
addition, the abundance of plasma cells was negatively correlated
with Braak stages (Figure 5D). Therefore, we speculated

that peripheral immune cells play an important role in the
pathological process of AD.

Correlation Analysis of Braak
Stages-Related Immune Hub Genes and

Immune Cells

To explore whether these two core genes were involved in
regulating abnormal infiltration of peripheral immune cells, we
conducted a correlation analysis between immune hub genes
and differentially infiltrated immune cells (Figures 6A,B). The
ImmuneScore was negatively correlated with GRB2 (r = —0.31,
p=0.014), HSP90AA1 (r = —0.44, p < 0.001), HSPA4 (r = —0.36,
p =0.005), KRAS (r = —0.66, p < 0.001), and PIK3RI (r = —0.73,
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p < 0.001) expression level, and was positively correlated with
the PTPN11 (r = 0.29, p = 0.025). The abundance of plasma
cells was positively correlated with GRB2 (r = 0.43, p < 0.001),
HSP90AAL (r = 0.45, p < 0.001), HSPA4 (r = 0.32, p = 0.013),
KRAS (r = 0.54, p < 0.001), and PIK3R1 (r = 45, p < 0.001)
expression levels. The abundance of follicular helper T cells was
positively correlated with GRB2 (r = 0.32, p = 0.011), HSP90AA1
(r = 0.27, p = 0.034), KRAS (r = 0.37, p = 0.004), and PIK3R1
(r=43,p < 0.001) expression levels. The abundance of activated
NK cells was positively correlated with KRAS (r = 0.34, p = 0.008)
and PIK3R1 (r 0.43, p = 0.002). The abundance of M2
macrophage was negatively correlated with HSPA4 (r = —0.27,
p =0.038), KRAS (r = —0.26, p = 0.045), and PIK3R1 (r = —0.45,
p < 0.001). Among them, we found that KRAS and PI3KR1

were the two most important hub genes in Braak stages-related
immune regulation (Figure 6B).

Single Cell Expression Level Detection
and GSEA for Braak Stages Related

Immune Hub Gene

To explore the function of Braak stages-related immune hub
genes, we analyzed the expression level at the single-cell level
of brain tissue. The results showed that the expression level of
KRAS was the highest in neurons, but was limited in the other five
cell types (endothelial, astrocytes, microglia, oligodendrocytes,
and oligodendrocyte precursor cell) (Supplementary Figure 1A).
The expression level of PIK3R1 was relatively high in six
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kinds of cells, among which the expression level was highest
in neurons and astrocytes (Supplementary Figure 1B). After
that, we explored the potential molecular mechanisms of
KRAS and PI3KRI associated with Braak stages in AD
through GSEA. The results showed that axon guidance, long-
term potentiation, inositol phosphate metabolism, and GnRH
signaling pathway were significantly enriched in groups with
high KRAS expression (Figure 7A). In addition, the high
expression of PI3KR1 is involved in AD and Ubiquitin mediated
proteolysis (Figure 7B). The PI3KR1 low expression group
was related to cytokine-cytokine receptor interaction and RNA
polymerase (Figure 7B). These results suggested that both
KRAS and PI3KR1 were involved in the pathway of AD-related
pathological mechanisms.

DISCUSSION

Alzheimer’s disease, the most common form of dementia,
currently has limited therapeutic options. Af and Tau are two
typical pathological features of AD. Most previous studies on
therapeutic strategies for AD have focused on the amyloid
pathway. But almost all these studies ended in failure. In
addition, the Tau pathological degree is closely related to the
cognitive impairment level of patients with AD, while Af
pathology cannot reflect the severity of patients with AD (Chung
et al., 2021; Roda et al, 2022). In recent years, the role of
the immune system in regulating the progress of AD was
the latest hotspot. Pascoal et al. (2021) first confirmed the
role of activated microglia in the spatial transmission of Tau
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protein in the brain of patients with AD by positron emission critical for the maintenance of the CNS homeostasis and the
tomography (PET). However, it is not only the central innate progress of AD (Jevtic et al., 2017; Castellani and Schwartz,
immune cells but also the peripheral immune system that are  2020). Therefore, exploring the molecular mechanism of immune
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and FDR, false discovery rate.
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system progression in Tau pathology in patients with AD will
provide new strategies for treatment.

In the present study, we identified thirteen immune hub genes
(CD86, HSPA4, FOS, GRB2, KRAS, PTPN11, PTPRC, TLR2,
PIK3R1, IGF1, JUN, HSP90AAI, and STAT3) associated with
Braak stages in AD through WGCNA and the cytoHubba plugin.
After verifying the expression level in independent datasets and
correlation analysis of AD pathological features, KRAS and
PI3KR1b were finally identified as the most reliable Braak stages-
associated immune hub genes. KRAS was the most common
oncogene. The mutations of the KRAS gene can accelerate and
maintain tumorigenesis (Mustachio et al.,, 2021). However, its
role in neurodegenerative diseases has been limited. In our
results, the expression level of KRAS was significantly decreased
in patients with AD, and was negatively correlated with Braak
stages and AP pathology. In APP/PS1 mice, the expression level
of Kras was also decreased (Xiao et al., 2021). The GSEA showed
that the axon guidance and long-term potentiation were enriched
in the high expression level of KRAS. This was consistent with the
result that KRAS was highly expressed in neurons. A previous
study reported that KRAS was selected as putative neuronal
cell cycle re-entry related factor in AD (Yuen et al, 2022). In
BV-2 cells, AP can induce cell apoptosis by decreasing KRAS
expression levels (Xiao et al., 2021). These results suggested the
function of KRAS in regulating the cell cycle and promoting
cell proliferation in the brain. However, there was no significant
correlation between the immune signaling pathway and KRAS in
GSEA analysis, which may be related to the dataset selected in
this study. PIK3R1 was a member of the class IA in the PI3K
family, which took part in the regulation of cell proliferation,

differentiation, survival, etc. (Huang et al., 2020). Genome-wide
network analysis has reported that the PIK3R1 was associated
with AP production in AD (Cong et al., 2017). Moreover, the
PIK3R1 polymorphism (Met326lle) was closely associated with
the genetic susceptibility of female patients with AD patients,
which may be related to interference with insulin signals in the
brains of patients with AD (Liolitsa et al., 2002). In this study,
we identified PIK3R1 as a BRAAK stage-associated immune hub
gene. Its expression level was decreased in patients with AD and
negatively correlated with BRAAK stage and A pathology. In
the brain, PIK3R1 was widely expressed, such as endothelial,
astrocyte, microglia, oligodendrocyte, OPC, and neuron. The
GSEA showed that AD, ubiquitin-mediated proteolysis, and
RNA polymerase were enriched in the high PIK3R1 expression
level AD group. In addition, our result showed that PIK3R1was
involved in the regulation of immunity through cytokine-
cytokine receptor interaction. More importantly, previous studies
have reported that heterozygous mutation in PIK3R1 lead to
activated phosphoinositide 3-kinase delta syndrome (APDS),
which is a primary immunodeficiency and immune dysregulation
(Nunes-Santos et al, 2019). It is speculated that the low
expression level of PIK3R1 in AD may affect the function
of immune cells, such as microglia. However, the specific
mechanisms of KRAS and PIK3R1 in AD need to be further
verified in vivo or in vitro.

However, due to the limitations of previous research
techniques, it is difficult to conduct a relative quantitative
analysis of peripheral immune cells in the CNS of AD and
further study their mechanism of action. In this study, the
CIBERSORT was used to evaluate the relative abundance of
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immune cell infiltration associated with Braak stages in patients
with AD. Our results showed that the ImmuneScore increased
with Braak stages, which suggested the chronic activation of the
immune system in patients with AD. Among the 22 immune cell
subtypes, we found that five types of immune cell abundance were
associated with Braak stages, such as plasma cells, T follicular
helper cells, M2 macrophage, activated NK cells, and eosinophils.
T follicular helper cells and plasma cells were adaptive immune
cells. Previous studies have shown that T follicular helper cells can
assist B cells to perform effector humoral immunity (Gowthaman
et al, 2021). This may explain the reduced consistency of T
follicular helper cells and plasma cells with high Braak stages
group in our results. In addition, the abundance of activated
NK cells was also decreased in the high Braak stages group. In
the 5XFAD model, the absence of B cells, T cells, and NK cells
can accelerate the disease progression (Marsh et al., 2016). As
for eosinophils, our results confirmed that eosinophil abundance
was inversely associated with the Braak stage. Jiremo et al
(2013) reported a reduction in the number of eosinophils in
the peripheral blood of patients with AD, which was consistent
with our results in the brain. A recent study reported that
the eosinophils have a protective effect on maintaining normal
physiological function and immune homeostasis in old age
reported recently (Brigger et al, 2020). However, our study
only analyzed the correlation between these different peripheral
immune cells and the pathological characteristics of AD, and the
specific role and potential mechanism of each immune cell in
AD need further study. Furthermore, we found that KRAS and
PIK3R1 were the genes most closely associated with peripheral
immune cell infiltration. KRAS and PIK3R1 were negatively
correlated with ImmuneScore and M2- macrophage abundance
but positively correlated with plasma cells, T follicular helper
cells, activated NK cells, and eosinophils. However, in this study,
we did not detect the expression levels of KRAS and PIK3R1
in peripheral immune cells in the brain. This may be related
to the low abundance of peripheral infiltrating immune cells in
the brain. Further studies are needed to explore the molecular
mechanisms by which they regulate immune cells in AD.

In summary, we identified KRAS and PIK3RI as Braak
stages-associated immune hub genes in AD. They were also
correlated with AP pathology. In addition, this study indicated
that the abundance of plasma cells, T follicular helper cells, M2
macrophage, activated NK cells, and eosinophils were related
to the progression of Braak stages in AD. Besides, KRAS and
PIK3R1 were negatively correlated with ImmuneScore and M2-
macrophage abundance but positively correlated with plasma
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