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Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the degeneration
and death of motor neurons. Systemic neuroinflammation contributes to the
pathogenesis of ALS. The proinflammatory milieu depends on the continuous crosstalk
between the peripheral immune system (PIS) and central immune system (CIS). Central
nervous system (CNS) resident immune cells interact with the peripheral immune
cells via immune substances. Dysfunctional CNS barriers, including the blood–brain
barrier, and blood–spinal cord barrier, accelerate the inflammatory process, leading
to a systemic self-destructive cycle. This review focuses on the crosstalk between
PIS and CIS in ALS. Firstly, we briefly introduce the cellular compartments of CIS
and PIS, respectively, and update some new understanding of changes specifically
occurring in ALS. Then, we will review previous studies on the alterations of the
CNS barriers, and discuss their crucial role in the crosstalk in ALS. Finally, we will
review the moveable compartments of the crosstalk, including cytokines, chemokines,
and peripheral immune cells which were found to infiltrate the CNS, highlighting
the interaction between PIS and CIS. This review aims to provide new insights into
pathogenic mechanisms and innovative therapeutic approaches for ALS.

Keywords: amyotrophic lateral sclerosis, crosstalk, peripheral immunity, CNS barriers, CNS immunity

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease typically characterized by adult-
onset dysfunction of both upper and lower motor neurons (MNs). The incidence rates of this fatal
disease were 1.38 (urban China), 1.5 (United States), 2.08 (Europe) per 100,000 persons (Xu et al.,
2020; Burchardt et al., 2022; Mehta et al., 2022), and most patients died within 3–5 years after
disease onset (Chia et al., 2018). No clinical therapies have been proven effective except for riluzole
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and edaravone, which can only delay disease progression (Chen
et al., 2016; Scott, 2017; Shefner et al., 2020). The mechanisms
underlying ALS pathogenesis are not yet fully understood.
ALS is a multifaceted disease, and several mechanisms,
including pathogenic gene mutations (Cervantes-Aragón et al.,
2020), neuroinflammation (Beers and Appel, 2019), autophagy,
mitophagy (French et al., 2018), necrosis (Yuan et al., 2019),
aggregation of toxic proteins (Wei et al., 2017), dysfunction of
energy metabolism (Vandoorne et al., 2018), and environmental
factors (French et al., 2018), have been proven to participate in
its pathogenesis.

Accumulating evidence indicates abnormalities in the
immune system throughout ALS (Dutta et al., 2020; Theoharides
and Tsilioni, 2020). Immune cells are activated and lead to
a chronic proinflammatory microenvironment in both the
peripheral and central nervous systems in ALS (Masrori et al.,
2022). The pro-inflammation in ALS is systemic, and crosstalk
exists between the peripheral immune system (PIS) and the
central immune system (CIS). To date, crosstalk has not
been well defined. With the development of insights into the
understanding of ALS, researchers have realized the importance
of the continuous interaction and communication of these two
systems. CNS resident immune cells and peripheral immune cells
interact with each other via immune molecules. Dysfunctional
CNS barriers, including the blood–brain barrier (BBB) and the
blood–spinal cord barrier (BSCB), open the gate for “crosstalk”
and are also regulated by the inflammatory environment. As a
result, chronic systemic inflammation contributes to the death
of MNs, injuring motor neuron axons, and the dysfunction of
neuromuscular junctions (Sweeney et al., 2019; Wu Y. et al.,
2020; Pan and Nicolazzo, 2022; Figure 1).

MAJOR CHANGES OF RESIDENT
IMMUNE CELLS IN AMYOTROPHIC
LATERAL SCLEROSIS

Inflammation in Central Nervous System
in Amyotrophic Lateral Sclerosis
Inflammation is widespread in the CNS in ALS (Beers and
Appel, 2019; Liu et al., 2021). Glial cells, including microglia and
astrocytes, trigger neuroinflammatory reactions, interact with
infiltrated peripheral immune cells and eventually induce or
accelerate neuronal death in CNS in ALS (Cragnolini et al.,
2020). Microglia are the resident innate immune cells of the CNS,
and mediate the neuroinflammation via the release of immune
molecules including cytokines and chemokines. Microglia
activation is heterogeneous and dependent on the nature of
the pathological insult (Mattei and Notter, 2020). Researchers
have categorized activated microglia into two opposite types:
M1 (toxic or proinflammatory) or M2 (neuroprotective or
anti-proinflammatory) microglia (Guo et al., 2022). However,
researchers have recently realized that there is a continuum
of phenotypes between M1 and M2 in ALS (Li et al., 2019),
such as disease-associated microglia (DAM) (Krasemann et al.,
2017; Dols-Icardo et al., 2020) and receptor-interacting protein

kinase 1 (RIPK1)—regulated inflammatory microglia (RRIMs)
(Mifflin et al., 2021). In general, accumulating studies have
proven that microglia show an anti-inflammatory phenotype
and protect MNs at the onset of the disease, while end-
stage microglia shift to a proinflammatory phenotype and
aggravate the neurodegeneration of MNs in ALS (Liu et al.,
2021; Masrori et al., 2022). Astrocytes are the most common
glial cells in the brain, maintain the CNS barriers (Signorile
et al., 2021), secrete neurotrophic and neuroprotective factors,
regulate neurotransmitter uptake and recycling, and promote
neurogenesis (Gharbi et al., 2020). Studies have identified a role
for astrocytes as immune modulators, as they may control the
activation, migration, and proliferation of microglia (Sunnemark
et al., 2005; Ouali et al., 2018).

Immune Activation in the Periphery in
Amyotrophic Lateral Sclerosis
Peripheral immune abnormalities exist in ALS (McCombe et al.,
2020). In general, the chronic peripheral immune response is
proinflammatory in ALS. Lymphocytes, monocytes (including
macrophages), neutrophils, natural killer (NK) cells, and mast
cells (MCs) are peripheral resident immune cells. ALS patients
were found to have elevated total leukocyte counts in blood
(Murdock et al., 2017). In peripheral blood, most studies suggest
decreased levels of neuroprotective CD4 T lymphocytes while
the subgroup of CD4 T lymphocytes, regulatory T cells (Tregs),
are reduced and dysfunctional in ALS patients. In ALS, the
number of cytotoxic CD8 T lymphocytes in peripheral blood is
controversial. NK T lymphocytes are thought to be harmful in
ALS and are increased in peripheral blood in patients with ALS
(Finkelstein et al., 2011; Perner et al., 2018; Giovannelli et al.,
2020; Nishihara et al., 2020; Rolfes et al., 2021). B lymphocytes
are merely discussed in ALS and studies suggest that they
play a supplementary role in the pathogenesis of ALS (Naor
et al., 2009; Pennati et al., 2018). Alterations in the proportion
of monocytes were reported and circulating monocytes from
ALS patients preferentially differentiated to a proinflammatory
phenotype (Liu et al., 2016; Du et al., 2020). The numbers of
neutrophils are increased in the peripheral blood and show a
significant correlation with disease progression (Murdock et al.,
2017; Leone et al., 2022). NK cells are innate immune cells
and mediate cytotoxicity. Levels of NK cells in the blood of
ALS patients are increased and could be pathogenic (Gustafson
et al., 2017; Murdock et al., 2017). An increased number of
circulating MCs was shown in ALS mice while there was a lack
of evidence in ALS patients (Trias et al., 2018; Harcha et al.,
2021).

Distal axonopathy is a recognized pathological feature of ALS
(Nardo et al., 2016). Recruitment of activated MCs, macrophages,
and neutrophils along the degenerating motor axons in sciatic
nerves and skeletal muscle is observed in ALS (Chiu et al., 2009;
Angelini et al., 2020; Trias et al., 2020). Peripheral immune
cells can also infiltrate into CNS and exert an effect on motor
neurons and glial cells, which will be discussed below. Peripheral
immune cells have been increasingly discussed in their prognostic
role. In this regard, with the development of technology and
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FIGURE 1 | A schematic diagram of immune crosstalk between PNS and CNS. In the CNS, resident immune cells, microglia, are activated and mediate the
neuroinflammation by the release of proinflammatory or anti-inflammatory substances such as cytokines and interact with infiltrated peripheral immune cells;
astrocytes control the activation, migration, proliferation of microglia. In the PNS, resident immune cells, including T lymphocytes, mast cells, and monocytes are
activated and infiltrate along the peripheral motor nerve and neuromuscular junction. Meanwhile, they infiltrate into CNS triggered by microglia-derived inflammation
mediators. In addition, dysfunction of CNS barriers, including the blood-brain barrier (BBB) and the blood-spinal cord barrier (BSCB), contribute to the infiltration of
peripheral immune cells and accelerate the harmful interaction. As a result, inflammatory responses spread across the two systems contribute to the death of motor
neurons (MNs), injuring MN axons, and the dysfunction of neuromuscular junctions. Double-headed arrows represent the communication of two cells. Blue single
arrows represent that the cells release inflammatory mediators and influence their targets. Orange, green, and purple arrows represent that the peripheral cells
infiltrate into the CNS, respectively.

understanding, researchers have turned to exploring a specific
population or a single myeloid subpopulation to categorize or
monitor patients (Murdock et al., 2017; Leone et al., 2022).

ALTERATION OF THE CENTRAL
NERVOUS SYSTEM BARRIERS IN
AMYOTROPHIC LATERAL SCLEROSIS

CNS barriers are formed by a layer of endothelial cells, connected
by inter endothelial tight junctions (TJs), adhesion proteins, and
cytoplasm (Bull et al., 2022). A basement membrane called the
basal lamina (BL) ensheathed by pericytes and astrocytic end-
feet supports endothelial cells and associated pericytes (Lochhead
et al., 2020; Yu et al., 2020). They make up the physical
barriers of the CNS while the biochemical barriers of CNS
are imparted by various transport systems. Alterations in brain
barriers have been observed in the early stage in ALS patients
and mice, suggesting that the impairment may contribute to the

pathogenesis (Bull et al., 2022). The alterations are summarized
as follows: disruption of the integrity of physical barriers,
function modulation of biochemical barriers, and secretion of
neuroimmune-related substances by barrier cells in the immune
response (Erickson and Banks, 2018; Kakaroubas et al., 2019;
Gil-Martins et al., 2020). CNS barriers act as the center point
in humoral-based communications between the CIS and PIS.
A better understanding of how the integrity or function of CNS
barriers is altered may provide approaches to terminate the
harmful crosstalk in ALS.

Disruption of the Integrity of Physical
Barriers in Amyotrophic Lateral Sclerosis
Multiple studies have found alterations of the ultrastructure of
CNS barriers in ALS patients, including swelling and cytoplasmic
vacuolization of microvascular endothelial cells, reduced pericyte
coverage, and detachment of astrocyte end-feet processes from
endothelial cells in the spinal cord of ALS patients (Miyazaki
et al., 2011; Garbuzova-Davis et al., 2012; Yamadera et al., 2015).
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Ultrastructural alterations have also been observed in the brain
stem and cervical and lumbar spinal cords, but not in the motor
cortex of ALS mice. The alterations have been noted to occur
at the early disease stage and worsen with disease progression
(Garbuzova-Davis et al., 2012; Winkler et al., 2013). TJs are
formed by multiple proteins, such as zonula occludens-1 (ZO-
1) and occludin, and prevent the paracellular movement of
solutes (Winkler et al., 2013). A significant reduction in the
expression of TJs and adhesion proteins such as ZO-1 and
occludin was observed in the spinal cord of both ALS patients
and mice (Pan and Nicolazzo, 2022). Despite the change in
adhesion proteins, the morphological structures of TJs were
found to be well preserved under electron microscopy in the
spinal cord of postmortem ALS patients (Sasaki, 2015). Although
morphological structures of TJs are preserved, the detection
of endogenous proteins in the CNS suggests the increased
paracellular permeability and leakiness of CNS barriers (Waters
et al., 2021). Furthermore, BL thickening is observed in both ALS
patients and mice. The detachment of endothelial cells exposes BL
to plasma proteins, fibrin, and collagen IV within the BL, which
then accumulate, leading to BL thickening (Sasaki, 2015). As BL
abnormalities are detected in the early stage of ALS mice, these
findings suggest that it may occur as a compensatory mechanism
or a reparative process (Nguyen et al., 2021). Based on these
findings, ultrastructural abnormalities and reduced expression of
TJs adhesion proteins may contribute to compromised junctional
integrity and an increase in paracellular permeability, permitting
peripheral substances and cell access to the CNS. Therefore, it
improves the communication of PIS and CIS, and accelerates the
systemic proinflammation.

Functional Modulation of the
Biochemical Central Nervous System
Barriers
Biochemical CNS barriers are imparted by various transport
systems, such as ATP-binding cassette (ABC) protein. They can
effectively exclude various endogenous and exogenous toxins
from the endothelial cells to maintain cellular homeostasis. The
most well-studied ABC protein, P-glycoprotein (P-gp), is a major
efflux transporter for small, lipid-soluble molecules expressed
on CNS barriers (Gil-Martins et al., 2020). The expression and
activity of P-gp are upregulated in both ALS patients and mice
(Jablonski et al., 2012; Qosa et al., 2016; Chan et al., 2017;
van Vliet et al., 2020). Tumor necrosis factor α (TNF-α) and
growth factor-beta 1(TGF-β1) were shown to upregulate the
expression and activity of P-gp in mice and rats (Dohgu et al.,
2004; Bauer et al., 2007). As levels of TNF-α and TGF-β1 are
increased in ALS patients and mice (Bougea, 2019; Tortelli
et al., 2020), they are associated with the overexpression of
P-gp. Moreover, astrocytes are also suspected to be responsible
for the increased expression of P-gp in ALS dependent on
ALS genotypes. For example, cocultured ALS-associated-mutant
SOD1 astrocytes impacted P-gp in nearby endothelial cells
by secreting soluble factors such as TNF-α, chemokines, and
reactive oxygen species (ROS) (Ji et al., 2013). Meanwhile, ALS-
associated mutant C9orf72 astrocytes have been shown to have

no effects on endothelial P-gp expression (Mohamed et al., 2019).
Additionally, the expression of breast cancer resistance protein
(BRCP), another efflux transporter, is upregulated in ALS patients
and mice (Jablonski et al., 2012; Chan et al., 2017; van Vliet et al.,
2020). In general, the increased P-gp and BRCP abundance and
activities at the CNS barriers suggest the modulation of interface
functions of biochemical CNS barriers, which may ultimately
influence the development of ALS.

Barrier Cells Secrete
Neuroimmune-Related Substances in the
Immune Response
Barrier cells, including endothelial cells, pericytes, and astrocytes,
secrete neuroimmune-related substances in response to immune
stimulation from peripheral or central immune cells. Brain
endothelial cells (BECs) can constitutively secrete interleukin 6
(IL-6), prostaglandins, and nitric oxide in response to different
stimuli (Iannucci et al., 2020; Charoensaensuk et al., 2021). As
the number of pericytes is reduced in ALS (Winkler et al.,
2013), its inflammatory-mediated role may also contribute to
ALS pathologies. Compared to other barrier cells, pericytes
are the most sensitive to TNF-α and can release IL-6 and
macrophage inflammatory protein-1α (MIP-1α, also known as
CCL3) in response (Matsumoto et al., 2014). Inflammatory
reactive pericytes support neutrophil transmigration by the
release of IL-8 and matrix metalloproteinase-9 (MMP-9),
leading to the subsequent development of neuroinflammation
(Pieper et al., 2013). Astrocytes are activated in the immune
response in ALS. On the one hand, astrocytes control the
activation, migration, and proliferation of microglia via multiple
inflammatory factors, and secrete proteins such as MCP-1 which
mediates monocyte migration to amplify neuroinflammation in
the CNS (Ouali et al., 2018; Izrael et al., 2020). On the other hand,
biochemical substances such as nitric oxide, vascular endothelial
growth factors (VEGF), glial cell line-derived neurotrophic factor
(GDNF), and MM-9 released from reactive astrocytes on barriers
regulate the expression of TJ proteins and the proliferation of
endothelial cells, thus influencing the integrity and permeability
of CNS barriers (Spiller et al., 2019; Izrael et al., 2020; Takata
et al., 2021; Qin et al., 2022). Therefore, barrier cells can not
only transfer information from one side to the other side (such as
PIS to CIS) but are also involved in mediating the inflammatory
microenvironment.

THE CROSSTALK FROM THE
PERIPHERAL IMMUNE SYSTEM TO THE
CENTRAL NERVOUS SYSTEM
CONTRIBUTES TO THE SYSTEMIC
INFLAMMATORY MILIEU OF
AMYOTROPHIC LATERAL SCLEROSIS

In ALS, injured MNs interact with glia, and they release certain
levels of cytokines and chemokines, followed by the recruitment
of innate and adaptive immune cells to infiltrate the CNS to
promote inflammation. Proinflammatory signaling spreads from
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CIS to PIS and from PIS to CIS, thereby contributing to the
systemic inflammatory milieu of ALS.

Cytokines and Chemokines in
Amyotrophic Lateral Sclerosis
Many cytokines and chemokines, such as IL-1, IL-6, TNF, and
CC chemokine ligand 2 (CCL2), have been shown to cross CNS
barriers while the barriers mediate their transport, penetration,
and uptake (Zhao et al., 2020; Bull et al., 2022). On the one hand,
due to the activation of immune cells, the levels of cytokines and
chemokines are significantly changed in ALS (Sun et al., 2022).
Their major roles in PIS or CIS in ALS are summarized in Table 1.

On the other hand, elevated levels of proinflammatory mediators
increase the permeability of the CNS barriers, act directly on
their receptors to alter the function of resident cells, induce
immune cell trafficking, and exacerbate barrier disruption and
neuroinflammation (Wang et al., 2014; Banks, 2015; Erickson
et al., 2020).

Central Nervous System Infiltration of
Peripheral Immune Cells in Amyotrophic
Lateral Sclerosis
Increasing evidence shows that many peripheral leukocytes are
first activated in PIS and then migrate into the CNS in ALS

TABLE 1 | The major role of cytokines and chemokines in ALS.

Molecules Secreting cells Change in ALS Role in the immune system References

TNF-α Macrophages, T lymphocytes,
NK cells

Increased Proinflammation: activation of immune cells Tortarolo et al., 2017;
Bougea, 2019

IL-1β Monocytes, macrophages; M1
microglia

Increased Proinflammation: activation of immune cells Italiani et al., 2014; Sun
et al., 2022

IL-6 Immune cells, endothelial cells,
myocytes

Increased/unchanged Proinflammation: activation of immune cells Martinez-Merino et al.,
2018;
Pronto-Laborinho et al.,
2019; Wosiski-Kuhn
et al., 2019

IL-8/CXCL8 Monocytes, endothelial cells Increased Proinflammation: recruitment of neutrophils,
activation of glial cells

Rusconi et al., 2017

IL-10 Monocytes, T lymphocytes,
and B lymphocytes;
immunosuppressive microglia
(M2)

Increased/increased in
the early stage and
decreased during
disease progression

Anti-inflammation:
limiting excessive production of
proinflammatory cytokines, ROS.

Batista et al., 2009;
Noh et al., 2014;
Strickland et al., 2020

IL-13 Th2 cells, CD4 cells, natural
killer T cells, mast cells,
basophils, eosinophils, and
neurocytes

Increased Controversial mechanism: proinflammation:
enhancing MCP-1 expression in monocytes
and macrophages; anti-inflammation: induce
infiltration to the injured spinal cord and
anti-inflammatory polarity of macrophages

Shi et al., 2007; Lu
et al., 2016;
Amo-Aparicio et al.,
2021

IL-17a Th17 cells, CD8+ T cells, mast
cells; astrocytes

Increased Proinflammation Fiala et al., 2010; Jin
et al., 2021

IL-33 Multiple cells Induced Anti-inflammation: decreasing the proportion of
CD4+ and CD8+ T cell populations, regulating
mast cells function

Lin et al., 2012;
Korhonen et al., 2019

G-CSF Monocytes and macrophages Induced Dual mechanism: inducing mobilization of bone
marrow cells from bone to the peripheral,
stimulating proliferation, inducing the
recruitment of microglia in the damaged areas

Salamone et al., 2020

CXCL13 MNs Increased Anti-inflammation Trolese et al., 2020

CXCL12 Bone marrow stromal cells Increased Proinflammation: development of T and B
lymphocytes, influencing survival of mature
Lymphocytes, microglial pathology, and
permeability of CNS barriers

Li and Ransohoff, 2008;
Rabinovich-Nikitin
et al., 2016

CX3CL1 MNs, microglia Increased Proinflammation: activation of microglia Zhang et al., 2018

CCL2 MNs, microglia, astrocytes Increased Proinflammation: activation and recruitment of
NK cells, T cells

Garofalo et al., 2020

CCL5 T lymphocytes,macrophages,
endothelial cells

Increased Proinflammation: proliferation and activation of
T lymphocytes, monocytes

Perner et al., 2018

CCL18/MIP-4 DC No changed Proinflammation: attracting lymphocytes toward
DC and activated macrophages, activation of
microglia

Martinez-Merino et al.,
2018

TNF-α, Tumor Necrosis Factor; IL, Interleukin; G-CSF, Recombinant Human Granulocyte-Colony Stimulating Factor; CCL, C-C Motif Ligand; CX3CL1, C-X3-C Motif
Chemokine Ligand 1; CXCL, C-X-C Motif Chemokine Ligand; MIP-4, Macrophage Inflammatory Protein-4; DC, Dendritic Cell.
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(Angelini et al., 2020). The regulation of leukocyte trafficking
to the CNS is multifaceted and depends on the activation state
of the leukocytes, TJ complexes at the endothelial interface,
and the inflammatory microenvironment in the CNS and PNS
(Congdon et al., 2019; Trolese et al., 2020; Marchetti et al.,
2022). As peripheral leukocytes can be easily monitored, and
intrathecal or intracerebroventricular is associated with several
risks, targeting peripheral leukocytes may be feasible in ALS
treatment. Therefore, a better understanding of how peripheral
immune cells infiltrate into the CNS is needed.

T Lymphocytes
The infiltration of T lymphocytes in ALS is well-known (Rolfes
et al., 2021). Chemokines and chemokine receptors are critical
for parenchymal infiltration. The chronic inflammatory milieu
induces the upregulation of leukocyte cell adhesion on the
surface of endothelial cells, which binds to CD6 expressed on
T lymphocytes, allowing their entry into the brain parenchyma
(Larochelle et al., 2012). In addition, T lymphocyte-derived TNF-
α and IL-17 induce the secretion of MM-9 in immune cells and
MNs, facilitating T lymphocyte infiltration into the CNS (Song
et al., 2015). A large amount of evidence highlights the differences
between T-cell subsets and their specific mechanisms of entry
into the CNS in ALS. For example, endothelial cells secrete
chemokines such as CXCL9, CXCL10, CXCL11, CCL19, CCL21,
and MCP-1 to recruit CD4+ T cells through CNS barriers. Treg
cells, which have an inhibitory effect on neuroinflammation,
are activated and recruited to the CNS via CCL5/CCR5 and
CCL6/CCR6 mechanisms to inhibit the activation of microglia in
the early phase of the disease (Zhao et al., 2012; Beers et al., 2017).
CD8+ T cells show intense infiltration and induce MN death via
MHC-I expressed in activated microglia and injured MNs (Coque
et al., 2019; Liu et al., 2020).

Mast Cells
Findings in previous studies suggested that MCs play a role in
early degeneration in the PNS and have a ripple effect on neuronal
damage (Trias et al., 2018; Angelini et al., 2020). Later studies
confirmed the infiltration of MCs in the spinal cord of ALS
patients (Fiala et al., 2010; Kovacs et al., 2021). The expression
of receptors on MCs is affected by IL-6, CCL5, and TNF-α
released by activated microglia, resulting in the regulation of MC
activation and CNS recruitment (Jones et al., 2019). Moreover,
MCs can release proteases to TJs and extracellular matrix
components, thus influencing the permeability and integrity of
the BBB and leading to CNS invasion of MCs (Mattila et al., 2011;
Jones et al., 2019).

Monocytes
Limited numbers of activated peripheral monocytes infiltrate
the CNS and influence neuroinflammation in ALS (Chiot
et al., 2020). Previous studies indicate an alteration in the
proportion of monocytes in ALS (Mcgill et al., 2021). In
patients with rapidly progressing ALS, monocytes in the
peripheral circulation are usually in a proinflammatory state
(Zhao et al., 2017). Recently, peripheral monocytes have
been proven to infiltrate the CNS, which is related to

improved motoneuron survival in ALS, but infiltration may
be limited (Peake et al., 2017). In addition, monocyte-derived
macrophages are activated in ALS. Activated macrophages
exert neuroprotective functions by misfolding protein clearance
during the disease (Chiu et al., 2009; Shiraishi et al., 2021).
Macrophages also showed limited infiltration to the CNS.
The evidence may suggest that the accumulating monocytes
in the CNS were due to the proliferation of infiltrated cells
instead of the infiltration of accumulated circulated monocytes
(Chiot et al., 2020).

Other Immune Cells: Neutrophils, Natural Killer Cells
Few studies have discussed the role of neutrophils and NK
cells in neuroimmune crosstalk. However, considering that
there is a significant correlation between an increase in
the number of neutrophils and NK cells in the peripheral
blood and disease progression (Murdock et al., 2017; Leone
et al., 2022), and their role in innate immune responses,
it is believed to affect neuroinflammation of the CNS in
complicated ways. For example, end-stage ALS mice showed
a high NK cell frequency in the spinal cord (Finkelstein
et al., 2011). NK cell-derived IFN-γ induces microglia toward
an inflammatory phenotype, regulates the release of CCL2,
a chemokine that can regulate CNS infiltration, from MNs,
and impairs Treg cell migration (Garofalo et al., 2020). More
studies are needed.

CONCLUSION

Previous investigations of neuroinflammation in ALS have
mainly focused on the relationship between the two immune
systems and ALS, respectively. Nevertheless, much less is
discussed on the crosstalk between PIS and CIS in ALS, especially
the role of the CNS barriers. In this review, we updated the
understanding of the relationship between neuroinflammation
and ALS. Crosstalk involving central immune cells and peripheral
immune cells, CNS barriers, cytokines and chemokines was fully
discussed. The dysfunction of all these elements contributed to
the non-cellulous death of MNs. Crosstalk plays an important
role in the systemic inflammatory milieu in ALS. It should be fully
considered for mechanisms and treatment discovery in ALS.

CNS barriers play a crucial role in the crosstalk; thus, they
may be a target when optimizing medicine use with ALS. For
example, riluzole is a substrate for P-gp and BRCP expressed
on CNS barriers so the drug efficacy may be negatively affected
(Jablonski et al., 2014). Inhibitors of P-gp have been proven to
improve drug delivery in ALS mice (Gil-Martins et al., 2020),
but clinical trials should be conducted and more investigations
are needed. In addition, a combination of possible CNS barriers-
impaired medicine with other therapies may be beneficial.
Angiopoietin-1 promotes angiogenesis in the CNS and reduces
vascular permeability. The C16 peptide repairs vessels and inhibit
transmigration and infiltration of leukocytes without the side
effect of systemic immunosuppression. The roles of these two
medicines have been well studied in animal models of CNS
inflammation (Wu D. et al., 2020), but further experiments
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in ALS are needed. Notably, the effect of neuroinflammation is
dual, as it exerts a neurotoxic or neuroprotective effect during
the disease. In conclusion, normalizing immune crosstalk and
homeostasis instead of suppressing inflammation may provide a
potential therapeutic target and direction for future study.
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