
Frontiers in Aging Neuroscience 01 frontiersin.org

Using machine learning to 
estimate the calendar age based 
on autonomic cardiovascular 
function
Andy Schumann 1*, Christian Gaser 2,3, Rassoul Sabeghi 1, 
P. Christian Schulze 4, Sven Festag 5,6, Cord Spreckelsen 5,6 and 
Karl-Jürgen Bär 1

1 Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic 
Medicine and Psychotherapy, Jena University Hospital, Jena, Germany, 2 Hans Berger Department 
of Neurology, Jena University Hospital, Jena, Germany, 3 Department of Psychiatry and 
Psychotherapy, Jena University Hospital, Jena, Germany, 4 Department of Internal Medicine I, 
Division of Cardiology, Jena University Hospital, Jena, Germany, 5 Institute of Medical Statistics, 
Computer and Data Sciences, Jena University Hospital, Jena, Germany, 6 SMITH Consortium of the 
German Medical Informatics Initiative, Leipzig, Germany

Introduction: Aging is accompanied by physiological changes in cardiovascular 

regulation that can be evaluated using a variety of metrics. In this study, we 

employ machine learning on autonomic cardiovascular indices in order to 

estimate participants’ age.

Methods: We analyzed a database including resting state electrocardiogram 

and continuous blood pressure recordings of healthy volunteers. A total of 

884 data sets met the inclusion criteria. Data of 72 other participants with an 

BMI indicating obesity (>30 kg/m²) were withheld as an evaluation sample. For 

all participants, 29 different cardiovascular indices were calculated including 

heart rate variability, blood pressure variability, baroreflex function, pulse wave 

dynamics, and QT interval characteristics. Based on cardiovascular indices, 

sex and device, four different approaches were applied in order to estimate 

the calendar age of healthy subjects, i.e., relevance vector regression (RVR), 

Gaussian process regression (GPR), support vector regression (SVR), and linear 

regression (LR). To estimate age in the obese group, we drew normal-weight 

controls from the large sample to build a training set and a validation set that 

had an age distribution similar to the obesity test sample.

Results: In a five-fold cross validation scheme, we found the GPR model to be 

suited best to estimate calendar age, with a correlation of r=0.81 and a mean 

absolute error of MAE=5.6 years. In men, the error (MAE=5.4 years) seemed 

to be lower than that in women (MAE=6.0 years). In comparison to normal-

weight subjects, GPR and SVR significantly overestimated the age of obese 

participants compared with controls. The highest age gap indicated advanced 

cardiovascular aging by 5.7 years in obese participants.

Discussion: In conclusion, machine learning can be used to estimate age on 

cardiovascular function in a healthy population when considering previous 

models of biological aging. The estimated age might serve as a comprehensive 

and readily interpretable marker of cardiovascular function. Whether it is a 

useful risk predictor should be investigated in future studies.
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Introduction

Maintaining a healthy cardiovascular system is one of the 
most important goals of modern health policy (Mendis et al., 
2011). Factors elevating cardiovascular risk include physical 
inactivity and an unhealthy diet. In addition, age is an independent 
risk factor for the development of cardiovascular disease (CVD)—
the leading cause of death worldwide.

The cardiovascular system is a complex structure that 
comprises the heart and vasculature that are not under voluntary 
control. Instead, the autonomic nervous system adapts the activity 
of the heart and vascular tone to changing environmental 
demands. To assess the state of the cardiovascular system, 
physicians usually estimate blood pressure and record 
electrocardiograms (ECGs). Several indicators of cardiovascular 
risk can be determined from these data.

Heart rate and its variability (HRV) are established markers of 
cardiac fitness (Jensen et al., 2013; Nanchen et al., 2013). A natural 
decay in HRV during the course of aging is a consistent finding of 
several studies (Reardon and Malik, 1996; Fukusaki et al., 2000; 
Boettger et al., 2010; Voss et al., 2012, 2015). Lower levels of HRV 
have been associated with increased cardiovascular morbidity and 
mortality in the elderly (Tsuji et al., 1996). The feedback loop that 
adapts heart rate to changes in blood pressure, that is, baroreflex 
function, is progressively diminished with increasing age (Laitinen 
et al., 2004). Various factors such as endothelial dysfunction or 
oxidative stress result in the stiffening of large arteries, which is a 
condition promoting sustained hypertension, atherosclerosis, and 
thrombosis (Dai et al., 2015). Indicators of age-related vascular 
changes are broad pulse waves, elevated pulse wave velocity, and 
increased systolic blood pressure. Considering the widespread 
effects of aging on the cardiovascular system, it seems useful to 
combine different established indices into one comprehensive 
marker of cardiovascular health.

Estimating age based on biological data is a widely used 
concept in other medical disciplines, for instance, to evaluate 
brain health (Gialluisi et al., 2019). Aging affects different aspects 
of brain structure and function that can be summarized as the 
estimated age of the brain (Franke and Ten Gaser, 2019; Dafflon 
et al., 2020; Jiang et al., 2020). Using this framework, scientists 
were able to trace brain development and to assess the risk of 
developing neurodegenerative diseases and general mortality in 
older adults (see Cole and Franke, 2017).

Recently, machine learning (ML) methods have gained a lot 
of attention in efforts to improve risk prediction and clinical 
outcomes in patients with cardiovascular (see Sevakula et al., 
2020, for review). ML algorithms can be used to automatically 
identify information that will help solve a given problem. 

Supervised learning methods build an analytical model based 
on a set of training samples containing input and related output 
values. Applying this model to a test set of input data without 
knowing the desired output reveals the accuracy of the 
automatic solution. For regression problems, an output function 
is obtained by fitting a line to the data points in a high-
dimensional space built from available input variables (feature 
space; Bennett and Campbell, 2000; Schölkopf and Smola, 
2002). Assessing cardiovascular risk by ML has been 
demonstrated to be  more accurate than conventional 
approaches (Kakadiaris et  al., 2018) with a lower bias than 
non-ML methods (Suri et al., 2022).

In this study, we aimed to estimate age based on cardiovascular 
data by applying ML. Input features were extracted from 
simultaneous resting recordings of ECG and continuous blood 
pressure in healthy individuals. We compared different approaches 
to solve regression problems, namely, support vector regression, 
relevance vector regression, Gaussian process regression, and a 
linear regression model. In a proof-of-concept application, 
we  compared age estimates in obese but otherwise healthy 
individuals and normal-weight controls. As obesity is related to an 
impairment of cardiovascular function and elevated cardiovascular 
risk, we  assumed systematically higher age estimates when 
compared to normal-weight controls. Thus, we  derived three 
age-matched subsamples from our database. We trained all ML 
models on normal-weight controls and applied them to a sample 
of obese individuals and an independent sample of normal-
weight controls.

Materials and methods

Database

Resting-state physiological recordings of 1,121 healthy 
volunteers were obtained. None of the subjects had any history 
of neurological or psychiatric disorders. Exclusion criteria were 
any medical conditions, illegal drugs, or medication potentially 
influencing cardiovascular function. Thorough physical 
examination, resting electrocardiography (ECG), and routine 
laboratory parameters (electrolytes, basic metabolic panel, and 
blood count) had to be without any pathological finding. All 
participants provided written informed consent before 
participating in the study. The study protocol was approved by 
the Ethics Committee of the University Hospital of Jena 
(#5423-01/18, 4,940-10/16). Data sets have been made publicly 
available at PhysioNet (Goldberger et al., 2000; Schumann and 
Bär, 2022).
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From the original database, 31 subjects were excluded due to 
missing or invalid information regarding age, gender, or BMI. A 
total of 118 recordings were excluded due to incomplete or 
missing blood pressure recordings. A set comprising data from 72 
obese participants (body mass index (BMI) > 30) was excluded 
from the main set but used for additional assessments during a 
later stage. Cardiovascular indices were estimated for the 884 
healthy subjects from the main set (59% females, age: 
31.3 ± 13.6 years, BMI: 22.8 ± 2.8 kg/m2, see Table 1) and for the 72 
obese participants.

Data recordings

Continuous non-invasive blood pressure and ECG were 
acquired simultaneously over 20 min in the supine position using 
either a Task Force Monitor® (TFM, CNSystems Medizintechnik 
GmbH, Graz, Austria) or MP150 (BIOPAC Systems Inc., Goleta, 
CA, United States). First 5 min were excluded from the analysis. 
R-waves and systolic and diastolic blood pressure values were 
extracted from the data using automatic detection algorithms 
delivered with the devices (Task Force® Monitor, CNSystems or 
AcqKnowledge 4.1, BIOPAC Systems). An adaptive filter 
procedure was applied to identify and substitute premature 
ventricular beats and artifacts based on the heart beat intervals 
(Wessel et al., 2000). Data sets with an artifact rate larger than 5% 
of all intervals were excluded from the analysis.

Estimation of cardiovascular indices

From the ECG-derived heart beat interval time series (BBI), 
we calculated the mean heart rate (HR), root-mean-square of 
successive BBI (RMSSD), the standard deviation of BBI (SDNN), 
low- and high-frequency power and their ratio (Malik et  al., 
1996), deceleration capacity (Bauer et al., 2006), Renyi entropy 
(base 1/4; Renyi, 1961), sample entropy (Richman and Moorman, 
2000), and compression entropy (Baumert et al., 2004). The mean 
and standard deviation of corrected QT intervals (Hodges et al., 
1983) and the QT variability index (QTVI) were estimated 
(Berger, 2003).

From continuous blood pressure, the mean and standard 
deviation of systolic blood pressure (SBP) and diastolic blood 
pressure (DBP) values per heart beat interval were extracted 
(Floras, 2013). Pulse pressure was calculated as differences 
between SBP and DBP. Using the dual sequence method, 
baroreflex sensitivity was calculated as a marker of bradycardic 
and tachycardic changes due to blood pressure alterations 
(Malberg et al., 1999). Mean values and standard deviation of 
the pulse transit time, pulse rise time, pulse wave duration, 
pulse wave velocity, and time delay of the dicrotic notch were 
estimated on blood pressure signals (Fischer et  al., 2017; 
Table 2).

Age estimation

Four different ML approaches were applied to estimate 
calendar age based on 29 cardiovascular indices and the two 
categorial variables sex and recording device. The algorithms have 
been implemented in Python version 3.8.3 using the toolbox 
scikit-learn version 0.24.1 (Pedregosa et al., 2011).

Gaussian process regression (GPR) models use a kernel to 
define the covariance of a distribution over the target functions 
and observed training data to define a likelihood function 
(Schulz et al., 2018). We used a combination of a constant kernel 
with a radial basis function (RBF). Support vector regression 
(SVR) models offer the flexibility to define how much error is 
acceptable in finding an appropriate fit to the input data (Vapnik, 
1995; Schölkopf and Smola, 2002). An RBF kernel and 
regularization index C = 30 were used. Relevance vector 
regression (RVR) models use Bayesian inference to obtain 
parsimonious solutions for regression (Tipping, 2000). Here, 
we also used an RBF kernel. Hyperparameters of GPR, SVR, and 
RVR estimation were optimized using grid search. The 
performance of these approaches was compared to a linear 
regression (LR) model that estimates age as a linear combination 
of the input variables.

Model performance

In a 5-fold cross-validation scheme, one-fifth of the main 
set was randomly assigned to a test set, while the model was 
trained on the remaining four-fifths of the data. In each of the 
five runs, another fifth of the data served as test data. After the 
five runs, the empiric means (± standard error) of the evaluation 
metrics are reported as the final ones. The cross-validation was 
repeated 20 times with a randomized order of input data. Again, 
the metrics were averaged over all repetitions. We standardized 
all input data before using training and test data during the 
cross-validation procedure (StandardScaler implemented 
in sklearn).

TABLE 1 Sample characteristics separated by recording device.

TFM MP150

Age [y] 31.9 ± 14.3 30.5 ± 12.6

N 18–92 18–82

Sex (f/m) 283/205 240/156

BMI [kg/m2] 22.7 ± 2.9 22.8 ± 2.7

Age and BMI are given in mean value ± standard deviation. Data have been recorded 
using two different devices (see the Data Recordings section, for more details). TFM, 
Recorded by CNSystems Task Force Monitor; MP150, Recorded by BIOPAC Systems 
MP150; BMI, body mass index.
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The quality of age estimation was evaluated by the mean 
absolute error (MAE), root-mean-squared error (RMSE), and 
Pearson’s correlation (r) of estimated ∧

iY  and the actual  
age yi.
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Comparison of weight groups

In a second experiment, we aimed to compare age estimates in 
obese participants (BMI > 30 kg/m2) with normal-weight peers. 
Therefore, we  draw two subsamples from our normal-weight 
population that served as training and test data. The calendar age of 
these data should match our obese sample. Therefore, we categorized 
participants into age groups of 10 years (see Table 3) and estimated 
the relative distribution of obese participants across these age groups. 
Then, we randomly assigned normal-weight participants from each 
age group to training and a test set to match the age distribution of the 
obese sample. Finally, we trained all ML models on 197 normal-
weight individuals (101 women, 96 men, 41.4 ± 14.9 years, BMI: 
23.4 ± 2.2 kg/m2) to estimate age in the obese test sample of 72 
individuals (44 women, 28 men, age: 42.9 ± 15.5 years, BMI: 
34.8 ± 5.8 kg/m2) in a normal test sample of 72 normal-weight controls 
(37 women, 35 men, age: 42.1 ± 15.8 years, BMI: 23.3 ± 2.4 kg/m2). 
We used mean values and standard deviation of training data to 
standardize the training, normal and obese test sets (StandardScaler, 
sklearn). The age gap (deviation between estimated and calendar age) 
was calculated and compared between the normal-weight and the 
obese test set using the one-sided Wilcoxon rank-sum test.

Results

The final sample under investigation included 884 healthy 
individuals. In Table 3, sample characteristics are depicted within 
different age ranges.

A number of relevant autonomic cardiovascular indices are 
depicted in Figure 1. It seems obvious from these plots that age 
has a different effect on each of those measures. For instance, 
systolic blood pressure seems to increase almost linearly with age, 
while HRV decreases with age rather exponentially. In total, 29 
different indices together with sex and device served as input 
features for age prediction models.

In Figure 2, we plotted the age estimated by Gaussian process 
regression (GPR) against the calendar age for one cross-validation 
run (Figure 2; r = 0.81, MAE = 5.62 years, RMSE = 8.00 years). In 
this scatter plot, it becomes clear that most of the data sets are in 
the lower age range. At a higher age (over 70 years), the model 
tends to underestimate the individual age.

TABLE 2 Indices included in age estimation.

Index Explanation

Standard heart rate variability (HRV)

HR [min−1] Mean heart rate

SDNN [ms] Standard deviation of heart beat intervals (BBI)

RMSSD [ms] Root-mean-square of successive BBI differences

DC [ms] Deceleration capacity

Spectral HRV

LF [ms2] Low frequency spectral power of BBI

HF [ms2] High-frequency spectral power of BBI

LF/HF [a.u.] Low-to-high frequency spectral power ratio

Nonlinear HRV

CompEn [a.u.] Compression entropy

SampEn [a.u.] Sample entropy

RenyiEn [bit] Renyi entropy

Cardiovascular regulation

BRS [ms/mmHg] Baroreflex sensitivity

LFalpha [ms/mmHg] Low frequency cardiovascular coherence

HFalpha [ms/mmHg] High-frequency cardiovascular coherence

JSDsym [a.u.] Symmetric joint symbolic dynamics

SBP [mmHg] Mean systolic blood pressure

sd_SBP [mmHg] Standard deviation of systolic blood pressure

DBP [mmHg] Mean diastolic blood pressure

sd_DBP [mmHg] Standard deviation of diastolic blood pressure

PP [mmHg] Pulse pressure

Pulse wave dynamics

PTT [ms] Mean pulse transit time

sdPTT [ms] Standard deviation of PTT

PRT [ms] Mean pulse rise time

sdPRT [ms] Standard deviation of PRT

PWV [mmHg/ms] Mean pulse wave velocity

sdPWV [mmHg/ms] Standard deviation of PWV

SIT [ms] Mean delay of dicrotic notch to pulse maximum

QT interval characteristics

meanQTc [ms] Mean corrected QT interval

sdQTc [ms] Standard deviation of QT interval

QTVI [a.u.] QT variability index

Additional info

Sex [0/1] Participant gender

Device [0/1] Recording device
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Comparison of methods

After 20 runs of the 5-fold cross-validation, we compared 
performance measures of age prediction by four different 
mathematical models (see Table 4). Lowest error estimates were 
achieved using GPR to estimate age (MAE = 5.6 years and 
RMSE = 8.0 years). The highest correlation was also calculated 
between GPR estimates and underlying calendar age. Overall 
performance tended to be better in men compared to women. 
However, in women and men, GPR was the most accurate 

approach to estimate age in terms of errors and correlation to 
underlying calendar age.

Age gap estimation

Figure  3 shows the estimated autonomic indices for the 
normal-weight train group (normal train), the normal-weight test 
group (normal test), and the obese test group (obese test). Results 
from the group comparison between the two test sets are shown 
in Supplementary Table S1. Compared to normal participants, 
obese individuals showed alterations in a number of autonomic 
indices, including elevated heart rates, reduced vagal heart rate 
variability (RMSSD) and baroreflex sensitivity, and increased 
blood pressure (see Figure 3). The two normal-weight groups did 
not seem to differ significantly from one another except for the 
probability of symmetric symbolic dynamics of blood pressure 
and heart rate (JSDsym, see Supplementary Table S1).

All four methods were used to estimate the age gap between 
normal-weight healthy individuals (N = 72) and obese but 
apparently healthy individuals (N = 72). In Figure 4, deviations 
between calendar age and ML estimates per method are 
illustrated. The average errors of age estimation were higher in 
obese participants for all four methods. The Wilcoxon rank-sum 

TABLE 3 Sample description in different age ranges.

Healthy participants in age groups

<30 
years

30–39 
years

40–49 
years

50–59 
years

≥60 
years

Age [y] 23.7 ± 2.7 33.6 ± 2.9 44.4 ± 2.8 53.5 ± 2.7 70.1 ± 9

N 585 123 75 47 54

Sex (f/m) 386/199 54/69 30/45 16/31 38/16

BMI  

[kg/m2]

22.1 ± 2.6 23.2 ± 2.7 24.3 ± 2.9 25.2 ± 2.7 24.8 ± 2.5

Results are given in mean values ± standard deviation. BMI: body mass index.

FIGURE 1

Age dependency of autonomic cardiovascular indices. Mean values and 95% confidence intervals are depicted. RMSSD, vagal heart rate variability 
(root-mean-square of successive heart beat intervals).
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test revealed a significantly increased age estimation error in 
obese participants by 5.4 years (interquartile range IQR = [−7.2; 
13.1]; z = −1.744, p = 0.0406) when using GPR and 5.7 years 
(IQR = [−7.2;13.6]; z = −2.148; p = 0.0159) when using SVR.

Discussion

As artificial intelligence has entered most aspects of our daily 
life, it is not surprising that machine learning (ML) is about to 
revolutionize the medical sector and healthcare industry  

(Chen et al., 2017; Koch, 2018). ML offers great opportunities to 
improve risk stratification, diagnostic classification, clustering for 
the identification of patient subgroups, and many more (Sevakula 
et al., 2020). One popular application is the quantification of aging 
effects based on biological information (Al Zoubi et al., 2018; 
Dafflon et  al., 2020; Jiang et  al., 2020). To the best of our 
knowledge, this is the first study to use autonomic markers from 
cardiovascular recordings to predict chronological age in healthy 
subjects using ML.

Estimated age was strongly correlated with actual age with an 
error of MAE = 5.6 years, RMSE = 8.0 years, and r = 0.81 when GPR 
was used. However, the accuracy of age estimation was lower in 
older participants. For instance, age was underestimated in 
participants over 70 years of age by the GPR model (Figure 2). As 
data sets used in our study are concentrated at a younger age 
(<40 years), models are primarily trained on young individuals. 
This makes the prediction of age more difficult in the elderly. The 
accuracy of the models was higher in men than in women. This 
might be due to the fact that some age-related changes are more 
pronounced in men than in women. Especially, blood pressure 
and vascular indicators of arterial stiffening have been reported to 
correlate stronger with age in men (AlGhatrif et al., 2013). Maybe 
an additional influence of the menstrual cycle may have increased 
the variance of estimated features in women that we were not able 
to account for (Schmalenberger et al., 2020).

Considering state-of-the-art approaches to estimate age based 
on biological information, as reviewed by Gialluisi et al. (2019), 
the accuracy of our models was quite high. According to their 
summary, brain data and blood markers have been more widely 
used to estimate age, with MAEs ranging between 4.2 and 
11.8 years. Only five of the 14 studies that have been reviewed 
achieved MAEs below 5 years—all based on brain data. Analyzing 
blood values, the most accurate model had an MAE of 5.6 years. 
In contrast, ML approaches to evaluate the aging of the 
cardiovascular system are rare. Using linear regression models, 
few studies have already attempted to estimate age based on HRV 
and ECG. Colosimo (1997) used a linear model to estimate age 
that correlated with calendar age with r = 0.71 in 141 subjects. 
More recently, Starc et al. (2012) predicted age using HRV and a 
multiple linear regression model with a high correlation of 
r = 0.87 in 377 subjects. Unlike those approaches, ML techniques 
automatically determine a numerical solution from a variety of 
input data through the learning process. Input features can be of 
different types (scalar values, signals, and images), and finally, 
they can contribute in a nonlinear fashion to this solution. 
Therefore, ML strategies often improve the accuracy of 
mathematical models in several applications (e.g., Acevedo et al., 
2009; Ren et al., 2020).

In this study, we used a variety of established cardiovascular 
indices as input features. However, there are countless measures of 
heart rate variability alone. Instead of calculating these variables on 
physiological recordings, the recorded signals themselves can 
be  entered into the models. Relevant signal segments then 
contribute to the estimation of age, avoiding the selection of suitable 
cardiovascular indices. Via methods of deep learning,  

FIGURE 2

Relation of individual age estimated by GPR and calendar age. 
Dashed gray line indicates perfect concordance.

TABLE 4 Performance scores of age prediction after 20 repetitions of 
cross-validation.

Performance 
scores

Regression approach

LR GPR SVR RVR

MAE [y] 6.39 ± 0.36 5.64 ± 0.33 6.45 ± 0.33 6.15 ± 0.8

RMSE [y] 8.67 ± 0.06 8.03 ± 0.08 8.86 ± 0.13 8.71 ± 0.27

r 0.77 ± 0.01 0.81 ± 0.01 0.77 ± 0.01 0.77 ± 0.01

Performance scores in women (N = 523)

MAE [y] 6.47 ± 0.06 6.01 ± 0.1 6.96 ± 0.15 6.5 ± 0.3

RMSE [y] 8.53 ± 0.09 8.37 ± 0.13 9.48 ± 0.2 9.06 ± 0.37

r 0.73 ± 0.01 0.74 ± 0.01 0.68 ± 0.01 0.7 ± 0.02

Performance scores in men (N = 361)

MAE [y] 6.33 ± 0.05 5.38 ± 0.06 6.09 ± 0.1 5.91 ± 0.23

RMSE [y] 8.76 ± 0.08 7.79 ± 0.09 8.4 ± 0.13 8.46 ± 0.27

r 0.79 ± 0.01 0.83 ± 0.01 0.81 ± 0.01 0.8 ± 0.01

The lowest error estimates and highest correlation coefficient are written in bold. LR, 
linear regression; GPR, Gaussian process regression; SVR, support vector regression; 
RVR, relevance vector regression; r, Pearson’s correlation coefficient; MAE, mean 
absolute error; RMSE, root-mean-squared error.
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FIGURE 3

Autonomic cardiovascular indices in two subsets of normal-weight participants (training data in gray, test data in cyan) and obese participants 
(orange). The median is depicted together with the lower quartile and the upper quartile. The two test sets were compared using the Wilcoxon 
rank-sum test with p-values indicated in the figure [p < 0.05 (*); p < 0.001 (***); p > 0.05 (n.s.)]. RMSSD, vagal heart rate variability (root-mean-square 
of successive heart beat intervals).

FIGURE 4

Deviation of estimated age from calendar age in a sample of obese participants (orange) and an independent set of matched normal-weight 
controls (cyan). The median is depicted together with the lower quartile and the upper quartile. Four different models, namely linear regression 
(LR), Gaussian process regression (GPR), support vector regression (SVR), and relevance vector regression (RVR), were trained on matched normal-
weight individuals. The age estimation errors were compared between the normal-weight and obese test set using the Wilcoxon rank-sum test 
with p-values indicated in the figure [p < 0.05 (*); p > 0.05 (n.s.)].
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Attia et al. (2019) estimated the calendar age from short 12-lead 
ECG signals. A convolutional neural network led to an error of 
MAE = 6.9 years and r = 0.84. Those patients, whose predicted age 
was more than 7 years higher than their calendar age, were more 
likely to be  diagnosed with cardiovascular diseases, such as 
hypertension or coronary disease. The authors acknowledged that 
one key limitation to the findings in their study was the fact that the 
large underlying sample of 774,783 subjects included only patients 
who had their ECG recorded for some clinical indication. Similarly, 
Strodthoff et  al. (2021) estimated calendar age based on short 
12-lead ECG records using different neural networks. For age 
estimation, a feedforward residual neural network performed best 
with an error of MAE = 6.86 years and r = 0.85. Their database 
included a total of 21,837 both normal and abnormal clinical ECG 
recordings of 18,885 patients.

In our study, we estimated the deviation from normal healthy 
aging in a sample of obese but otherwise healthy participants as 
proof-of-concept. All four models were trained on normal-weight 
controls and then used to estimate age in a normal-weight and an 
obese test set. Calendar age distribution was matched across 
subsets. Using GPR and SVR, the age gap between estimated age 
and calendar age was significantly higher in obese participants 
than in normal-weight controls. This means that there was a 
systematic overestimation of age in obese participants. At least 
some differences in cardiovascular indices between obese and 
normal-weight participants are similar to changes that occur 
during aging. We observed elevated systolic blood pressure and 
pulse pressure as well as lower vagal HRV and baroreflex 
sensitivity in obese individuals and in older age groups of normal-
weight participants (Figure  3). These alterations are signs of 
arterial stiffening and a loss of cardiovagal control that can 
be  observed in elderly individuals (Pinto, 2007). Advanced 
cardiovascular aging was suggested by an age gap over 5 years 
when compared to matched normal-weight controls.

The relationship between body mass index (BMI) and 
mortality is well documented (see review by Aune et al., 2016). 
While increased BMI raises mortality risk (Chen et al., 2019), a 
large population-based study has recently demonstrated that 
weight loss can prevent premature death in later life (Xie et al., 
2020). Participants who reduced their BMIs below the obese range 
between early adulthood through midlife halved their mortality 
risk compared with those remaining obese, suggesting that the 
physiological effects of obesity may be reversible to some extent. 
Expressing cardiovascular impairment in terms of advanced age 
might help to convince those individuals at risk to adopt a 
healthier lifestyle (Cuende, 2016).

Limitations

The current study relies on physically and mentally healthy 
subjects who were recruited for resting physiological recordings 
under standardized conditions. However, the size of the sample is, 
therefore, rather small. Although we investigated over a thousand 
subjects, the number of data sets actually included in the analysis 

was reduced by quality control. Especially at older ages, a rather 
small amount of data was available. The recruitment of participants 
of an advanced age without being affected by cardiovascular, 
neurological, or psychiatric disorders is very complicated. Further 
cognitive impairment, sensory loss, and changes in mobility might 
introduce a selection bias (Young and Vitaliano, 2006).

Another limitation of our database is that there is no 
information on general health in order to account for it in our 
analysis, such as metabolic markers, smoking or drinking habits, or 
mental health. Because we also lack longitudinal data, we are unable 
to evaluate how autonomic status continues to change. Aging of the 
cardiovascular system is, most probably, not an entirely linear 
process. Intercurrent life events might moderate the rate of 
age-related changes. An intriguing line of further research is to 
assess the potential of the estimated age to predict cardiovascular  
risk.

Conclusion

In this study, we  estimated age based on autonomic 
cardiovascular indices with high accuracy in healthy controls. The 
Gaussian process regression model led to the best concordance of 
estimated and calendar age. Using this framework, it seems 
possible to quantify deviations from healthy autonomic aging. In 
this study, cardiovascular changes in obese but otherwise healthy 
individuals led to an advanced age of more than 5 years compared 
with normal-weight controls. In future studies, the clinical value 
of the gap between the individual calendar and the estimated 
autonomic age to indicate diseases of the circulatory system or its 
potential to predict cardiovascular risk needs to be explored.
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