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Objectives: There are concerns regarding the accuracy of step count in Parkinson’s
disease (PD) when wearable sensors are used. In this study, it was predicted that
providing the normal rhythmicity of walking was maintained, the autocorrelation function
used to measure step count would provide relatively low errors in step count.

Materials and Methods: A total of 21 normal walkers (10 without PD) and 27 abnormal
walkers were videoed while wearing a sensor [Parkinson’s KinetiGraph (PKG)]. Median
step count error rates were observed to be <3% in normal walkers but≥3% in abnormal
walkers. The simultaneous accelerometry data and data from a 6-day PKG were
examined and revealed that the 5th percentile of the spectral entropy distribution, among
10-s walking epochs (obtained separately), predicted whether subjects had low error
rate on step count with reference to the manual step count from the video recording.
Subjects with low error rates had lower Movement Disorder Society Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS III) scores and UPDRS III Q10–14 scores than the
high error rate counterparts who also had high freezing of gait scores (i.e., freezing of
gait questionnaire).

Results: Periods when walking occurred were identified in a 6-day PKG from 190
non-PD subjects aged over 60, and 155 people with PD were examined and the
5th percentile of the spectral entropy distribution, among 10-s walking epochs, was
extracted. A total of 84% of controls and 72% of people with PD had low predicted error
rates. People with PD with low bradykinesia scores (measured by the PKG) had step
counts similar to controls, whereas those with high bradykinesia scores had step counts
similar to those with high error rates. On subsequent PKGs, step counts increased when
bradykinesia was reduced by treatment and decreased when bradykinesia increased.
Among both control and people with PD, low error rates were associated with those
who spent considerable time making walks of more than 1-min duration.

Conclusion: Using a measure of the loss of rhythmicity in walking appears to be a useful
method for detecting the likelihood of error in step count. Bradykinesia in subjects with
low predicted error in their step count is related to overall step count but when the
predicted error is high, the step count should be assessed with caution.
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INTRODUCTION

Background
Altered gait characteristics occur early in Parkinson’s disease
(PD) (Rehman et al., 2019) and even years prior to diagnosis
(Del Din et al., 2019), with the most consistent abnormalities
being a slower gait, increased variability, and asymmetry (Del
Din et al., 2019; Rehman et al., 2019; Corra et al., 2021).
These features are related to bradykinesia and improve with
levodopa (Chien et al., 2006; Bryant et al., 2016; Corra et al.,
2021). Approximately 25% of people with PD (PwP) have
unstable posture at diagnosis (Kohat et al., 2021), and the
incidence increases with time from diagnosis (Kohat et al.,
2021) often with the development of freezing of gait (FOG)
(Ge et al., 2020). This is associated with a shorter stride length
(Nanhoe-Mahabier et al., 2011; Orcioli-Silva et al., 2018). These
changes have been linked to cognitive dysfunction and anxiety
(Giladi and Hausdorff, 2006; Weiss et al., 2015; Kueper et al.,
2017; Yao et al., 2017). Executive dysfunction, revealed by dual
tasking, affects the gait of PwP more than non-PD subjects
(Salazar et al., 2017).

Although most studies of gait in PD have been conducted
in laboratories, there has been increasing interest in ambulatory
monitoring using sensors (Weiss et al., 2015) mostly because
behavior in one’s natural environment is likely to differ from the
formal environment of the laboratory (Robles-Garcia et al., 2015).
Gait scores, particularly step count, have been assessed (Lamont
et al., 2018; Straiton et al., 2018; Lai et al., 2020; Svarre et al.,
2020), and while error of ≤3% in step count can be obtained
with ambulatory sensors at normal walking speeds, error rate
increases when walking is slower or higher than normal (Svarre
et al., 2020) or discontinuous (Wendel et al., 2018; Cederberg
et al., 2021). The so-called “long walks” provided the greatest
concordance and least error, and this may be because many
of the devices use the quasi-periodic nature of the acceleration
signal during walking. This approach is most accurate when
the rhythmicity of gait is high and variability is low. However,
these same factors may adversely affect gait detection in PD
when there is increased axial rigidity and loss of the normal
rhythmicity of walking, and these same people may be less
inclined to undertake “long walks.” Consequently, there may
be some subjects who may be prone to higher step counting
error rates when walking is measured for extended periods
outside the laboratory.

The first aim of this study was to establish the algorithm’s
step counting accuracy in normal walkers (with or without PD)
and in people with an abnormal gait due to PD by comparing
steps counted by an observer with the algorithm step count
during videoed extended walking. The second aim was to use this
information to establish whether the likelihood of a low rate of
errors in step count could be predicted from data obtained from
a wrist-worn sensor. The intention was to use the sensor data
alone, without the need for confirmatory video to identify cases
in whom the step count was reliable and not, in the first instance,
to classify people as normal or abnormal walkers. The third aim
was to examine the relationship between bradykinesia and step
count in PwP whose risk of errors in step count was low.

Method
To aid the reading of this study, a brief overview is provided
here. First, in this section, the Parkinson’s KinetiGraph’s (PKG,
Global Kinetics CorporationTM, Australia), which is a system
that uses data from a wrist-worn data logger, is described. Next,
the PKG’s step detection system and manual step counts were
compared in cohort 1 (48 PwP and 10 controls) while their
walking was videoed (PKGvideo v Manualstep count). Examination
of the spectral density and autocorrelogram indicated that
accelerometry data recorded over 6 days could also be used to
predict which subjects had low error rates (as determined by
comparison between Manualstep count and PKGvideo) while the
PKG recording is performed without any specific task-based
requirement. The method for detecting this in the 6-day PKG
(PKG6 day) is also described in this section, but the results of
applying to PKGs from subjects in cohorts 2 and 3, consisting
of 190 controls and 155 PwP, respectively, are described in the
“Results” section.

Ethics Approval
All cohort 1 participants gave written consent to participate, and
approval for their study was provided by the St Vincent’s Health
Hospital (Melbourne) Human Research and Ethics Committee.
All participants in cohorts 2 and 3 provided written consent for
their data to be used in future studies. All studies were carried
out in accordance with the guidelines issued by the National
Health and Medical Research Council of Australia for Ethical
Conduct in Human Research (2007, and updated May 2015) and
in accordance with the ethical standards laid down in the 1964
Declaration of Helsinki and its later amendments.

The Parkinson’s KinetiGraph
The PKG system consists of a wrist-worn data logger, a series
of algorithms that produce data points for bradykinesia and
dyskinesia (Griffiths et al., 2012) every 2 min of recording and a
report (or PKG), which plots these 2-min scores against the time
of day (Figure 1; Griffiths et al., 2012).

The Bradykinesia Score (BKS) is produced by applying
algorithms to the accelerometry data collected from each 2 min
of recording (Griffiths et al., 2012). These BKS scores ranged
from 0 to 140 with scores above 80 being associated with sleep.
Thus, the scores relevant for this study were those less than
80. Data are typically collected for 6 days, and the median of
BKS (mBKS) less than 80 between 09:00 and 18:00 was used in
this study as a representation of the overall level of bradykinesia
for that subject.

The PKG has a step count algorithm applied to the
accelerometry data. Step count is estimated using the
autocorrelation function of normalized triaxial acceleration
signals. This procedure relies on the observation that during
walking the autocorrelation function, which is the cross-
correlation of a signal with its time-lagged replicas and is
presented as a function of time lags, shows peaks at gait cycles
(Moe-Nilssen and Helbostad, 2004), also known as dominant gait
periods. In this study, the normalized acceleration at each time
sample (sampling rate of 50 Hz) is calculated as the Euclidean
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FIGURE 1 | Panels (A,B) compare the spectral densities (left) and autocorrelation function (right) of a normal walker with low scores for UPDRS III questions for axial
rigidity (UPDRS III 3a–3e = 2), postural stability (UPDRS III 3.10-12 = 1), UPDRS III (overall) (=20), and low FoG score (=5). Panels (C,D) compare the spectral
densities (left) and autocorrelation function (right) of an abnormal walker with high responses to UPDRS III questions for axial rigidity (UPDRS III 3a–3e = 11) and
postural stability (UPDRS III 3.10-12 = 4), UPDRS III (overall) (48), and high FoG score (=11).

norm of the acceleration samples corresponding to the x, y, and
z axis (Mannini et al., 2013). The resulting one-dimensional
signal is band-pass filtered to only include frequencies that
are relevant to walking. To use the autocorrelation-based gait
analysis technique, a 4-s neighboring window is used at each
second to calculate an autocorrelation function (Moe-Nilssen
and Helbostad, 2004). The gait period is defined as the lag
to the second dominant peak (Figure 1B) in the resulting
autocorrelation function (which is twice the step period).

Accuracy of Parkinson’s KinetiGraph
Step Count Compared to Steps Counted
From a Video
Subjects in cohort 1 were videoed while walking and wearing a
PKG (see below for video method). Cohort 1 consisted of 48 PwP
and 10 people without PD (controls). Recruitment of PD subjects
was explicitly directed at ensuring that a proportion of the PwP
were normal walkers (N = 21) while PD clearly affected the gait
of the remaining PwP (N = 27). Gait was assessed as “normal”
or “abnormal” by a movement disorder specialist using factors
covered by items 3.10–3.14 in the Movement Disorder Society
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Part III,
but more explicitly, the following features. Subjects with normal
gait (with or without PD) walked with symmetrical arm swing,
with normal axial rotation of pelvis and shoulders, and with
symmetrical foot strike. A blinded assessor could not confidently
identify the presence of PD based only on an examination
of the video. Any axial bradykinesia, postural asymmetry, or
diminished arm swing should not have a greater effect on gait
than common orthomechanical factors in the same age group.
FOG questionnaire (FOG-Q) scores, performed in 38 PwP, were
elevated in those with abnormal gait (9.5 ± 5.2 SD), but were
low in those with normal gait (2.9 ± 3.6 SD; Table 1). In the
23 PwP who undertook an MDS-UPDRS III assessment, scores
were also higher in the group with an abnormal gait (38± 11 SD)
compared to those with a normal gait (28.1 ± 13.4 SD). Scores
in MDS-UPDRS III questions 3.10, 3.11, and 3.12 tended to be

higher when gait was abnormal (3.1± 2 SD) compared to normal
walkers (1 ± 1 SD), in keeping with the basis for classification of
an abnormal gait (Table 1). The use of a cane was not prohibited,
provided it was not used in the arm that wore the PKG. Subjects
who needed walkers were excluded. PwP were assessed on their
usual dose of PD medications and in their “best” state. Almost
all PwP (45/48) wore the PKG for 6 days (PKG6day) within a few
days of being videoed while walking. The mean age of controls
was 69.9 (SD = 2.7), and the mean age of PwP was 71.6 (SD = 8.1).

Video Assessment of Gait
The PKGvideo and the Manualstep count were obtained as follows.
Subjects were directed to walk circuits of a 3-m-wide corridor
between two points 30 m apart at their usual pace continuously
for 4 min while being videoed and wearing a PKG that was
synchronized with the video. The video steps were counted over
the whole 4 min with a footfall from either foot being a step.
A step count error rate was calculated:

E = 100 ×

∣∣Sest − Sref
∣∣

Sref

where Sest and Sref are the number of steps estimated from
the PKGvideo and Manualstep count , respectively. Step counts and
error rates in controls and PwP classed as normal walkers were
very similar. Therefore, in further analyses, controls and normal

TABLE 1 | Description of cohorts.

Cohort Control PD Description

1 10 38 Section 2.5. Recruited to ensure both normal
walkers (N=21) and PwP with clearly affected
gait (N=27)

2 190 - Section 2.7. No history of PD or other
neurodegenerative disorder. Aged 60 years or
over (mean age of 70 (SD=6).

3 - 155 Section 2.7. Mean age 69 years (SD=5).
Relevant clinical scales and demographic
scores are in Table 4.
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walking PwP were pooled as “normal walkers” and compared
with abnormal walkers (Table 1).

Error Prediction in PKG6 day
As the highest error between the walking algorithm and the step
count from the video was in PwP who had an abnormal gait, it
is plausible that these participants do not generate the strong and
regularly spaced peaks in the autocorrelation of the accelerometry
data that occurs in inherently rhythmic normal walking. These
(harmonic) peaks are necessary for accurate gait detection by
autocorrelation, so their attenuation may contribute to errors
in gait detection. This view was supported by inspection of the
spectrograms obtained from the accelerometry data recorded
from PKGvideo. Figure 1 compares autocorrelation peaks (left:
spectral, right: temporal) of an abnormal walker (PwP 1) with
a “normal” walker (PwP 2) (Figure 1). As this loss of spectral
harmonics accurately predicted that the algorithmic step count
would have high errors with respect to the video step count, the
full 6-day PKG (PKG6day), recorded close in time to the PKGvideo
in 45 PwP from cohort 1, was examined for similar characteristics
in the spectrogram.

Segments of accelerometry in which walking was detected
were extracted from each PKG6day, noting that a separate and
independent walking detection was used to identify walking prior
to feature extraction. Entropy calculated from the power spectral
density of the autocorrelation function was derived from each
10-s interval (indexed i) of these segments using the following
procedure (Shannon, 1949):

Hi
=

∑
k∈W

Piklog
(
Pik
)

where Pik represents the kth component of the power density
function calculated for the ith 10-s interval. The left column in
Figure 1 shows two examples of Pi:. The acceptable frequency
range W is chosen to only contain frequencies between 0.5 and
8 Hz to exclude DC components as well as noisy non-walking
high-frequency components. Timestamps were calculated at each
10-s interval with 5-s overlaps. Spectral entropy has previously
been used in characterizing signal disorganization in a wide range
of applications, including speech (Shen et al., 1998), biomedical
signal processing (Vakkuri et al., 2004; Viertio-Oja et al., 2004),
and signal fault detection (Pan et al., 2009). The spectral entropy
of sequential 10-s epochs of walking segments from the PKG6day
was summarized in a density distribution. Various quartiles
(percentiles) of the distribution were examined as predictors of
the error rate in the step count with the 5th percentile (left tail) of
the spectral entropy distribution providing the best separation of
subjects with low and high error.

H5% = P5th(Hi∣∣
i∈PKG)

where the operator P5th(.) returns the 5th percentile
of the distribution of all Hi for a subject’s PKG
recording during walking.

This concords with the intuitive interpretation that a
normal gait pattern is likely to produce lower spectral entropy
(Figure 1B), whereas steps are harder to detect when the power

TABLE 2 | Comparison of normal and abnormal walkers in cohort 1.

Normal walkers
mean (SD), [X]8

Abnormal walkers
mean (SD), [X]8

Step count in video 396.95 (85.0) [21] 395.59 (87.0), [27]

Error rate 3.86 (3.1), [21] 11.42 (16.8), [27]

UPRDS III* 28.11 (13.4), [9] 38.0 (11.0), [14]

UPDRS III (3.10-12)* 1.0 (1.0), [9] 3.14 (2.0), [14]

UPDRS III Rigidity (3a–e)* 4.78 (3.1), [9] 5.29 (3.0), [14]

FOG score* 2.86 (3.6), [14] 9.54 (5.2), [24]

*For PwP only; φ number for whom assessment was available.

spectral density shows patterns of abnormal gait, and peaks are
less prominent (Figure 1B). Based on the distribution of errors, a
threshold of Etotal ≥ 3% vs. Etotal < 3% was used to separate high
error subjects from low error subjects of cohort 1.

The performance obtained from the H5% of walking from
the PKG6 day exceeded other spectral entropy features in terms
of combined specificity and sensitivity in predicting error rate
in the video study (Table 2). Therefore, for the purposes of
this study, the H5% feature was used as the sole predictor
of step count error in PKG6 day. This allowed PKG6 day to
be separated according to whether their predicted error rate
(PER) was low (LPER: corresponding to <3% error in PKGvideo
compared to Manualstep count) or high (HPER: corresponding
to ≥3% error in PKGvideo compared to Manualstep count). This
analysis was conducted based on a blinded testing regime using
subjects from cohort 1 with approximately 30% of the population
used for testing.

Prediction of Error Rates in PKG6 day
Recorded From Control and PwP Cohort
This error predictor was then applied to PKG6 day recorded from
people in cohorts 2 and 3 (described below) and the effect of
PD on step count is described in the “Results” section. The two
cohorts are described briefly here. Cohort 1 was described earlier
in the “Accuracy of PKG step count compared to steps counted
from a video” section.

Cohort 2. This cohort (N = 190) had no history of PD or other
neurodegenerative disorders and was used as a control group for
comparison with PD. They aged 60 years or over with a mean
age of 70 (SD = 6). While none of the subjects used walking aids,
no details were known of orthopedic disturbances or of other
medical conditions and no relevant clinical scales such as the
Montreal Cognitive Assessment (MoCA) were available. All wore
the PKG for 6 days. They were recruited previously, and their data
were held on a database.

Cohort 3 (Table 3). This cohort (N = 155) included
PwP who participated in a previous study examining the
contribution of PKG information in clinical decision-making
(Woodrow et al., 2020). All participants had a PKG and an MDS-
UPDRS performed before and after changes in dopaminergic
therapy. Most (148 subjects) also had the Parkinson’s Disease
Questionnaire (PDQ39) and MoCA. None were receiving
advanced therapies. Their mean age was 69 years (SD = 5), and
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TABLE 3 | Comparing the performance error prediction using spectral entropy
features vs. number of autocorrelation peaks.

Cross validation (3-fold) performance metric H5%

Specificity 0.79

Precision 0.88

Recall 0.79

F1 0.84

ROC-AUC 0.76

HPER (Etotal ≥ 3%) 14

LPER (Etotal < 3%) 29

Measures in bold have significant p values.

relevant clinical scales and demographic scores are shown in
Table 3.

For all three cohorts, the focus has been on reporting step
count measures for triaxial acceleration. Of all participants, 14
subjects from cohort 2 did not have all three axes available, for
which step count results were generated using a similar pipeline
but with only the x-axis. Due to their limited number, this did not
significantly impact results.

RESULTS

Error Prediction Applied to PKG6 day
From Subjects in Cohorts 2 and 3
In cohort 2 (i.e., controls), 84% (160/190) had an LPER and will
be referred to as CLPER and 18% (30/190) had an HPER and will
be referred to as CHPER. Note that criteria for being a control
were absence of PD or known neurodegenerative disorder and
age ≥ 60 years. Thus, orthopedic or other mechanical problems
that might affect fluency of gait may be present and contribute to
the HPER. The mean ages of the LPER group (70.3± 5.8 SD) and
HPER group (71.5 ± 6.6 SD) were not significantly different and
were similar to the age of the overall cohort (70.5± 6 SD).

A total of 72% of cohort 3 (111/155) had an LPER and will be
referred to as PwPLPER and 28% (44/155) had a HPER (PwPHPER).
The clinical characteristics of PwP (cohort 3) and the PwPLPER
and PwPHPER subcohorts are shown in Table 3. While the total
cohort had relatively moderate PD with average disease duration
of 6.1 years, H&Y of 2, PDQ 39 of 30, and MDS-UPDRS III
of 36, the HPER cohort had significantly higher H&Y, MDS-
UPRDS III, and Total and PDQ 39 (Table 3). The MDS-UPDRS
III questions for posture, stability, and axial features and the
sum of MDS-UPRDS III Q10-Q14 were also statistically worse
in the HPER cohort.

Step Count in People With Parkinson’s
Disease Compared With Controls
The average daily step count for controls and PwP with both
LPER and HPER was plotted (Figure 2A) and shows that the
average daily step counts of CLPER are significantly higher than
PwPLPER, with PwPLPER on average taking 23% fewer steps. The
average daily step counts of CHPER and PwPHPER were also plotted

(Figure 2A) and their means were found to be significantly less
than their respective counterparts whose PERs were low.

The relationship between bradykinesia and average daily step
counts was assessed by comparing the median bradykinesia score
(mBKS, one of the PKG’s measures of bradykinesia) and the
average daily step counts of PwPLPER (Figure 2B). The step count
of PwPLPER whose mBKS ≤ 25 (in the range of non-PD subjects)
was similar to ControlLPER subjects. The mean MDS-UPDRS III
and mean MDS-UPDRS Total of PwP whose mBKS≤ 25 was 30.6
(SD = 10.0) and 55.9 (SD = 19.9), respectively, which is lower
than the whole PwPLPER cohort (Table 3). In contrast, subjects
with a high mBKS had an average daily step count similar to
PwPHPER and similar MDS-UPDRS III (mean = 39.9, SD = 9.8)
and MDS-UPDRS0 Total (mean = 67.3, SD = 13.4) (Table 4).
Although the MDS-UPDRS III and MDS-UPDRS Total were
higher in PwP with higher mBKS, the relationship to step count
and these clinical scales was very weak. There was no relation
between PDQ 39 and step count (data not shown).

Epochs of continuous steps were identified from PKG6day
data and were separated into those fragments that lasted
more than 1 min, known here as “long walks” (Figure 2C).
Note that these were often contiguous with other epochs
and resulted in walks much longer than 1 min. ControlLPER
spent a median of 20.1 min/day in long walks compared to
PwPLPER (12.9 min). HPER participants spent far less time in
long walks (3.7 and 4.0 min, controls and PwP, respectively).
Total time walking was the sum of the time spent in long
walks and the time spent in short walks (<1 min). Time
spent in long walks expressed as a ratio of total time walking
provides an indication of the proportion of time spent in long
walks. This ratio was higher in ControlLPER (mean = 0.44,
SD = 0.15) than ControlHPER (mean = 0.14, SD = 0.08).
Similarly, the ratio was higher in PwPLPER (mean = 0.39,
SD = 0.16) than PwPHPER (mean = 0.2, SD = 0.15). This implies
that ∼40% of steps made by subjects with LPER are long
walks, whereas only ∼14–20% of steps made by subjects with
HPER are long walks.

The stride frequency of controls and PwP was also examined
by calculating for each individual the median stride frequency
of all steps taken over the 6 days of the PKG. The mean
of these values for PwPLPER (mean = 0.92 Hz, SD = 0.06)
was slower (p = 0.045, t-test) than the mean of these means
for ControlLPER subjects (mean = 0.94 Hz, SD = 0.06).
Assessment of stride frequency in both controls and PwP with
HPER was particularly affected by erroneous peak selection
for autocorrelation, which makes stride frequency estimates
unreliable in many instances.

Effect of Treatment of Step Count
The original study of subjects in cohort 3 (Woodrow et al.,
2020) was designed to examine the benefit of using sensor
measurement and targets when treating PwP. Thus, the therapy
of all 155 subjects was changed with the aim of optimizing their
PD. This took between 2 and 6 months, and all participants
had a PKG prior to changing therapy and when therapy
was considered optimal (Woodrow et al., 2020). Thus, it was
possible to examine 111 PwPLPER and compare the change
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FIGURE 2 | Panel (A) shows the average daily step count (y-axis) of CLPER, CHPER, PwPLPER, and PwPHPER participants. Panel (B) compares the average daily step
count (y-axis) of CLPER, all PwPLPER, PwPLPER stratified according to the PKG’s score for bradykinesia (mBKS) in the shade areas and PwPHPER. Note that the
distribution of PwPLPRE with mBKS ≤ 25 has a similar distribution to that of CLPER, whereas those with the highest mBKS have a distribution similar to PwPHPER.
Panel (C) shows the average time spent each day in long walks (walks > 1 min, y-axis) of CLPER, CHPER, PwPLPER, and PwPHPER participants. Panel (D) shows the
change (1) in average step count from before treatment to after treatment (y-axis: a positive number indicates an increase in step count). PwPLPRE were sorted into
three categories based on change (1) in mBKS from before treatment to after treatment where a negative (1) indicates an improvement in mBKS (and bradykinesia).
All plots are box (median, 25th, 75th percentiles) and whiskers (10th and 90th percentiles) plots. The statistical differences between relevant plots are shown by
p-values obtained from an ANOVA and Šídák’s multiple-comparisons post hoc test.

in the PKG’s bradykinesia score (mBKS) from first visit to
last visit with the average daily step count from those same
PKGs (Figure 1D). These cases were stratified into three
groups, namely, those where there was a clinically meaningful
change in mBKS (≤−2 mBKS final score minus first score)
approximating to 5 UPDRS III points or more, those whose
mBKS change little (±2 mBKS units), and those who deteriorated
significantly ≥2 mBKS points).

There is a clear trend to an increase in steps taken by those
whose mBKS improved and a decrease in steps taken by those
whose mBKS deteriorated. This represents a 17% increase over
the median daily steps of PwPLPER (Figure 2D) when mBKS
improved and 29% decrease from the median daily steps of
PwPLPER (Figure 2D) when mBKS deteriorated. The MDS-
UPDRS III and Total scores were assessed around the same time
as the “before” and “after” PKGs were performed. It is worth
mentioning that there was no relationship between change in
MDS-UPDRS scores and step count.

DISCUSSION

There has been interest in using ambulatory sensors to measure
step count in PD since consumer grade devices providing this
function first became available (Lamont et al., 2018; Straiton
et al., 2018; Wendel et al., 2018; Lai et al., 2020; Svarre et al.,
2020; Cederberg et al., 2021). While gait laboratories can provide
detailed information about gait in PD, the hope has been that
ambulatory measurement in an ecologically relevant setting
might provide other information that cannot be gained from
laboratory measurements. For example, step count may be an
indirect marker of cognition, quality of life, and bradykinesia
(Giladi and Hausdorff, 2006; Weiss et al., 2015; Kueper et al.,
2017; Salazar et al., 2017; Yao et al., 2017), which are relevant
to PD. Moreover, there is a research interest in the use of step
count as an index of the severity and progression of PD. This
study was a pilot aimed at understanding whether wrist-worn
sensors can be used in all PwP or with a subset prone to a higher
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TABLE 4 | Demographics for Cohort 3.

Measure Category No. Mean Std. dev p-value 8

Age All 155 68.5 5.0

HPER 44 69.2 5.0 0.24

LPER 111 68.2 4.8

Gender (%F) All 155 47%

HPER 44 52.3% 0.42 §

LPER 111 45.05%

Disease duration
(years)

All 155 6.0 3.8

HPER 44 6.75 4.6 0.11

LPER 111 5.65 3.4

Hoehn and Yahr All 153 2.0 0.6

HPER 43 2.2 0.7 0.001
LPER 110 1.9 0.5

MDS-UPDRS I All 148 11.1 5.5
HPER 42 12.4 6.4 0.07
LPER 106 10.56 4.9

MDS-UPDRS II All 184 10.5 6.0
HPER 42 12.43 6.8 0.01
LPER 106 9.7 5.5

MDS-UPDRS III All 154 35.6 10.5

HPER 44 40.9 10.7 <0.0001
LPER 110 33.5 9.7

MDS-UPDRS III
Postural Stability
Gait

All 154 2.4 1.6

HPER 44 2.9 1.8 <0.01
LPER 110 2.2 1.5

MDS-UPDRS III Q
10–14

All 154 4.1 2.8

HPER 44 4.8 3.2 0.04
LPER 110 3.8 2.5

MDS-UPDRS IV All 153 4.8 3.7
HPER 43 4.3 3.8 0.32

LPER 110 5.0 3.7

MDS-UPDRS
Total

All 147 62.3 17.7

HPER 41 71.0 19.4 0.0002

LPER 106 59.0 15.8

PDQ 39 All 150 28.3 18.1

HPER 43 34.8 21.3 0.006

LPER 107 25.9 15.9

MoCA All 155 26.2 2.3

HPER 44 26.1 2.5 0.6

LPER 111 26.3 2.3

NMS Quest All 150 9.2 5.0

HPER 43 9.7 5.9 0.48

LPER 107 9.0 4.5

8p-Value of two-sided t-test comparing high and low error groups (HPER
vs. LPER), except for gender (§ Chi-squared test). Measures with significant
differences between HPER and LPER are bold.
Note that “n” represents the total number of subjects for whom values were
available.

error rate in counting steps. A consequent question was whether
subjects at risk of step count errors could be recognized from the
accelerometry recording alone without first establishing accuracy
by comparing with a video-assessed counts of steps.

There have been studies of step count accuracy of wrist-
worn sensors in PD (Lamont et al., 2018; Straiton et al., 2018;
Wendel et al., 2018; Lai et al., 2020; Svarre et al., 2020; Cederberg
et al., 2021), but these regard PwP as a homogenous cohort with
regard to risk of step count. However, this is unlikely because
the well-known changes in walking and posture that occur as
PD progresses are likely to lose the typical oscillatory energy
produced by normal walking. Our assumption was that this group
would likely present problems in step counting using the usual
autocorrelation methods. Cohort 1 was explicitly selected to have
both PwP who were normal walkers and PwP who walked with
diminished axial rotation. The designation of participants as
normal and abnormal walkers appears justified on the basis of
their MDS-UPDRS III and FOG scores and the clear separation in
error rates. Nevertheless, some “normal walkers” had high error
rates. The most likely reason for this is that non-PD mechanisms
may also contribute. In normal walking, the forward foot swing
produces momentum that is transferred by axial rotation to
the shoulder to produce the acceleration peaks measured in the
arm. Accordingly, the mechanical effects of lumbar degenerative
disease or spinal fusion surgery, which are common in the
age group in this study, could impede the transfer of energy
from foot to arm and thus account for a high error rate in
a subject who did not have axial rigidity from PD. If step
counting was the only aim, then placing a sensor on the pelvis
or leg would overcome the problem of lumber rigidity but the
simultaneously measured bradykinesia and dyskinesia obtained
by wrist measurement using the PKG would be lost. Furthermore,
we propose that the higher PER is an indirect measure of axial
bradykinesia that cannot be as readily measured by sensors placed
lower on the body.

The choice of H5% in the accelerometry to predict error
rate was informed by inspection of the spectral density
obtained during videoed walking. This component provided
good separation of the subjects in cohort 1 whose step count
error rate had previously been established as high or low by
comparison with videoed walking. As the aim was to select
people with acceptable accuracy of step count, a boundary that
favors a higher F1-score (balanced precision and recall) between
LPER and HPER was chosen. A consequence of using the H5%
feature with a logistic regression is that it delivers a classification
rather than a continuum of risk. However, a continuum would
be desirable for the tracking of the course of disease by making
repeated measures over time and observing an increasing risk of
error until the boundary is exceeded. A larger cohort of videoed
subjects with a richer feature set may be necessary to produce
such a continuous scale of risk. While the effect of attenuation
of the natural rhythmicity of walking on the autocorrelation
function has been the main explanation for the increase in step
count error, the marked reduction of time spent in long walks
warrants discussion. The autocorrelation function searches for
peaks within the next 4-s period. Thus, the step counter may
be more error prone in detecting steps in walks of 5 s or less
(∼4 or 5 steps). While it is plausible that PWPHPER have less
efficient walking and are thus inclined to avoid long walks, it is
also plausible that when a large proportion of steps are in walks
of less than 1 min (i.e., less than a long walking), there is also a

Frontiers in Aging Neuroscience | www.frontiersin.org 7 June 2022 | Volume 14 | Article 904895

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-904895 June 11, 2022 Time: 14:33 # 8

Shokouhi et al. Step Count Error in PD

higher chance that more steps will be in walks of 5 s or less and
thus with more errors. It seems more likely that the fundamental
problem is the loss of rhythmicity, but further investigation is
needed to exclude the possibility that high proportion of steps in
walks of 5 s or less are the cause of step count error.

The predicted risk of step count error was high (HPER) in
16% of the control population (cohort 2). These participants were
controls in the sense that they did not have a neurodegenerative
disorder, but they are not necessarily “healthy,” and it is
to be expected that participants in both cohorts 2 and 3
will have the various musculoskeletal afflictions of people
aged 60 or over. Furthermore, in the wider community,
subjects with cognitive impairment and dementia walk more
slowly than people with unimpaired cognition (Borges Sde
et al., 2015) and slow walking speed and the extent of
decline in walking speed bears some relationship to the
risk of developing dementia (Beauchet et al., 2016; Quan
et al., 2017; Hackett et al., 2018). While walking speed
was not measured in this study, it is frequently associated
with fewer steps.

Based on the incidence of HPER in the control population,
it might be expected that 16% (∼25) of the 155 PwP in
cohort 3 may have had non-PD factors contributing to a
high predicted error, although this would not in itself explain
the high UPDRS III Q10–14 scores, or the high FOG scores
associated with PWPHPER. Tremor did not appear to contribute
to erroneous step counting by providing spurious peaks for
the autocorrelation function. PD tremor does produce resonant
peaks in the spectrogram, but these are almost always above 4 Hz
and above expected gait frequencies. However, the possibility that
they may occasionally contribute cannot be excluded especially
when tremor is lower in frequency and higher in energy such
as with essential tremor. Dyskinesia increases spectral density
in all frequencies above 3 Hz but is typically identified by
the absence of peaks. It is thus unlikely that dyskinesia would
produce spurious peaks, but the increase in energy across the
spectrum may obscure walking generated peaks, making them
difficult to identify. As reported in the results, neither tremor nor
dyskinesia were overrepresented in PwPHPER but future studies
that systematically examine the effect of specific cases may reveal
that in some instances both may interfere with the efficiency of
the autocorrelation function.

Amongst PwP classified as a low risk of error (PwPLPER),
there was a relationship between bradykinesia and step count
(Figure 2B) and improvement in bradykinesia resulted in
increase in average daily step count (Figure 2D). There was
a modestly higher stride frequency in PwP compared with
controls. Others have found a reduction in stride frequency and
increasing bradykinesia (Chien et al., 2006; Nanhoe-Mahabier
et al., 2011; Bryant et al., 2016; Orcioli-Silva et al., 2018; Del
Din et al., 2019; Rehman et al., 2019; Corra et al., 2021). One
reason for this difference with the published literature may be
that the PwP in cohort 3 had relatively mild PD. The average
MoCA and PDQ 39 was quite high, even in PwPHPER and so
a future study with a significant component of people with
low MoCA and higher H&Y may be needed to reveal a lower
gait frequency. Previous reports suggest that lower step count

and slower stride frequency are driven largely by impaired
executive function anxiety (Giladi and Hausdorff, 2006; Weiss
et al., 2015; Kueper et al., 2017; Salazar et al., 2017; Yao et al.,
2017). Another factor that may have contributed is that the
second and subsequent peaks in the autocorrelation function
were attenuated when the mBKS was higher. This may not have
been enough to disturb the predicted error classification but may
have interfered with estimation of stride frequency. It is not
immediately apparent why the average daily step count has a
relationship with mBKS but not with MDS-UPDRS III. Clearly
the two measures encompass different aspects of bradykinesia
with tremor, speech, and rigidity being factors included in the
UPDRS but not in the mBKS. It might be expected that some
of these would have associations (possibly inversely) with step
count. The act of walking contributes to the spectral density in
the accelerometry, and some of this is in frequencies that could
contribute to the mBKS. However, the median time spent in
walking long walks for PwPLPER was 12.9 min, which represents
only 4.8% of all the 2-min BKS that contributed to the mBKS. As
the mBKS is a median value, it will be insensitive to an effect that
influence only 5% of the scores. Even the PwPLPER who walked
the 90th percentile longest walk (30.3 min) walked for a small
portion of the day.

The choice of the PER that separates LPER from HPER was
based on cohort 1, which consisted of a greater range in severity
of PD than cohort 3. To our knowledge, no participant in cohort
3 had FOG and participants had relatively mild disease (Table 3).
A future study examining subjects with later stage disease and a
greater proportion of subjects with clear axial involvement and
FOG may help to clarify the choice of this transition point. The
LPER/HPER classification is binary, whereas in reality the risk
of error is a continuum from very low to very high. It might
be expected that over time, particularly as factors that interfere
with axial rotation become more intrusive, the PER progressively
increases to the point that the classification change from LPER to
HPER. Thus, there might be a period while the PER is very close
to 3% that classification of LPER and HPER is unstable. Future
studies are required to understand this better.

The average daily step count from the PKG for participants
with a low PER is likely to be an accurate indication (within
3%) of the habitual number of steps taken by that individual
over 6 days. However, the central tendency (mean or median)
of the population (e.g., ControlLPER in Figure 2A) will also be
accurate, with the error of 3% (along with the true biological
variation) contributing to the variation. This is because there was
no noticeable bias toward under- or over-count. In contrast, the
average daily step count from the PKG for participants with a
high PER will be less certain being greater than 3%. Even so, the
central tendency of the HPER population (e.g., ControlHPER or
PwPHPER in Figure 2A) will still be an accurate indication for
those populations because there was again only modest bias to
undercount. However, the error rate will contribute more than
3% to the variation. The reason for making this point is that it is
still possible to statistically compare step counts of high predicted
error with a low predicted error (as in Figure 2A) using relevant
statistical tests (e.g., ANOVA test). Thus, the 12% difference in the
mean is an accurate representation of the difference in walking
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in these two cohorts. The important caveat is that it is far more
difficult to be sure of the step count of an individual subject
with a high PER.

The use of a step detection autocorrelation algorithm using
data from a wrist-worn accelerometer appears to provide an
accurate daily step count for assessing PD cohorts, although
consideration should be given to the effect of increased variation
associated with using PwPHPER. If the average daily step count
of a specific individual is being considered, then the accuracy
only meets the <3% error standard in PwPLPER. A larger cohort
of more severe PD should be studied to fully understand the
relationship between bradykinesia and step count and whether
a transition from LPER to HPER occurs with the development of
axial rigidity and risk of FOG. To achieve this, a different means
of estimating risk of step count error may be required.

CONCLUSION

Accelerometry data from wrist-worn sensors can be used to
measure step count in PD with error rates of <3% providing that
the rhythmicity of walking is near normal. This study used H5%
to detect loss of normal rhythmicity. PwP, whose step count error
rates were high (according to this method), had more severe PD,
and much lower step counts and time walking. Further studies
of more severe PD are required to understand the development
of a higher error rate and its association with axial rigidity
and risk of FOG.
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