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Objective: As a chronic neurodegenerative disorder, Alzheimer’s disease (AD)

is the most common form of progressive dementia. The purpose of this study

was to identify diagnostic signatures of AD and the effect of immune cell

infiltration in this pathology.

Methods: The expression profiles of GSE109887, GSE122063, GSE28146,

and GSE1297 were downloaded from the Gene Expression Omnibus (GEO)

database to obtain differentially expressed genes (DEGs) between AD and

control brain samples. Functional enrichment analysis was performed to

reveal AD-associated biological functions and key pathways. Besides, we

applied the Least Absolute Shrinkage Selection Operator (LASSO) and support

vector machine-recursive feature elimination (SVM-RFE) analysis to screen

potential diagnostic feature genes in AD, which were further tested in AD

brains of the validation cohort (GSE5281). The discriminatory ability was then

assessed by the area under the receiver operating characteristic curves (AUC).

Finally, the CIBERSORT algorithm and immune cell infiltration analysis were

employed to assess the inflammatory state of AD.

Results: A total of 49 DEGs were identified. The functional enrichment

analysis revealed that leukocyte transendothelial migration, cytokine

receptor interaction, and JAK-STAT signaling pathway were enriched in

the AD group. MAF basic leucine zipper transcription factor F (MAFF),

ADCYAP1, and ZFP36L1 were identified as the diagnostic biomarkers of

AD with high discriminatory ability (AUC = 0.850) and validated in AD
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brains (AUC = 0.935). As indicated from the immune cell infiltration analysis,

naive B cells, plasma cells, activated/resting NK cells, M0 macrophages, M1

macrophages, resting CD4+ T memory cells, resting mast cells, memory B

cells, and resting/activated dendritic cells may participate in the development

of AD. Additionally, all diagnostic signatures presented different degrees of

correlation with different infiltrating immune cells.

Conclusion: MAFF, ADCYAP1, and ZFP36L1 may become new candidate

biomarkers of AD, which were closely related to the pathogenesis of AD.

Moreover, the immune cells mentioned above may play crucial roles in disease

occurrence and progression.

KEYWORDS

Alzheimer’s disease, diagnostic biomarkers, immune cell infiltration, bioinformatic
analysis, machine-learning strategies

Introduction

Alzheimer’s disease (AD) is the most well-known form
of dementia, accounting for 50–60% of all cases, which is
characterized by memory deficits, cognitive dysfunction, and
behavioral impairment (Joe and Ringman, 2019). In 2018,
Alzheimer’s Disease International revealed that the dementia
prevalence is about 50 million people worldwide, projected
to triple in 2050 (Scheltens et al., 2021). For decades, the
conventional diagnosis for AD relies on deposits of amyloid
beta (Aβ)-tau interaction and accumulation of neurofibrillary
tangles in focal brain biopsy (Beach et al., 2012). Although
the recent technological advancements in genetic testing and
neuroimaging, opened doors to earlier diagnosis of AD (Basaia
et al., 2019), there is still a lack of accurate and effective
biomarkers for detection of AD prior to clinical onset.

Emerging studies suggest neuroinflammation is associated
with AD and may play crucial role in AD progression in recent
years, which involves not only the activation of brain resident
immune cells but also the infiltration of peripheral activated
immune cells (Heneka et al., 2015). A whitepaper workgroup
has been established to delineate the dynamic response of
peripheral–central immune crosstalk in AD (Bettcher et al.,
2021). B cells, as primary effector cells, could infiltrate into
the central nervous system (CNS) of AD and interact with
CNS resident cells, participating in the immune response,
central-peripheral signaling, and blood-brain barrier disruption
(Bettcher et al., 2021). CD4+ T cells are the predominant
type of T cells that are involved in AD progression, glial
pro-inflammatory responses were reported to be driven by
Th1 and Th17 and regulated by Th2 cells (McQuillan et al.,
2010). Natural killer (NK) cells are known for their capability
of killing tumors or virally infected cells, previous studies
have indicated a role for NK cells in the pathogenesis of

AD by mediating Aβ-dependent cytotoxicity (Solerte et al.,
2000). Mast cells are implicated in neuroinflammation and
neurodegenerative diseases by releasing several inflammatory
mediators, cytokines, and chemokines (Kempuraj et al., 2017b).
The levels of blood dendritic cells (DCs) are dysregulated and
associated with increased severity of AD-related symptoms
(Ciaramella et al., 2016). Thus, investigating immune cell
infiltration associated with AD pathology is of great significance
for AD treatment and may offer a novel insight forward in hopes
of manipulating disease onset and progression. Furthermore,
the association between AD diagnostic feature genes and
immune cell infiltration is less understood.

In the present study, we obtained datasets of AD brains
from the Gene Expression Omnibus (GEO) database and
screened candidate diagnostic genes by machine learning
methods, including the Least Absolute Shrinkage Selection
Operator (LASSO) and support vector machine-recursive
feature elimination (SVM-RFE) algorithms. We then evaluated
and validated the expression levels and diagnostic abilities of
these genes. Finally, the association between these feature genes
and multiple kinds of infiltrating immune cells was explored,
which may not only provide a new way to gain insights
into the molecular mechanisms underlying the pathogenesis of
AD, but also a perspective regarding the effective therapeutic
targets of the disease.

Materials and methods

Dataset collection and preparation

We obtained and downloaded the five AD microarray
expression profile datasets (GSE109887, GSE122063, GSE28146,
GSE1297, and GSE5281) from the National Center for
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Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO) database,1 which is a public functional biomedical and
genomic information repository. A search of mRNA profiles in
AD was conducted with the following key words: (“Alzheimer’s
disease” and “Expression profiling by array”), and the species
was restricted as “Homo sapiens.” A total of 146 AD brain
tissue and 93 healthy controls were merged into a training
metadata cohort from four datasets (GSE109887, GSE122063,
GSE28146, and GSE1297), profiled separately on the platform
GPL10904 (Illumina HumanHT-12 V4.0 expression beadchip),
GPL16699 (Agilent-039494 SurePrint G3 Human GE v2 8×60K
Microarray 039381), GPL570 (Affymetrix Human Genome
U133 Plus 2.0 Array), and GPL96 (Affymetrix Human Genome
U133A Array). Subsequently, the probes in each dataset
were annotated and transformed into gene symbols based on
corresponding platform annotation files, and the probes without
matching gene symbols were removed. For more than one probe
corresponding to the same gene symbol, the average value was
calculated as the final expression value. The R package “SVA”
containing the “Combat” function (Johnson et al., 2007) was
applied to compensate for the batch effect. In addition, the gene
expression file of 87 AD brains and 74 control samples from the
AD dataset GSE5281 was considered as the validation cohort for
further analysis.

Differential gene expression analysis

After removing batch effects using the “SVA” R package,
we analyzed differentially expressed genes (DEGs) between 146
AD brain tissues and 93 healthy controls using the “limma” R
package (Ritchie et al., 2015; Varma, 2020). The fold change
(FC) >1.5 and adjusted p < 0.05 were regarded as thresholds
for DEGs Screening.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) (Subramanian et al.,
2007) was performed to identify the most significant regulated
Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes
and Genomes (KEGG) functional pathways between the AD and
control groups. A gene set was regarded as significantly enriched
if a p < 0.05 and false discovery rate <0.025.

Machine learning for the diagnostic
feature genes

We adopted two machine learning algorithms to perform
the disease status predictions. A least absolute shrinkage and

1 http://www.ncbi.nlm.nih.gov/geo

selection operator (LASSO)-based algorithm was utilized to
identify the feature genes associated with the discrimination
of AD and healthy controls using the “glmnet” R package
(Friedman et al., 2010; Kang et al., 2021). To identify the set
of genes with the highest discriminative power, support vector
machine-recursive feature elimination (SVM-RFE) was applied
using “e1071” R packages (Guo et al., 2014; Huang et al., 2014).
The final candidate genes were obtained by the intersection
of the genes from the two algorithms and the DEGs in the
validation cohort. The expression levels of candidate genes were
further tested in the validation cohort.

Assessment of the diagnostic value of
candidate biomarkers in Alzheimer’s
disease

We tested the predictive value for diagnostic biomarkers
using receiver operating curve (ROC) analysis, which was
generated adopting expression data from 146 AD and 93 healthy
brain tissues. To evaluate the diagnostic effectiveness, the area
under the receiver operating characteristic curve (AUC) was
utilized to distinguish AD from control samples and further
verified in the validation cohort (Seshan et al., 2013).

Evaluation of the relative fraction of
immune cell subtypes

Infiltrating immune cells based on the gene expression
profiles of AD data were calculated by using the CIBERSORT
algorithm.2 A reference set with 22 sorted types of immune cell
subtypes (LM22) with 1,000 permutations was used to reckon
the relative abundance of infiltrating immune cells (Newman
et al., 2015; Zhao et al., 2020). The discrepancy and correlation
of infiltrating immune cells between the AD and control samples
were analyzed and visualized by the R package “corrplot” and
“vioplot.”

Exploring the correlation between
identified biomarkers and infiltrating
immune cells

The association between the identified gene biomarkers
expression and the levels of infiltrating immune cells was
estimated by Spearman’s correlation analysis in R software and
visualized using the chart technique with R package “ggplot2”
(Wilkinson, 2011).

2 https://cibersortx.stanford.edu/
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Results

Identification of differentially
expressed genes in Alzheimer’s disease
brain tissues

The flowchart of this study is shown in Figure 1. The
expression profile data from four GEO datasets (GSE109887,
GSE122063, GSE28146, and GSE1297) were composed of a total
of 239 samples including 146 AD and 93 control brain samples.
After we preprocessed and removed batch effects, a total of 49
DEGs were obtained, including 22 upregulated genes and 27

downregulated genes in the AD samples compared with the
normal samples (Figure 2A), in which the remarkable difference
was presented by heatmap (Figure 2B).

Functional enrichment analysis of
differentially expressed genes

The GSEA_GO results revealed that blood leukocyte
cell adhesion, cell activation, vessel morphogenesis, tube
morphogenesis, and vasculature development were enriched in
the AD group, while synapse, neuron projection, presynapse,

FIGURE 1

The flowchart of the analysis process.

FIGURE 2

Differentially expressed genes (DEGs) identified between Alzheimer’s disease and control brain tissues. (A) Volcano plot. (B) Heatmap.
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FIGURE 3

Enrichment analysis to investigate the potential function of differentially expressed genes (DEGs). (A) GSEA_GO analysis in Alzheimer’s disease
(AD) or control group. (B) GSEA_KEGG analysis in AD or control group.

axon, and distal axon were enriched in the healthy control group
(Figure 3A). The GSEA_KEGG results revealed that leukocyte
transendothelial migration, cytokine receptor interaction, JAK-
STAT signaling pathway, and renal cell carcinoma were enriched
in the AD group, while only oocyte meiosis was enriched in
the healthy control group (Figure 3B). These findings strongly
indicated that neuroinflammation and immune response play
essential roles in the pathogenesis of AD.

Identification of immune related
diagnostic feature biomarkers in
Alzheimer’s disease

We conducted two different bioinformatic algorithms to
screen the potential biomarkers of AD. By using the LASSO
regression algorithm, DEGs were narrowed down to 13 variables
as diagnostic biomarkers for AD (Figure 4A). By using the
SVM-RFE algorithm, we identified a subset of 34 features

among the DEGs (Figure 4B). The overlapping feature genes
(MAF basic leucine zipper transcription factor F (MAFF),
ADCYAP1, and ZFP36L1) among LASSO, SVM-RFE algorithm
and DEGs in the validation cohort were ultimately selected
for further study (Figure 4C). The expression levels of
these three biomarkers (MAFF, ADCYAP1, and ZFP36L1)
were further examined in the validation cohort GSE5281
to generate more accurate and reliable results, which were
reported to be significantly dysregulated in AD compared
with those in the control group. MAFF and ZFP36L1 showed
significant upregulation, while ADCYAP1 showed significant
downregulation in the AD group (p < 0.001; Figure 5).

Diagnostic effectiveness of the feature
biomarkers

The identified genes were used to construct the diagnostic
model using a logistic regression algorithm. We further
quantified the discrimination ability by AUC. As shown
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FIGURE 4

Screen for potential biomarkers of Alzheimer’s disease (AD) diagnosis. (A) Identified genes using Least Absolute Shrinkage Selection Operator
(LASSO) algorithm. (B) The optimal feature biomarkers selection via support vector machine-recursive feature elimination (SVM-RFE) algorithm.
(C) Venn diagram displaying one diagnostic marker intersected by LASSO, SVM-RFE algorithms, and differentially expressed genes (DEGs) in AD
validated brain.

in Figure 6A, the feature biomarkers demonstrated a high
diagnostic power in discriminating AD brains from the control
samples, with an AUC of 0.800 (95% CI 0.744–0.855) in MAFF,
AUC of 0.777 (95% CI 0.714–0.839) in ADCYAP1, AUC of
0.796 (95% CI 0.736–0.849) in ZFP36L1, When the three genes
were combined into one variable, the diagnostic ability in terms
of AUC was 0.850 (95% CI 0.797–0.894) in the meta-data
cohort. Moreover, the diagnostic efficiency of these biomarkers
was confirmed in the validation cohort with an AUC of 0.900
(95% CI 0.848–0.941) in MAFF, AUC of 0.841 (95% CI 0.777–
0.895) in ADCYAP1, AUC of 0.862 (95% CI 0.801–0.914)
in ZFP36L1. Importantly, the diagnostic value of the three
biomarkers combined yielded an AUC of 0.935 (95% CI 0.897–
0.966; Figure 6B), further reinforcing the diagnostic ability of
these three feature genes to serve as potential biomarkers in the
discrimination of AD.

Immune cell infiltration

The relative proportion of 22 immune cells was estimated
in each sample of AD cases and healthy controls using the
CIBERSORT algorithm. In comparison with normal samples,
AD samples generally contained a higher proportion of naive
B cells (p = 0.034), plasma cells (p = 0.002), resting memory
CD4+ T cells (p < 0.001), activated NK cells (p < 0.001),
M0 macrophages (p = 0.011), M1 macrophages (p = 0.019),
and resting Mast cells (p < 0.001), whereas the proportions of
memory B cells (p < 0.001), resting NK cells (p < 0.001), resting
DCs (p < 0.001), activated DCs (p = 0.003), and eosinophils
(p = 0.002) were relatively lower (Figure 7A). As indicated from
the correlation heatmap of the 22 types of immune cells, naive B
cells and CD8+ T cells (r =−0.67, p < 0.001), activated NK cells
and memory B cells (r = −0.65, p < 0.001), M1 macrophages
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FIGURE 5

Validation of the expression levels of diagnostic biomarkers in the GSE5281 dataset. (A) MAFF expression level. (B) ADCYAP1 expression level.
(C) ZFP36L1 expression level.

FIGURE 6

Diagnostic effectiveness of feature biomarkers. (A) Receiver operating curve (ROC) curves of candidate biomarkers (MAFF, ADCYAP1, ZFP36L1,
and combined) in the training cohort. (B) ROC curves of candidate biomarkers (MAFF, ADCYAP1, ZFP36L1, and combined) in the validation
cohort.

and activated DCs (r = −0.62, p < 0.001) displayed the most
significant negative correlations, respectively. Memory B cells
and resting DCs (r = 0.66, p < 0.001), CD8+ T cells and resting
memory CD4+ T cells (r = 0.63, p < 0.001), M0 macrophages
and resting mast cells (r = 0.61, p = 0.002) displayed the most
significant positive correlations, respectively (Figure 7B).

Correlation analysis between the
feature biomarkers and immune cells

Finally, we assessed the relationship between the feature
biomarkers and 22 types of immune cells using Spearman’s
correlation analysis. Based on the results of correlation analysis,
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FIGURE 7

Comparison and correlation of immune cell infiltration. (A) Comparison of 22 infiltrated immune cell subtypes between Alzheimer’s disease (AD)
and control brain tissues. Blue and red colors represent normal and AD samples, respectively. (B) Correlation analysis of these 22 immune cell
subtypes mutually.
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FIGURE 8

Correlation analysis between the feature biomarkers and infiltrating immune cells in Alzheimer’s disease (AD). (A) MAFF. (B) ADCYAP1.
(C) ZFP36L1.

MAFF displayed a positive correlation with activated NK cells
(r = 0.48, p < 0.001), resting memory CD4+ T cells (r = 0.47,
p < 0.001), plasma cells (r = 0.27, p = 0.026), M0 macrophages
(r = 0.26, p = 0.035), resting Mast cells (r = 0.25, p = 0.037) and
showed a negative correlation with memory B cells (r = −0.47,
p < 0.001), resting NK cells (r = −0.40, p < 0.001), resting
DCs (r = −0.37, p = 0.002), follicular helper T cells (r = −0.29,
p = 0.018), activated DCs (r = −0.26, p = 0.030) (Figure 8A).
ADCYAP1 displayed a positive correlation with follicular helper
T cells (r = 0.35, p = 0.004), memory B cells (r = 0.32, P = 0.008),
activated memory CD4+ T cells (r = 0.26, p = 0.032) and showed
a negative correlation with CD8+ T cells (r = −0.33, p = 0.006),
M0 macrophages (r = −0.25, p = 0.039), resting memory CD4+

T cells (r = −0.25, p = 0.043) (Figure 8B). ZFP36L1 displayed a
positive correlation with M0 macrophages (r = 0.44, p < 0.001),
resting memory CD4+ T cells (r = 0.43, p < 0.001), CD8+ T cells
(r = 0.42, p < 0.001), activated NK cells (r = 0.36, p = 0.003), and
resting Mast cells (r = 0.27, p = 0.025) and showed a negative
correlation with memory B cells (r =−0.46, p < 0.001), activated

memory CD4+ T cells (r = −0.29, p = 0.017), resting DCs
(r = −0.28, p = 0.021), resting NK cells (r = −0.27, p = 0.025),
follicular helper T cells (r =−0.27, p = 0.028) (Figure 8C).

Discussion

Identifying AD-related diagnostic features is of great clinical
significance for the early detection and intervention of AD.
Increased attention has been paid to the neuroinflammation
mechanism involved in AD propagation. In the current study,
we constructed an integrated bioinformatic analysis to identify
the diagnostic biomarkers that are associated with immune cell
infiltration in patients with AD.

The functional enrichment analysis revealed that leukocyte
transendothelial migration, cytokine receptor interaction, and
the JAK-STAT signaling pathway were enriched in the AD
group (Figure 3). In the inflammation process during AD,
the migration of circulating leukocytes from blood vessels
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into the CNS involves a sequence of adhesion and activation
events, including capturing and rolling, activation induced
by chemokines, and transmigration (Rossi et al., 2011). This
result suggests that robust immune alterations, inflammatory
response, and immune cells are involved in the pathological
process of AD, thereby causing neuronal degeneration or death
in AD progression, leading to cognitive dysfunction.

Based on LASSO and SVM-RFE algorithms, MAFF,
ADCYAP1, and ZFP36L1 were identified as diagnostic
biomarkers of AD with high sensitivity and specificity
(Figures 4–6). As one of the small Maf proteins (sMafs),
MAFF (MAF basic leucine zipper transcription factor F)
predominantly localizes in the nucleus and acts as the basic
region leucine zipper-type transcription factor (Motohashi
et al., 2000). MaFF was demonstrated to be the most responsive
to Aβ-induced oxidative stress in AD among sMafs and may
potentiate the suppression of antioxidation (Wang et al.,
2020). A meta-analysis of AD revealed that overexpression
of MAFF repressed the transcription of NF-E2-related
factors 2-dependent gene, leading to various cellular function
disorders in AD, including immune and inflammatory
responses, metabolism, and cognitive dysfunction (Wang et al.,
2017). ADCYAP1 (Adenylate Cyclase-Activating Polypeptide
1) encodes pituitary adenylate cyclase-activating peptide
(PACAP), which is a bioactive neuropeptide with pleiotropic
effects, functions as a neurotrophic factor, neuromodulator, and
neurotransmitter (Tamas et al., 2012). Our results showed that
ADCYAP1 expression is reduced in AD, which is consistent
with that suggesting PACAP is downregulated in three different
mouse models or human samples of AD (Wu et al., 2006;
Han et al., 2014). PACAP has been shown to protect neurons
against the toxic effects of Aβ in several studies (Onoue et al.,
2002; Gui et al., 2003). Furthermore, treatment with PACAP
could attenuate 80% of the Aβ-induced reduction of cell
viability through an increase in cAMP and a deactivation in
caspase-3 (Onoue et al., 2002). ZFP36L1 (Zinc finger protein
36, C3H type-like 1) is one of several Zinc Finger Protein
36 family members, which could negatively regulate the
post-transcriptional expression of targeted mRNAs through 3’
untranslated regions, including many inflammatory mediators
and senescence-associated secretory phenotypes, suggesting
ZFP36L1 was involved in the regulation of inflammation
and senescence (Hyatt et al., 2014; Herranz et al., 2015;
Wang et al., 2015), but the exact role of ZFP36L1 in AD
pathogenesis remains unknown and requires further study to
be fully clarified.

In addition to the neuronal compartment, increasing
evidence suggests that AD pathogenesis also includes strong
interactions with immune alterations in the brain, which
begin early and persist throughout the disease (Jevtic et al.,
2017). To more specifically evaluate the effects of the
immune system in AD, we used CIBERSORT to assess the
process of immune infiltration in AD brains. The results

revealed higher proportions of naive B cells, plasma cells,
activated NK cells, M0 macrophages, M1 macrophages, resting
CD4+ memory cells, and resting mast cells in the AD group,
along with lower proportions of memory B cells, resting
NK cells, resting/activated DCs, and eosinophils (Figure 7A),
suggesting these cells may be related to the occurrence and
progression of AD. B cells and plasma cells were suggested to
contribute to producing immunoglobulins that target amyloid
beta which may thus interfere with plaque formation and
disease progression (Söllvander et al., 2015; Kim et al.,
2021). In a mouse model of AD, therapeutic depletion of B
cells at the onset of the disease was shown to retard AD
progression (Kim et al., 2021). CD4+ T cells may contribute
to AD pathology by interacting with microglia, orchestrating
immune mechanisms, and facilitating amyloid clearance, thus
offering opportunities for therapeutic interventions (Mittal
et al., 2019). NK cells may produce multiple inflammatory
cytokines and chemokines, NK-derived IFN-γ and TNF-α
were negatively correlated with the cognitive derangement in
AD (Solerte et al., 2000). In transgenic AD mouse models,
depletion of NK cells could enhance neurogenesis, reduce
neuroinflammation, and improve cognitive function, indicating
that targeting NK cells might unlock novel strategies to
combat AD (Zhang et al., 2020). Previous research efforts
have highlighted that peripheral macrophages may migrate
across the vascular wall and “home” to the brain, which
closely resemble brain-resident microglia (Gate et al., 2010).
Mast cells could detect amyloid plaque formation and respond
before microglia under brain stress conditions for they could
release prestored mediators (Kempuraj et al., 2017a) and
contribute to the degree of AD (Shaik-Dasthagirisaheb and
Conti, 2016). DCs are professional antigen-presenting cells
with the characteristic of being capable to respond to and
produce neurotrophins, such as brain-derived neurotrophic
factors (Ciaramella et al., 2013). Nevertheless, DC’s exact
mechanism and DC-based therapies continue to be unclear and
are under investigation.

Furthermore, we investigated the correlations of infiltrating
immune cells and diagnostic signatures, MAFF displayed a
significant and strong correlation with activated/resting NK
cells, resting memory CD4+ T cells, and memory B cells
(Figure 8A). ADCYAP1 was significantly associated with
follicular helper T cells, memory B cells, activated memory
CD4+ T cells, CD8+ T cells, M0 macrophages, and resting
memory CD4+ T cells (Figure 8B). ZFP36L1 displayed
significant correlations to infiltrations of immune cells such
as M0 macrophages, resting memory CD4+ T cells, CD8+ T
cells, activated NK cells, and memory B cells (Figure 8C).
Of note, immunomodulatory actions of the ADCYAP1 gene
encoding the neuropeptide PACAP have been reported to
inhibit macrophage production and release of inflammatory
mediators such as TNF-α and IFN-γ, and modulate the immune
status via shifting the CD4+ T cells toward a Th2 phenotype
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(Delgado et al., 2003; Waschek, 2013). However, there is
no information concerning these sophisticated interacting
processes of genes and immune cells, in depth research is
urgently required into the underlying molecular mechanisms
and functional significance of immune cell infiltration in AD
based on the mentioned assumption.

Although these immune-related diagnostic feature genes
in AD were observed and identified in this comprehensive
bioinformatics study, several limitations should be mentioned.
(1) This study is second mining and investigation of
the GEO database and the metadata was derived from
different version platforms, the batch of effect may not
be thoroughly removed from the large sample size based
on the normal batch. (2) Despite the three feature
biomarkers demonstrating a high diagnostic power in
discriminating AD brains from control samples, there
was a lack of attention to the correlation between these
biomarkers and different subtypes of AD. (3) Our study
provided preclinical observations or speculations of three
novel candidate biomarkers and immune-related molecular
mechanisms underlying AD, which need to be verified in
further studies.

Conclusion

In brief, this study demonstrated that MAFF, ZFP36L1,
and ADCYAP1 refer to diagnostic markers of AD, which may
play central roles in disease initiation and progression and are
thus promising molecular targets for diagnosis and treatment.
This study also reported that naive B cells, plasma cells,
activated/resting NK cells, M0 macrophages, M1 macrophages,
resting CD4+ T memory cells, resting mast cells, memory B
cells, and resting/activated DCs are likely to critically impact the
occurrence and progress of AD, which may serve as potential
targets for future immunotherapy in patients with AD that
warrant in-depth explorations.
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