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Background: Freezing of gait (FOG) is a common clinical manifestation of Parkinson’s
disease (PD), mostly occurring in the intermediate and advanced stages. FOG is likely
to cause patients to fall, resulting in fractures, disabilities and even death. Currently,
the pathogenesis of FOG is unclear, and FOG detection and screening methods have
various defects, including subjectivity, inconvenience, and high cost. Due to limited
public healthcare and transportation resources during the COVID-19 pandemic, there
are greater inconveniences for PD patients who need diagnosis and treatment.

Objective: A method was established to automatically recognize FOG in PD patients
through videos taken by mobile phone, which is time-saving, labor-saving, and low-cost
for daily use, which may overcome the above defects. In the future, PD patients can
undergo FOG assessment at any time in the home rather than in the hospital.

Methods: In this study, motion features were extracted from timed up and go (TUG) test
and the narrow TUG (Narrow) test videos of 50 FOG-PD subjects through a machine
learning method; then a motion recognition model to distinguish between walking and
turning stages and a model to recognize FOG in these stages were constructed using
the XGBoost algorithm. Finally, we combined these three models to form a multi-stage
FOG recognition model.

Results: We adopted the leave-one-subject-out (LOSO) method to evaluate model
performance, and the multi-stage FOG recognition model achieved a sensitivity of
87.5% sensitivity and a specificity of 79.82%.

Conclusion: A method to realize remote PD patient FOG recognition based on mobile
phone video is presented in this paper. This method is convenient with high recognition
accuracy and can be used to rapidly evaluate FOG in the home environment and
remotely manage FOG-PD, or screen patients in large-scale communities.
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INTRODUCTION

Freezing of gait (FOG) is one of the most common motor
symptoms in Parkinson’s disease (PD), mostly occurring in the
intermediate and advanced stages of PD. FOG can be asymmetric,
generally affecting one lower limb. Patients suddenly feel as if
their feet are glued to the ground, it is difficult to lift their feet
and take a step, and it is usually accompanied by a tremor in
both legs (with a frequency of 6-8 Hz). This symptom usually
lasts a few seconds but can sometimes exceed 30 s or last for
a few minutes or more (Nutt et al., 2011). In the early stages
of the disease, approximately 20% of PD patients report FOG
episodes (Zhang et al., 2016), and its occurrence can increase up
to 90% in the advanced stages (Hall et al., 2015). The greatest
risk associated with FOG is falling. Prospective studies have
revealed that 45-68% of PD patients fall each year (Wood et al.,
2002; Allcock et al., 2009; Latt et al., 2009; Matinolli et al.,
2011; Paul et al., 2014), and 60% of these falls are mainly
caused by FOG (Pelicioni et al., 2019). Fractures from these
falls can result in disability and prolonged bed rest, which can
lead to a series of complications and even death. Therefore,
the assessment of FOG symptoms is critical for preventive and
protective measures.

Current methods for assessing FOG primarily fall into the
following categories, but each method has some disadvantages:

(1) Evaluation methods based on specific gait tests or
relevant rating scales (Giladi et al., 2000; Giladi et al.,
2009; Nieuwboer et al., 2009; Seuthe et al., 2021):
Although the rating scale evaluation method is simple and
convenient, professional medical equipment and operation
is not required. Therefore, this method is susceptible
to environmental (Weiss et al., 2020) and subjective
factors (Barthel et al., 2016). In addition, this assessment
method is more difficult to implement for patients with
cognitive impairments. Moreover, it is difficult to guarantee
the consistency of evaluation results among different
evaluators. Therefore, this method may lack high accuracy,
repeatability and reliability.

(2) Evaluation methods based on neuroimaging examinations:
Cerebral functional imaging technology, such as structural
magnetic resonance imaging (MRI), functional MRI
(fMRI), positron emission tomography (PET)/single-
photon emission computed tomography (SPECT), etc.,
can dynamically detect cerebral functional activities and
is now widely used in clinical practice (Djaldetti et al.,
2018; Kim et al., 2018; Matar et al., 2019; Droby
et al., 2021). These technologies provide potential imaging
biomarkers for FOG research, but many researchers
have only explained the correlation, not the causality,
between examination results and FOG. A neuroimaging
examination is considered reference data for FOG rather
than an evaluation tool. In addition, the high expense and

Abbreviations: PD, Parkinson’s disease; LOSO, leave one subject out; FOG,
freezing of gait; TUG, timed up and go test; Narrow, narrow gap timed up and go
test; Walk-FOG recognition model, FOG recognition model for the walking stage;
Turn-FOG recognition model, FOG recognition model for the turning stage.

inconvenience of a neuroimaging exam make it unsuitable
for clinical screening of large FOG populations.

(3) Evaluation methods based on smart devices: As objective
evaluation methods, these technologies can remove the
impact of human subjective factors. Currently, there are
mainly two evaluation methods. The first method is based
on wearable devices, and the second method is based
on machine vision.

(1) Wearable device-based FOG evaluation methods: Both the
sensitivity and specificity of FOG detection in PD patients
based on sensor-related technology can reach a fairly high
level (Sigcha et al., 2020), ideally suited for precision
diagnosis in healthcare facilities. Although the current
wearables are quite small in size and convenient to wear,
the precision of equipment inevitably leads to an increase
in cost and relatively complex installation or operation,
and wearing multiple on-body sensors may induce some
level of discomfort. In addition, the number, location,
setting parameters and other operating points of sensors
are not unified. Improper selection may lead to insufficient
data collection or increase the difficulty of data analysis
due to somewhat extreme environmental interference
(Brognara et al., 2019), both of which pose significant
challenges for wearable sensors in FOG recognition and
monitoring.

(2) Machine vision-based FOG evaluation methods: Machine
vision is a technology for evaluation that replaces human
eyes with a machine. Compared with sensor wearables,
machine vision-based methods do not require that a device
be worn and neither induces discomfort in nor affects
the motion of the evaluated patient; hence, it is an ideal
objective evaluation method. There are two main ways to
extract motion information with this method. (1) Some
studies have leveraged the 3D motion capture system
represented by the Kinect depth camera to extract motion
information related to detecting gait disorders (Amini
et al., 2019; Soltaninejad et al., 2019). However, these
cameras require specialized equipment such as Microsoft
Kinect, which is expensive. In addition, the complex
structure of the assessment system can only be used in
indoor environments, such as laboratory or clinic, resulting
in a significant limitation of the evaluation environment,
which is not conducive to the adoption of this technology
in the screening and management of FOG populations. (2)
Another method is using RGB technology of 2D keypoint
recognition represented by OpenPose (Hu et al., 2019),
which can estimate the joint coordinates of persons in
the videos obtained using a monocular camera without
external scales or markers. A study proposed a novel
architecture of a graph convolutional neural network
to detect FOG through 2D keypoint estimation and
achieved good detection performance (Hu et al., 2020).
Another study also used a deep learning method of
convolutional 3D attention network to recognize FOG,
which outperformed several state-of-the-art human action
recognition methods (Renfei et al., 2018). The joint
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angles or other spatial parameters can be calculated by
a home video camera or mobile phone camera at home
without the special equipment needed to process 3D
motion capture data. Although RGB cameras fail to cope
with occluded bodies in multi-person tracking situations,
RGB technology is low in cost, convenient, and easy to
promote, which is very suitable for the screening of target
populations in the community. Therefore, we finally chose
RGB technology based on OpenPose as the preliminary
scheme of our study (Viswakumar et al., 2019).

PD is a chronic disease, and patients need to occasionally
go to the hospital to receive a follow-up check. However,
the movements of PD patients are limited, which makes it
inconvenient to visit a doctor. In addition, due to medical
resource shortages, travel restrictions, and cross-infection in
public places caused by the COVID-19 pandemic, it has
been more difficult for PD patients to obtain diagnosis and
treatment. Therefore, a remote assessment of FOG is necessary
for doctors who require follow-up and management of long-
term FOG patients.

To address the shortcomings associated with previous FOG
recognition technologies, this study proposed constructing a
FOG evaluation system based on mobile phone video. The
timed up and go (TUG) test and narrow TUG (Narrow)
videos of subjects were recorded by using an RGB camera,
and used OpenPose to obtain the keypoint position signals of
the human body and extract many representative time-domain
and frequency-domain features. Then, these features were fed
into the XGBoost classifier after feature selection to build the
models. When modeling, we consider that a previous FOG
recognition algorithm recognized FOG throughout the entire
gait process, without considering the differences between the
walking and turning stages. Due to the shooting angle, the
visual aspects of walking and turning motions are completely
different. Walking and turning gaits also vary in their kinematics.
A logistic regression model determined that compared to a
straight walk, turning has a reduced range of gait swing
angle with significantly increased asymmetric gait and stride
time (O’Day et al., 2020). Clinically, relevant brain and
nervous system pathways during walking and turning are also
different: turning tasks require more attention and involve
greater interlimb coordination, increased coupling between
posture and gait and modifications of locomotor patterns
that require frontal lobe cognitive and executive functions
that control posture transition (Nonnekes et al., 2019). Even
under normal walking conditions, PD patients also often
show longer turn times and a greater number of strides
required to complete turning, which may be associated with
impaired motion patterns when switching from walking to
turning (Earhart, 2013). Based on the above reasons, we
established motion recognition models and FOG recognition
models that conform to different walking characteristics.
Finally, we acquired a multi-stage FOG recognition model
with acceptable performance through the leave-one-subject-out
(LOSO) method, which realized automatic FOG recognition
and monitoring.

MATERIALS AND METHODS

Materials
Participants
The inclusion criteria were as follows: (1) participants were
diagnosed with PD according to the Movement Disorder
Society (MDS) diagnostic criteria (Postuma et al., 2015); (2)
participants were diagnosed with FOG according to clinical
manifestations and the FOG questionnaire; (3) participants
were in the “on” state of medication; (4) participants could
independently walk for more than 20 meters; (5) participants
did not have cognitive dysfunction according to the Mini-
Mental State Examination (MMSE >24 points) (Folstein et al.,
1975); and (6) participants did not have any conditions
affecting walking ability, such as hydrocephalus, cardiovascular
and cerebrovascular disease, cognitive impairment, rheumatism,
orthopedic disease, etc.

The exclusion criteria were as follows: participants with
secondary PD causes, such as inflammatory, drug-induced,
vascular, or toxin-induced PD, or participants with other
neurodegenerative diseases, such as progressive supranuclear
palsy (PSP) or multiple system atrophy (MSA) and other
Parkinson-plus syndromes.

The research protocol in compliance with the Declaration of
Helsinki was approved by the Scientific Ethics Committee of
General Hospital of Southern Theater Command of PLA and
the Ethics Committee of Guangzhou First People’s Hospital. All
participants came from the General Hospital of Southern Theater
Command of PLA and the Guangzhou First People’s Hospital,
and written informed consent was obtained from all participants
(or their legal guardians).

Dataset
Video Capture
Each subject completed a TUG (Shumway-Cook et al., 2000)
and a narrow TUG, and the test routes are shown in Figure 1.
A narrow test was added because it is easier to trigger FOG in PD
subjects by passing through a narrow space (Snijders et al., 2008).

The gait test process of this study was as follows: The
photographer was more than 4.4 m away from the patient
and recorded the videos with a mobile phone [Huawei P40
(8G + 256G)]. The frame rate of the video was 30 frames per
second, with a resolution of 544∗960.

After the photographer gave walking instructions, the patient
started to walk, and at the same time, the photographer began
to record with the mobile phone. The patient walked 3 meters
in a straight line at a comfortable and free speed, turned back
at the end point, and finally returned to the starting point.
A narrow TUG is designed to induce FOG more easily by setting
up a narrow 0.6-meter tunnel during walking. The whole process
is repeated twice.

To guarantee consistency and quality of test data, the
experiment was performed in an open field, which ensured
that the patient was in the video during the whole recording.
To prevent the subjects from falling, the participants could
use a walking stick, walking aid and other auxiliary tools. The
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FIGURE 1 | Test diagram: (A) TUG diagram; (B) narrow TUG diagram.

participants with a high risk of falling were accompanied by a
caregiver during the walk.

Clinical Information Record
After subjects completed the above gait tests, we collected their
clinical information, including MDS-United Parkinson’s Disease
Rating Scale (UPDRS) Part 3 scores (Stebbins et al., 2013),
Hoehn & Yahr ratings (stage 1-5) (Hoehn and Yahr, 1967),
New Freezing of Gait Questionnaire (NFOG-Q) scores (Giladi
et al., 2000) and Parkinson’s Disease Questionnaire-39 (PDQ-39)
scores (Moore et al., 2007).

Video Annotation
To build a binary classification model, we independently
annotated the turning stage and FOG stage. The video
annotations of the turning and FOG stages were frame-based.

Regarding the annotation of the turning stage, the data
reviewer annotated the turn-start frame and the turn-end frame.
The annotation of the FOG stage was completed by two
independent movement disorder specialists, and this served
as the gold standard evaluation for FOG detection. More

specifically, two independent neurologists separately identified
the start and end of FOG episodes, and in case of discrepancies, a
third neurologist was invited to make a joint decision. The three
neurologists performed a common assessment to resolve any
ambiguities. The start of the FOG episode was defined when the
patient hesitated for more than one second at the start of walking
or if it looked as if he or she was unsuccessfully trying to initiate or
continue locomotion. A transient and clinically significant break
in locomotion without any apparent reason was also defined as
a freezing episode. The end of an episode was defined as the
time when an effective step had been performed with a relatively
normal length and swing, and the step also had to be followed by
a continuous normal walk (Schaafsma et al., 2003). We recorded
the entire gait test, such that the data were collected from the
beginning of the gait test after the subjects heard the instructions
to the end of the gait test. Due to the complexity of the definition
of FOG, it is difficult to label all real FOG in practice. Based on
the recognition of FOG for labeling purposes, we labeled the parts
of the video that could be marked as FOG with certainty, and the
parts of the video where it was unclear whether it was FOG would
be labeled as unknown. For example, when an uninstructed stop
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FIGURE 2 | Algorithm flowchart.

occurred, we cannot tell whether the individual stopped to rest or
FOG occurred, and these instances were marked unknown.

The dataset for this study was composed of the video of
the subjects’ gait tests, the recorded scale information, and the
video annotation.

Methods
The five steps of this study were keypoint position signal
extraction, signal preprocessing, feature extraction, modeling

and algorithm evaluation. The algorithm flowchart is shown in
Figure 2.

Keypoint Position Signal Extraction
After videotaping the subjects’ tests via mobile phone, we used
OpenPose (Cao et al., 2021) to extract position signals of
25 keypoints of the human skeleton to conduct 2D human
motion perception. The OpenPose human gesture recognition
project is an open-source library developed by US Carnegie
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Mellon University based on a convolutional neural network and
supervised learning with Caffe as the framework that achieves
human body motion, facial expression, finger movement and
other posture estimates easily and accurately from images.

Signal Preprocessing
Human movement mainly has frequency components between
0 and 20 Hz. In addition, most previous research on FOG
recognition based on wearable sensors used a 15-Hz lowpass filter
for denoising (Rodriguez-Martin et al., 2017; Sigcha et al., 2020).
According to the Nyquist–Shannon sampling theorem (Nyquist,
1928; Shannon, 1949), a 30-Hz sampling frequency will sample
motion information below 15 Hz. A higher sampling frequency
will result in more high-frequency information, but there will
be additional mobile requirements that are not conducive to
future applications.

2D images have the problem of objects being near appear large
and those that are far appear small, which results in different
scales at different distances. Thus, we normalized the keypoint
position signals from the subjects’ bodies to eliminate the effects
of the different scales. First, we calculated the minimum enclosing
rectangle of the human body based on 25 keypoints and expanded
the length and width by 30%; then, we converted the original
coordinate system to a coordinate system with the upper left
corner vertex of the enclosing rectangle as the coordinate origin
to obtain the position coordinates of the 25 keypoints after
coordinate system conversion. Next, a ratio of 80 to the height
of the enclosing rectangle was regarded as the scale factor, and
this scale factor was multiplied by the position coordinate of
each keypoint to obtain the normalized position coordinates.
The keypoint position signal normalization diagram is shown in
Figure 3.

Based on the normalized position coordinates of the keypoints
in each frame, we calculated the speed signal, acceleration
signal, and knee joint angle signal from the keypoints, and
we calculated the absolute value signals of 8 pairs of keypoint
position differences (right hip and left hip, right knee and left
knee, right ankle and left ankle, right big toe and left big toe, right
shoulder and left shoulder, right elbow and left elbow, right wrist
and left wrist, and right ear and left ear). Among these measures,
the speed signal reflects the subject’s movement speed, and the
acceleration signal reflects the subject’s change in velocity. When
the subject has FOG, leg movements become more obvious.
By adding the angle signals from the subject’s knees, bending
information of the leg joint can be extracted. Furthermore, the
absolute value signals of 8 pairs of keypoint position differences
showed a trend of first decreasing and then increasing when
turning around, and thus, reflected the turning process.

Feature Extraction
Before feature extraction, we first performed sliding window
processing on the signal. Sliding window signal processing is a
routine processing operation, and we will not focus on this as the
research priority. According to previous studies, we concluded
that a window size of 2 s would yield good results (Zach
et al., 2015); we adopted a sliding window with a step length
of 0.1 s and a window size of 2 s to convert the signal into

FIGURE 3 | Keypoint position signal normalization diagram.

windows and calculated the time-domain and frequency-domain
features of each window.

With respect to the motion recognition model, we extracted
the minimum value, crest factor, frequency amplitude peak
value, center frequency and other time-domain and frequency-
domain features to reflect the differences between the walking
and turning stages. With respect to the FOG recognition model,
we also extracted time-domain and frequency-domain features
and added features such as the freezing index (FI), the area
under the power spectrum of multiple frequency bands including
low-frequency bands and high-frequency bands, as well as
features that may contribute to the recognition of FOG. The
FI was defined as the power in the “freeze” band (3-8 Hz)
divided by the power in the “locomotor” band (0.5-3 Hz). Some
researchers (Moore et al., 2013) proposed that the FI can detect
FOG episodes based on changes in the inertial signal power
spectrum. In addition, Bächlin et al. (2009) used the power
band (0.5-8 Hz) to avoid false detections when standing. In
clinical observation, FOG is frequently accompanied by fast
alternating trembling movements (a large increase in power in
the ‘freeze’ band) of the lower extremity with both feet on the
floor (Schaafsma et al., 2003; Nutt et al., 2011). The “locomotor”
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FIGURE 4 | Removal of the transition samples between FOG and non-FOG.

band is the energy band representing low frequency. It can be
used to discriminate FOG (i.e., power is significantly decreased
or absent in the locomotor band) from a normal gait (i.e., most of
the power is in the locomotor band). Thus, FI was considered to
be beneficial for FOG recognition, and this feature was added to
the feature set.

Modeling
Next, a motion recognition model, the Walk-FOG recognition
model and Turn-FOG recognition model, were built based on
the collated data.

When building the motion recognition model, an excessive
number of model features may lead to overfitting or other
problems. As such, we carried out feature selection to improve
the generalization ability of the classifiers and reduce the
time required to train the classifier. First, we calculated the
information gain of each feature based on XGBoost (Chen and
Guestrin, 2016); the larger the information gain of the feature
is, the greater the contribution of this feature to the model.
Then, we used the forward feature selection strategy based on
the information gain to select the best feature set. In addition, we
searched for optimal model parameter combinations using grid
search and the LOSO method to obtain the optimal XGBoost-
based motion recognition model. The model hyperparameters for
the search include the learning rate, the number of estimators
(n_estimators), the max depth (max_depth), the sampling
ratio (subsample), the feature sampling ratio for each tree
(colsample_bytree).

When building FOG recognition models for the walking
and turning stages, due to unbalanced samples caused by

sudden FOG, we first adopted the SMOTE (Chawla et al., 2002)
algorithm to balance the samples in the training set. Then, we
performed the same feature selection strategy as we did with the
motion recognition model. Considering that the difficulties in
distinguishing samples at the transition stages are non-FOG or
FOG, if they are entered during model training, the results will
be affected by ambiguous labels, and performance would decline.
To obtain a more precise classifier model for the FOG and non-
FOG classes, we removed the samples at the transition stages
of FOG and non-FOG for training but not for testing (i.e., the
samples with a duration of 0.5 s for FOG and non-FOG were
removed, as shown in Figure 4) (Mazilu et al., 2013). Finally,
we obtained the optimal model parameter combination of the
XGBoost-based FOG recognition model using grid search and
the LOSO method, thereby acquiring the optimal Walk-FOG
recognition model and Turn-FOG recognition model. The model
hyperparameters for the search were the same as those for the
motion recognition model.

Multi-Stage Freezing of Gait Recognition Model
We applied the motion recognition model to segment the walking
and turning stages and utilized the Walk-FOG recognition model
and Turn-FOG recognition model for FOG recognition in the
walking and turning stages, respectively. With the strategy of first
segmenting the motion stages and then recognizing FOG, we
formed a multi-stage FOG recognition model. The evaluation of
the FOG recognition model was episode-based. A FOG sequence
composed of continuous FOG windows was considered a FOG
episode; a non-FOG sequence composed of continuous non-FOG
windows was considered a non-FOG episode.
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Some short-lived false positive (FP) FOG events occasionally
appeared in the recognition results. Therefore, with the aim of
reducing false detections, we modified the recognition results
of the window. Specifically, we took the 10% quantile of all the
marked FOG durations as the threshold and used this value as the
minimum duration necessary for a FOG episode. If the duration
of a FOG episode was less than this value, we removed this FOG
episode.

Algorithm Evaluation
Evaluation Metrics of the Motion Recognition Model
Motion recognition model evaluation metrics are window-based
sensitivity, specificity, accuracy, geometric mean (GM) and area
under the curve (AUC). GM is the square root of sensitivity
and specificity, and this indicator has the beneficial property of
averaging out sensitivity and specificity scores while penalizing
unbalanced pairs. AUC is the area under the receiver operating
characteristic (ROC) curve, a common indicator used to evaluate
the performance of a classification model; the higher the AUC
value is, the better the model performance.

Evaluation Metrics of the Walk-FOG Recognition
Model, Turn-FOG Recognition Model and Multi-Stage
FOG Recognition Model
The evaluation metrics of these three models are episode-based
sensitivity, specificity, accuracy and GM. Sensitivity is defined
as the proportion of the number of correctly predicted FOG
episodes (at least one window is predicted as FOG in FOG
episodes) to the total number of FOG episodes; specificity is
defined as the proportion of the number of correctly predicted
non-FOG episodes (no window is predicted as FOG in non-FOG
episodes) to the total number of non-FOG episodes; accuracy is
the proportion of the number of correctly predicted episodes to
the total number of episodes; GM is the square root of sensitivity
and specificity.

Evaluation Method
Previous studies (Mazilu et al., 2012; Tripoliti et al., 2013;
Sato et al., 2019), despite high sensitivity and specificity, all
have some obvious problems in their evaluation methods. For
example, these evaluation methods include leave-one-window-
out, which trains the model using all windows except one
window. Therefore, training samples with high similarity to
the test samples are used for model training. With suspected
data leakage, the accuracy is very high. To prevent the model
evaluation results from being unrealistically high, we used the
LOSO method to evaluate the performance of this algorithm on
this dataset. LOSO is one of several cross-validation methods;
our dataset contains 50 subjects, therefore, there is 50-fold cross-
validation. For each fold of cross-validation, the data from one
subject are reserved for testing, and the data of the remaining
subjects are used for training. This validation method can
guarantee that the data of each subject only appear in the
training set or test set, which helps to statistically estimate the
performance for unseen subjects (Das et al., 2011; Rodriguez-
Martin et al., 2017; Hu et al., 2019).

Statistical Analysis
All continuous demographic data and clinical data are expressed
as the mean ± SD or as a percentage. Boxplots (Toit et al.,
1986) are used to explore the correlations between the walking
and turning stages, FOG and non-FOG stages and features. We
adopted the Wilcoxon rank-sum test to analyze whether the
features used in the model analysis significantly differed between
groups, such as feature differences between the walking and
turning stages and differences between the FOG and non-FOG
stages. Considering that the sample size was large (>30), that
there were individual differences among samples, and that there
were autocorrelations between time series samples, we designed
a hypothesis testing method suitable for this case. First, we
calculated the mean value of the feature for each subject in the
two groups to obtain two sets of paired samples from the same
subject; then, the paired sample Wilcoxon test was used to test
whether these features of the subjects differed between groups.
All figure generations and statistical analyses were performed by
R 4.1.0 or Python 3.8.

RESULTS

Dataset
This study included convenience sample 50 PD-FOG subjects
who met the criteria. Their basic information is shown in Table 1.
Each subject was videotaped in the TUG and narrow TUG,
resulting in a total of 200 videos being collected. After eliminating
the problems of incomplete video shooting, such as video jitter
or walking routes that did not conform to the requirement, 100
qualified videos were selected and further excluding unqualified
videos that contained severe joint occlusion and incorrect
skeleton recognition, 89 qualified videos were used for modeling
(a flowchart describing the dataset collection is shown in
Figure 5). The total length of the videos was 50.78 min; from this
time period, the length of video including turning was 12.88 min,
and that including walking was 37.9 min. Thirteen subjects had
FOG during the gait test (26%), and a total of 33 FOG episodes
were captured, including 25 FOG episodes in the walking stage
and 8 in the turning stage, as shown in Table 2; the median FOG
duration was 8.2 s (0.9-66 s).

Feature Analysis
According to the forward feature selection strategy based on
the information gain of XGBoost, 50, 20, and 12 features
were selected for the motion recognition model, Walk-
FOG recognition model, and Turn-FOG recognition model,
respectively. We present these features and performed analyses.

Motion Recognition Model
After feature selection, the top 50 features of information gain
were selected to build the model, of which the top 10 are shown
in Table 3. Six of the top 10 features were obtained by calculating
the absolute value signal of keypoint position differences, which
shows that such signals best reflected the difference between
walking and turning motions. To analyze the contribution of
particular features to the model, we enumerated two important
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TABLE 1 | Demographics of the subjects.

Values

Number 50

Age, years 71.44 ± 6.88

Sex 58% male; 42% female

Education, years 8.78 ± 4.3

Years since diagnosis 7 ± 4.61

Hoehn and Yahr stages 12.00%, stage 2.0

48.00%, stage 2.5

36.00%, stage 3.0

4.00%, stage 4.0

UPDRS III (3.10 + 3.11) scores 3.22 ± 2.12

N-FOGQ scores 21.8 ± 4.39

Levodopa Equivalent Dose taken, mg/d 603.95 ± 189.23

Number of falls in past 12 months 6.6 ± 2.92

features used in motion recognition models and showed the stage
comparison chart and boxplot, observed their numerical changes
across the two stages, and analyzed the differences between the
walking and turning groups. The stage comparison chart and
boxplot of the minimum value (top 1) were calculated based
on the absolute value signal of the position difference between

TABLE 2 | Frequency of FOG in 13 PD patients.

FOG patient 1 2 3 4 5 6 7 8 9 10 11 12 13 Total

FOG episodes in
the walking stage

2 2 2 1 2 1 3 3 3 1 1 2 2 25

FOG episodes in
the turning stage

0 0 1 0 1 1 1 0 0 0 2 1 1 8

Total 2 2 3 1 3 2 4 3 3 1 3 3 3 33

the left and right shoulders in the motion recognition model
(Figures 6A,B). As shown in Figure 6A, the numerical value of
this feature decreased sharply when turning because the absolute
value signal of the keypoint position difference first decreases
to 0 and then increases during the turning process. As a result,
the minimum value of this signal also showed the same change;
as shown in Figure 6B, the overall numerical value of this
feature when walking was significantly greater than that when
turning, with a statistically significant difference (p < 0.001).
Additionally, the numerical range while walking was smaller
than that while turning, indicating that the feature fluctuated
less when walking. The stage comparison chart and boxplot of
the crest factor (top 6) were calculated by the absolute value
signal of the position difference between the right elbow and
the left elbow in the motion recognition model (Figures 6C,D).

FIGURE 5 | Dataset collection flowchart.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 July 2022 | Volume 14 | Article 921081

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-921081 July 9, 2022 Time: 16:26 # 10

Li et al. Recognition of FOG in PD Based on MV

TABLE 3 | Feature importance for the motion recognition model based on the
XGBoost gain (top 10).

Signal Feature Equation Gain

Difference in position
signal between L and R
shoulder (x-Axis)

Min min(x) 5031.12

Difference in position
signal between L and R
ear (x-Axis)

90th percentile x1+0.9(n−1) 691.14

Acceleration of R big
toe (x-Axis)

Min MI min(x2
i ) 594.00

Speed signal of L ear
(x-Axis)

Skewness E
[( xi−µ

σ

)3]
570.47

Position signal of R big
toe (x-Axis)

Mean of absolute
values

∑n
i=1 |xi |

n 558.83

Difference in position
signal between L and R
elbow (x-Axis)

Crest factor max(x)√∑n
i=1 x2

i
n

458.90

Difference in position
signal between L and R
elbow (x-Axis)

Frequency
amplitude peak

max(|F.T .(x)|) 448.97

Difference in position
signal between L and R
hip (x-Axis)

Frequency
amplitude peak

max(|F.T .(x)|) 434.09

Difference in position
signal between L and R
wrist (x-Axis)

Frequency
amplitude peak

max(|F.T .(x)|) 406.28

Speed signal of L ear
(x-Axis)

Mean
∑n

i=1 xi
n 397.45

F.T. (x) is the continuous Fourier transform of x. MI is Mutual Information.

The crest factor is the ratio of the maximum value to the root
mean square. Figure 6C shows that the numerical value of this
feature increased when turning because the maximum value of
this signal was greater than the degree of fluctuation in the
signal. Figure 6D shows that the overall numerical value of this
feature when turning was apparently greater than that when
walking, with a significant difference between groups (p< 0.001).
In conclusion, we believe that these features show synchronous
changes and significant numerical differences when walking and
turning, which markedly contributed to motion classification of
the model and could facilitate subsequent research.

Freezing of Gait Recognition Model
Similarly, we selected the top 20 features according to the
information gain of the XGBoost algorithm to build the Walk-
FOG recognition model (Table 4), and the top 12 features
were used to build the Turn-FOG recognition model (Table 5).
Comparing the features of the Walk-FOG recognition model
and Turn-FOG recognition model, we found a great discrepancy
between the important features, which illustrates the necessity
of staged recognition for FOG from the perspective of selected
features. We found that the features of the left and right limbs
were different, which may be because the results were data-
driven, and the samples were not balanced on FOG of the left
and right limbs.

As shown in Tables 4, 5, many features used for building
the Walk-FOG recognition model and Turn-FOG recognition

model were the area under the power spectrum of the 0.5-
3 Hz frequency band calculated from various signals, which are
conducive to FOG recognition. The 0.5-3 Hz frequency band
is the energy band representing low frequency. As Moore et al.
(2013) showed in their study, the area under the power spectrum
in this band increased during normal walking and decreased
during FOG. They also showed a decrease in FI when patients
experienced FOG, which is consistent with the reduced area
under the power spectrum of the 0.5-3 Hz frequency band as the
denominator in the calculation of FI. The “locomotor” band (0.5-
3 Hz) of the FI is useful for recognizing FOG. In addition, the
Turn-FOG recognition model used the features that included the
area under the power spectrum of the 3.5-15 Hz frequency band
(Table 5), and this result was similar to that of Moore et al. (2013).
They found that the area under the power spectrum of the 3-8 Hz
high frequency band increased when subjects experienced FOG.

To further illustrate the contribution of features to the FOG
recognition model, we analyzed two features used in the Walk-
FOG recognition model and Turn-FOG recognition model and
presented them in a visualized manner. The stage comparison
chart and boxplot of the area under the power spectrum of the
0.5-3 Hz frequency band (top 1) was calculated based on the
Y-axis acceleration signal from the right heel in the Walk-FOG
recognition model (Figures 7A,B). The 0.5-3 Hz frequency band
represents the low-frequency energy band. When FOG occurs,
there is no significant movement of the subject’s legs, so the
low-frequency energy will be considerably reduced. Therefore,
as shown in Figure 7A, the numerical value of this feature
was significantly reduced and remained low for a long time; as
shown in Figure 7B, the numerical value of this feature was very
low when FOG occurred, and there was a significant numerical
difference between the FOG and non-FOG groups (p = 0.010).
The stage comparison chart and boxplot of the area under the
power spectrum of the 1-1.5 Hz frequency band (top 8) was
calculated based on the Y-axis speed signal from the left heel
in the Walk-FOG recognition model (Figures 7C,D). The 1-
1.5 Hz frequency band is also a low-frequency energy band. When
the subject has FOG, the energy in this frequency band also
decreased. As shown in Figure 7C, this feature was reduced to
close to zero when FOG occurred. Moreover, there was also a
significant numerical difference between the FOG and non-FOG
groups (p= 0.004) (Figure 7D).

The stage comparison chart and boxplot of the area under
the power spectrum of the 0.5-3 Hz frequency band (top 1)
was calculated based on the X-axis acceleration signal from the
right heel in the Turn-FOG recognition model (Figures 8A,B).
The stage comparison chart and boxplot of the area under
the power spectrum of the 0.5-3 Hz frequency band (top 3)
was calculated based on the X-axis speed signal from the left
heel in the Turn-FOG recognition model (Figures 8C,D). Both
features involve the area under the power spectrum of the
0.5-3 Hz frequency band. When the numerical value of this
feature suddenly decreased, it indicated that the subject may
have FOG. As shown in Figures 8A,C, when FOG occurred, the
numerical value of this feature suddenly decreased. As shown in
Figures 8B,D, both numerical values of the two features were
lower when FOG occurred, with smaller overall fluctuations as
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FIGURE 6 | Motion feature recognition boxplot and stage comparison chart analysis. (A) The stage comparison chart of the minimum value calculated by the
absolute value signal of the position difference between the left and right shoulders. (B) Boxplot of the minimum value calculated by the absolute value signal of the
position difference between the left and right shoulders. The feature was significantly different between the turning and walking groups (p < 0.001). (C) Stage
comparison chart of the crest factor calculated by the absolute value signal of the position difference between the right wrist and the left elbow. (D) Boxplot of the
crest factor calculated by the absolute value signal of the position difference between the right wrist and the left elbow. The feature was significantly different between
the turning and walking groups (p < 0.001).

well, and the P values also passed the significance test (p = 0.031
and p= 0.031, respectively).

Model Performance
According to the above modeling methods, the motion
recognition model has a recognition sensitivity of 81.21%,
specificity of 90.16% and accuracy up to 87.75% (see Table 6). We
also built FOG recognition models for the walking and turning

stages. The sensitivity of the Walk-FOG recognition model was
71.43%, and the specificity was 85.71%; the sensitivity of the
Turn-FOG recognition model was 61.54%, and the specificity
was 92.59%. Finally, we combined the motion recognition model,
Walk-FOG recognition model and Turn-FOG recognition model
into a multi-stage FOG recognition model, with a specific strategy
of using the motion recognition model to segment different
motion stages and then to use the FOG recognition model in
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TABLE 4 | Feature importance for the Walk-FOG recognition model based on the XGBoost gain (top 20).

Signal Feature Equation Gain

Acceleration of R heel (y-Axis) 0.5-3 Hz band area
3
∫

0.5
|F.T .(x)|2dx 10789.28

Position signal of L wrist (x-Axis) Average frequency
∑n

i=1 F.T .(x)
n 1680.95

Position signal of L wrist (x-Axis) Max max(x) 1541.93

Difference in position signal between L and R wrist (x-Axis) Clearance factor max(x)√∑n
i=1 x2

i
n

1143.63

Difference in position signal between L and R wrist (x-Axis) 90th percentile x1+0.9(n−1) 1120.62

Speed signal of L elbow (y-Axis) Sample entropy −

n∑
i=1

p(xi)logp(x) 953.16

Difference in position signal between L and R ankle (x-Axis) Average of absolute value
∑n

i=1 |xi |

n 944.84

Speed signal of L heel (y-Axis) 1-1.5 Hz band area
1.5
∫

1
|F.T .(x)|2dx 907.36

Difference in position signal between L and R knee (x-Axis) Average frequency
∑n

i=1 F.T .(x)
n 901.64

Position signal of L ankle (y-Axis) 1-1.5 Hz band area
1.5
∫

1
|F.T .(x)|2dx 897.85

Position signal of L heel (y-Axis) 1-1.5 Hz band area
1.5
∫

1
|F.T .(x)|2dx 884.34

Difference in position signal between L and R ankle (x-Axis) Second peak of power spectral 2ndmax
(
∞

∫
−∞

|F.T .(x)|2dx
)

874.42

Acceleration signal of L elbow (x-Axis) Max max(x) 863.18

Position signal of L small toe (y-Axis) Max max(x) 855.24

Position signal of L ankle (y-Axis) Min min(x) 835.73

Position signal of L big toe (y-Axis) Max max(x) 897.85

Speed signal of L elbow (x-Axis) Second peak of power spectral 2ndmax
(
∞

∫
−∞

|F.T .(x)|2dx
)

790.58

Difference in position signal between L and R ankle (x-Axis) Clearance factor max(x)√∑n
i=1 x2

i
n

746.21

Speed signal of L elbow (x-Axis) Min min(x) 721.21

Difference in position signal between L and R ankle (x-Axis) MSE
√∑n

i=1 x2
i

n 706.16

F.T. (x) is the continuous Fourier transform of x.

each stage to recognize FOG. Finally, we modified the window
recognition results of the FOG recognition model and obtained
an episode-based sensitivity and specificity of 87.50 and 79.82%,
respectively, as shown in Table 6.

Model Comparison
We built the non-staged FOG recognition model using the same
method as the staged FOG recognition model (i.e., the multi-
stage FOG recognition model) and compared the performance of
the two models (see Table 6). The results suggested that both the
sensitivity and specificity of the staged FOG recognition model
was higher by 3%, proving better recognition performance of
the staged FOG recognition model than the non-staged FOG
recognition model.

DISCUSSION

This study proposes a new method of automatically recognizing
FOG based on mobile phone video. We collected 89 qualified
videos from 50 PD subjects, built a multi-stage FOG recognition
model, evaluated the recognition performance of this model

using the LOSO method, and obtained a relatively sound
result (sensitivity: 87.50%; specificity: 79.82%). Although the
specificity is slightly lower than the sensitivity, community-based
screening emphasizes higher sensitivity. Thus, this model meets
the preliminary criteria for clinical needs (Leeflang et al., 2013;
Barry et al., 2014).

The TUG, a simple and effective way to assess an individual’s
basic functional mobility, includes stages where FOG is most
likely to occur, such as starting, turning, and reaching goals
(Shumway-Cook et al., 2000). When designing the test, we also
added a 3-m narrow test to induce FOG. When considering
how long to make the TUG for use in a gait analysis based on
machine vision, we read the relevant literature and found that
gait parameters [including step length (SL), step width (SW),
step duration (SD), single-stance duration (SSD) and double-
stance duration (DSD)] extracted from 3-m TUG videos can
be used as an effective and stable gait quantification method
(Aberg et al., 2021). A previous study segmented patients’
starting, turning, and walking tasks from the video of the
3-m TUG to classify patients based on disease status (Tang
et al., 2022). In addition, a similar study formulated vision-
based FOG detection from 3-m TUG videos from 45 PD

Frontiers in Aging Neuroscience | www.frontiersin.org 12 July 2022 | Volume 14 | Article 921081

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-921081 July 9, 2022 Time: 16:26 # 13

Li et al. Recognition of FOG in PD Based on MV

TABLE 5 | Feature importance for the turn-FOG recognition model based on the
XGBoost gain (top 12).

Signal Feature Equation Gain

Speed signal of R ankle
(x-Axis)

0.5-3 Hz band
area

3
∫

0.5
|F.T .(x)|2dx 3839.94

Acceleration of R heel
(x-Axis)

0.5-3 Hz band
area

3
∫

0.5
|F.T .(x)|2dx 3647.17

Speed signal of L heel
(x-Axis)

0.5-3 Hz band
area

3
∫

0.5
|F.T .(x)|2dx 3593.09

Speed of L ankle
(y-Axis)

0.5-3 Hz band
area

3
∫

0.5
|F.T .(x)|2dx 2778.23

Position signal of R
small toe (y-Axis)

Min min(x) 1134.35

Difference in position
signal between L and R
elbow (x-Axis)

Clearance factor max(x)√∑n
i=1 x2

i
n

758.846

Difference in position
signal between L and R
ear (x-Axis)

Kurtosis
coefficient

∑n
i=1 x4

i
n 7.43

Position signal of L
shoulder (x-Axis)

Kurtosis
coefficient

∑n
i=1 x4

i
n 619.95

Position signal of neck
(y-Axis)

Kurtosis
coefficient

∑n
i=1 x4

i
n 508.16

Difference in position
signal between L and R
wrist (x-Axis)

3.5-15 Hz band
area

15
∫

3.5
|F.T .(x)|2dx 445.99

Position signal of R
shoulder (y-Axis)

Kurtosis
coefficient

∑n
i=1 x4

i
n 426.95

Difference in position
signal between L and R
hip (x-Axis)

Peak-to-peak
value

max(x)−min(x) 423.31

F.T. (x) is the continuous Fourier transform of x.

patients(Hu et al., 2019). This study showed that the 3-m TUG
is widely used for machine vision gait analysis, which makes the
result of the study more comparative. Therefore, using a 3-m
TUG is a sound choice.

Bächlin et al. (2010) and Moore et al. (2013) found that when
subjects experienced FOG, the area under the power spectrum
of the 0.5-3 Hz frequency band decreased, and the area under
the power spectrum of the 3-8 Hz frequency band increased.
Therefore, these two features were used in FOG recognition.
The energy of the low frequency band reflects normal activity.
When the energy of the low frequency band is reduced, the
normal activity decreases, while the FOG is usually accompanied
by high-frequency tremor. As a result, the high frequency band
reflects the FOG. Therefore, low-frequency and high-frequency
features are useful for FOG recognition. As shown in Table 5,
we used the low-frequency feature, the area under the power
spectrum of the 0.5-3 Hz frequency band and the high-frequency
feature, the area under the power spectrum of the 3.5-15 Hz
frequency band, to build the FOG recognition model. We used
the XGBoost algorithm combined with the forward feature
selection strategy to select the features. Many useful frequency
domain and time domain features can be obtained through this
method, as shown in Tables 4, 5. All the low-frequency and

high-frequency features used for FOG recognition are shown in
Table 8. In addition to discovering low-frequency features and
high-frequency that can be used for FOG recognition as previous,
we also applied time domain features (Rodriguez-Martin et al.,
2017; Sigcha et al., 2020) in FOG recognition and found that
some time domain features have a great contribution in the
FOG recognition model, such as the clearance factor calculated
by position signal of L big toe for the Walk-FOG recognition
model (see Table 4) and the min calculated by the position
signal of R small toe for the Turn-FOG recognition model (see
Table 5). These features, which are important for detecting FOG,
were data-driven.

This study realized FOG recognition algorithm with relatively
high sensitivity and specificity, which has preliminary clinical
feasibility. Considering that the clinical need to assess the
severity of FOG, we also attempted to predict scores of the
third item (FOG frequency when turning), the sixth item
(longest duration of FOG appearing at the start of the step)
and the seventh item (evaluation of FOG impact on walking in
daily life) on the NFOG-Q that has strong clinical objectivity.
In practice, after using OpenPose to extract the position
signals of the subject’s keypoints based on their skeleton, we
calculated time-domain and frequency-domain features. Then,
we built an ordered logistic regression model and evaluated the
prediction performance of the model with the LOSO method.
The prediction accuracy of all three items exceeded 70% (see
Table 7). For these measures, ACC ± 0 represents the accuracy
for a correctly predicted score, and ACC ± 1 represents the
accuracy for a prediction error of one point. To the best of our
knowledge, we propose the method for NFOG-Q score prediction
in our study by machine vision to evaluate the subject’s FOG
severity, which has great convenience and solves the problem
of bias in evaluations caused by the subjectivity associated with
self-evaluations.

The limitations of this paper are as follows:

(1) Since the included subjects did not experience FOG
often during shooting, there were few FOG samples. The
reasons are for this are mainly due to the characteristic
of the sudden occurrence of FOG, filming environment
(FOG is less likely to occur in a wide hospital corridor
than in a home environment) (Snijders et al., 2008), test
requirements in this study (for the sake of safety and
feasibility of the study, the included PD-FOG subjects were
in the “ON” state of medication during the test and were
less prone to FOG), and the exclusion of more severe
advanced PD subjects (i.e., those no longer in the “ON”
state of medication or no longer able to stand and walk).
Because the patients performed the test in the “ON” state,
the “ON” state FOG has not been validated to determine
whether it can be generalizable to the “OFF” state. A study
found that FOG in the “OFF” state can persist in the full
“ON” state after sufficient dopaminergic treatment, and the
“ON” state FOG may be the same as the “OFF” state FOG
but requires further verification (Lucas et al., 2019).

(2) Because the videos were shot in a real scene, some factors
may have affected FOG recognition. For example, the
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FIGURE 7 | Feature boxplot and stage comparison chart analysis in the walking stage. (A) Stage comparison chart of the area under the power spectrum of the
0.5-3 Hz frequency band calculated by the Y-axis acceleration signal from the right heel. (B) Boxplot of the area under the power spectrum of the 0.5-3 Hz
frequency band calculated by the Y-axis acceleration signal from the right heel. The feature was significantly different between the FOG and non-FOG groups
(p = 0.010). (C) Stage comparison chart of the area under the power spectrum of the 1-1.5 Hz frequency band calculated by the Y-axis speed signal from the left
heel. (D) Boxplot of the crest factor calculated by the area under the power spectrum of the 1-1.5 Hz frequency band calculated by the Y-axis speed signal from the
left heel. The feature was significantly different between the FOG and non-FOG groups (p = 0.004).

patients had irregular motions during the test (e.g., a
patient stood still for a short while due to a desire to
rest). To optimize this problem, some gait parameters
can be considered features to identify FOG, avoiding
the influence of irregular motions, such as gait speed,
cadence, and time to stop or freeze. In addition, factors
such as shooting angle may have affected the effectiveness
of the FOG recognition model. In our study, we
asked subjects to walk toward the photographer, which
eliminated the problem of the shooting angle. An affine

transformation will be performed to adjust to various
cameras in applications.

(3) Due to the perspective nature, the increase in the
shooting distance leads to a decrease in the signal-
to-noise ratio (SNR) of the keypoint position signals
extracted by OpenPose. However, this relationship is
acceptable. Since our purpose was to verify the feasibility
of machine vision methods for FOG monitoring and
assessment, as long as the results showed that the
model had achieved relatively good performance and
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FIGURE 8 | Feature boxplot and stage comparison chart analysis in the turning stage. (A) Stage comparison chart of the area under the power spectrum of the
0.5-3 Hz frequency band calculated by the X-axis acceleration signal from the right heel. (B) Boxplot of the area under the power spectrum of the 0.5-3 Hz
frequency band calculated by the X-axis acceleration signal from the right heel. The feature was significantly different between the FOG and non-FOG groups
(p = 0.031). (C) Stage comparison chart of the area under the power spectrum of the 0.5-3 Hz frequency band calculated by the X-axis speed signal form the left
heel. (D) Boxplot of the area under the power spectrum of the 0.5-3 Hz frequency band calculated by the X-axis speed signal from the left heel. The feature was
significantly different between the FOG and non-FOG groups (p = 0.031).

met clinical expectations, optimization of the SNR
was not the focus of this study. Theoretically, if
the SNR can be improved, better performance can
be achieved. Therefore, the SNR can be optimized
in the next step.

(4) Regarding the recognition of severe patients who
needed support during the test, since OpenPose can
recognize multiple skeletons, if the shooting condition
was ignored in actual application, the skeleton of
both the patient and the caregiver would be exposed

together in the video, which would interfere with
FOG recognition. In response to this problem, we
will study other algorithms to assist the subjects’
skeleton recognition, thus improving information
extraction effectiveness.

To further increase the representativeness and higher accuracy
of our FOG recognition system, future studies should evaluate a
larger sample of patients (e.g., covering residential communities
and inpatient wards as well as in “OFF” state FOG). In addition,
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TABLE 6 | Performance of each model.

GM Accuracy Sensitivity Specificity AUC

Motion recognition model 85.57% 87.75% 81.21% 90.16% 92.01%

FOG recognition model 80.16% 78.01% 84.38% 76.15% –

Multi-stage recognition model 83.57% 81.56% 87.50% 79.82% –

we did not examine the possible impact of fewer FOG phenotypes
such as trembling, akinetic, or shuffling with the algorithms
(Mazzetta et al., 2019). PD-FOG patients with many different
phenotypes should be included in future studies to improve the
practicality of this system. We can also combine wearable sensors
to accurately detect suspected PD-FOG patients to improve the
accuracy of FOG recognition.

As a new technology, FOG recognition based on machine
vision has many challenges. For example, levodopa (L-dopa)
and other drugs can improve space- and time-related gait
parameters (such as step length and speed) (Smulders et al.,
2016), thus causing a large difference between home evaluation
and outpatient evaluation. In this regard, we will need to address
differences in the assessment of patients under the influence of
drugs to make objective assessments. If this problem can be

TABLE 7 | NFOG-Q prediction results.

Subitems ACC ± 0 ACC ± 1

NFOGQ-3 72.00% 96.00%

NFOGQ-6 88.64% 100.00%

NFOGQ-7 75.00% 97.73%

TABLE 8 | The low-frequency and high-frequency features for the Walk-FOG
recognition model and Turn-FOG recognition model.

Signal Feature Equation

Low
Frequency

Acceleration of R heel
(y-Axis)

0.5-3 Hz
band area

3
∫

0.5
|F.T .(x)|2dx

Speed signal of L
heel (y-Axis)

1-1.5 Hz
band area

1.5
∫

1
|F.T .(x)|2dx

Position signal of L
ankle (y-Axis)

1-1.5 Hz
band area

1.5
∫

1
|F.T .(x)|2dx

Position signal of L
heel (y-Axis)

1-1.5 Hz
band area

1.5
∫

1
|F.T .(x)|2dx

Speed signal of R
ankle (x-Axis)

0.5-3 Hz
band area

3
∫

0.5
|F.T .(x)|2dx

Acceleration of R heel
(x-Axis)

0.5-3 Hz
band area

3
∫

0.5
|F.T .(x)|2dx

Speed signal of L
heel (x-Axis)

0.5-3 Hz
band area

3
∫

0.5
|F.T .(x)|2dx

Speed of L ankle
(y-Axis)

0.5-3 Hz
band area

3
∫

0.5
|F.T .(x)|2dx

High
Frequency

Difference in position
signal between L and

R wrist (x-Axis)

3.5-15 Hz
band area

15
∫

3.5
|F.T .(x)|2dx

F.T. (x) is the continuous Fourier transform of x.

solved, FOG recognition based on machine vision will play a key
role in the identification of high-risk individuals and observation
of curative effects.

CONCLUSION

Freezing of gait is one of the major motor symptoms of PD
patients that can cause falls. Since PD patients are mostly elderly,
falling results in fractures and even death. Thus, it is critical to
identify methods to detect FOG and prevent patients from falling.
In this study, a multi-stage FOG recognition model and the
NFOG-Q score prediction model with good performance were
developed. This brand-new diagnostic evaluation service not
only solves the impact of individual subjectivity but also reduces
the economic burden on PD patients. The current outbreak
of the COVID-19 pandemic affects all aspects of healthcare.
PD-FOG patients are a particularly vulnerable group who have
been directly and indirectly affected by this pandemic, resulting
in a lack of timely diagnosis and treatment. Fortunately, the
implementation of the FOG evaluation system based on machine
vision can overcome the above problems. In this way, full-process
management and timely intervention in the PD-FOG population
can be truly achieved.
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