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London Dental Institute, London, United Kingdom, 6Biological and Environmental Sciences
and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Background: Multiple sclerosis (MS) is a chronic inflammatory

neurodegenerative disease of the central nervous system (CNS) characterized

by irreversible disability at later progressive stages. A growing body of evidence

suggests that disease progression depends on age and inflammation within

the CNS. We aimed to investigate epigenetic aging in bulk brain tissue and

sorted nuclei from MS patients using DNA methylation-based epigenetic

clocks.

Methods: We applied Horvath’s multi-tissue and Shireby’s brain-specific

Cortical clock on bulk brain tissue (n = 46), sorted neuronal (n = 54),

and glial nuclei (n = 66) from post-mortem brain tissue of progressive MS

patients and controls.

Results: We found a significant increase in age acceleration residuals,

corresponding to 3.6 years, in glial cells of MS patients compared to controls

(P = 0.0024) using the Cortical clock, which held after adjustment for

covariates (Padj = 0.0263). The 4.8-year age acceleration found in MS neurons

(P = 0.0054) did not withstand adjustment for covariates and no significant

difference in age acceleration residuals was observed in bulk brain tissue

between MS patients and controls.

Conclusion: While the findings warrant replication in larger cohorts, our

study suggests that glial cells of progressive MS patients exhibit accelerated

biological aging.
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Introduction

Multiple sclerosis (MS), a leading cause of non-traumatic
neurological disability among young adults, is a progressive
inflammatory disease of the central nervous system (CNS)
characterized by focal demyelination and subsequent neuro-
axonal degeneration gradually impinging the CNS (Filippi et al.,
2018). The vast majority (85%) of MS patients present with
an early inflammatory relapsing-remitting form of the disease
with periodic autoimmune attacks of the myelin and ensuing
neuro-axonal damage. Most patients will eventually convert
to a progressive form of MS, namely secondary progressive
MS (SPMS), presenting with limited remyelination and an
unabating increase in neurodegeneration and disability without
remission. A small fraction of patients, approximately 10%,
encounters a progressive course of disease already from the
onset, referred to as primary progressive MS (PPMS). While
major progress has been made in understanding and treating the
peripheral immunopathogenesis occurring at the early stages
of MS, CNS-restricted mechanisms underlying later progressive
stages remain puzzling (Ciotti and Cross, 2018). This gap
of knowledge considerably hampers treatment options for
progressive MS patients, and further demands concerted efforts
to address CNS-confined processes in MS.

Accumulating evidence implies that the accrual of
irreversible disability may be age dependent. The ability to
recover from relapse decreases with age (Cossburn et al.,
2012; Kalincik et al., 2014) and the risk to enter progressive
MS stage increases with age, irrespective of the initial disease
course (Confavreux and Vukusic, 2006; Tutuncu et al., 2013).
Accordingly, aging-related processes have been identified in
MS patients. In the periphery, shortening of telomere length
in leukocytes has been associated with greater disability,
lower brain volume, higher relapse rate, and more rapid
conversion to progressive MS (Buhring et al., 2021). Premature
cellular senescence impairing remyelination potential has
been identified in the brain of progressive MS patients as well
(Nicaise et al., 2017, 2019). Moreover, brain age estimation using
cross-sectional and longitudinal neuroimaging has uncovered
accelerated aging of the brain in patients, with brain atrophy
and white matter lesion load being the strongest predictors of
the progressing aging measure (Hogestol et al., 2019). Overall,
accelerated aging in the CNS of MS patients, likely arising from
chronic exposure to inflammation, has been proposed as a
putative mechanism underpinning the relentless decline in the
CNS ability to repair and restore its functional capacity observed
at progressive stages of disease (Kular and Jagodic, 2020).

DNA methylation (DNAm)-based epigenetic clocks stand
among the most reliable estimators of the biological age, and
as such are regarded as promising biomarkers of aging and
organ function. The most established epigenetic clocks, that
is, Horvath (Horvath, 2013), Hannum (Hannum et al., 2013),
and PhenoAge (Levine et al., 2018), strongly correlate with

aging-related outcomes, such as all-cause mortality, physical
functioning, and aging-related pathologies including cognitive
decline (Marioni et al., 2015; Levine et al., 2018). Among them,
the multi-tissue predictor of DNAm age by Horvath has been
used in bulk brain tissue of donors affected by neurological
disorders, such as Huntington’s and Alzheimer’s diseases, and
has shown an association with neuropathological markers of
neurodegeneration (Levine et al., 2015; Horvath et al., 2016).
Yet, studies have reported spurious associations between DNAm
age and clinical readouts in certain samples, thus revealing
a potential bias of these blood-trained clocks which might
interfere with the analysis of CNS tissue of older donors
(Zhang et al., 2019). Moreover, blood-brain paired analyses
have reported a modest correlation between the respective
DNAm ages in blood compared to brain tissue (Grodstein
et al., 2020), reinforcing the need to investigate aging-related
mechanisms of neurological diseases in situ, in the primarily
affected tissue. The Cortical clock, trained exclusively on post-
mortem human cortical samples, has been developed to further
improve the estimation of DNAm age in brain tissue (Shireby
et al., 2020). Both Horvath’s and the Cortical clock have been
trained on samples from non-diseased individuals, using elastic
net regression for the identification of relevant CpGs among
the vast amount of analyzed CpG probes from the Illumina
450K/EPIC arrays. However, the Cortical clock has been shown
to yield a higher predictive value and outperformed Horvath’s
clock in cortical bulk brain specimens (Grodstein et al., 2020;
Shireby et al., 2020).

We have previously reported differences in DNAm age
measures in peripheral blood and sorted cells of MS patients and
healthy controls (Theodoropoulou et al., 2019). Here, we aim
to utilize genome-wide DNA methylation profiles in CNS cells
from case-control cohorts (Huynh et al., 2014; Kozlenkov et al.,
2014; Gasparoni et al., 2018; Kular et al., 2019, 2022) to examine
age acceleration in bulk brain tissue, neurons, and glial cells of
MS patients in comparison to non-neurological controls.

Materials and methods

Study samples

Our study included a total of five DNA methylation
datasets generated from bisulfite-treated DNA derived from
post-mortem bulk brain and sorted nuclei fractions of MS
patients and non-neurological controls (NNC) using Illumina
Infinium HumanMethylation450 (450K) or EPIC platforms.
Details are listed in Table 1. In brief, bulk brain 450K DNA
methylation data from MS patients and controls were retrieved
from a study by Huynh et al. (2014) (GEO: GSE40360) and
comprise 46 normal-appearing white matter (NAWM) and
control white matter brain samples, as previously described
(Huynh et al., 2014). DNA methylation data from 32 neuronal
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(NeuN+) (GEO: GSE119532) and 44 glial (NeuN−) nuclei
(GEO: GSE166207) samples of MS patients and controls were
generated using 450K and EPIC, respectively, as previously
described (Kular et al., 2019, 2022). The disease course
of all cases was classified as progressive MS at the time
of death. All neuronal and glial datasets originate from
patients with secondary progressive SPMS and the majority
(63%) of bulk NAWM samples were obtained from SPMS
individuals with additional samples coming from patients with
PPMS and chronic progressive MS (Table 1). To cover a
wider age range and to counteract collinearity of age and
clinical group (MS/NNC) in the neuronal and glial cohort
(PNeurons = 1.31 × 10−5, PGlia = 1.44 × 10−6 with two-
sided two-sample t-test), we included additional 450K DNA
methylation data generated from neuronal and glial nuclei of
NNC donors, from Kozlenkov et al. (2014) (GEO: GSE50798,
n = 6 individuals) and Gasparoni et al. (2018) (GEO: GSE66351,
n = 16 individuals). These external datasets provide glial and
neuronal data from the same donors. Across all included
studies, neuronal and glial nuclei were sorted by fluorescence-
activated cell sorting using neuronal nuclear antigen (NeuN) as
a neuronal marker. To provide an example of Cortical clock
performance on non-nervous tissue, we included whole blood
450K methylation data, previously described in Kular et al.
(2018) and Theodoropoulou et al. (2019) (GEO: GSE106648).

Preprocessing of DNA methylation
data

All analyses were conducted in the R statistical environment
(version 4.0.51) with the RStudio software (version 1.4.11062),
if not stated otherwise. For all datasets, raw data were
retrieved, that is, the intensity of the fluorescence signal for 5-
methylated and unmethylated cytosines. The readGEORawFile
function from the minfi package (version 1.40.0) was used
to import the raw data from studies by Huynh et al. (2014)
and Kozlenkov et al. (2014). The pfilter function from the
wateRmelon package (version 2.0.0) was used to exclude
CpG probes with >5% of samples with detection P > 0.05.
Data from the bulk brain cohort, the combined glial cohort,
the combined neuronal cohort, and the blood cohort were
normalized separately using the dasen function from the
wateRmelon package to perform background and Type I/Type
II bead-type correction. The combineArrays function from the
minfi package was used to merge EPIC- and 450K-derived
data for GSE166207, GSE50798, and GSE66351. Neuronal and
non-neuronal proportions in bulk brain tissue were estimated
with the meffil.estimate.cell.counts.from.betas function from the

1 https://www.r-project.org

2 https://www.rstudio.com T
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meffil package (version 1.1.1), which deploys the Houseman
deconvolution algorithm using the dorsolateral prefrontal
cortex as reference DNA methylation data (Houseman et al.,
2012; Guintivano et al., 2013).

DNA methylation age estimation and
linear models

For DNAm age estimation, we applied the agep function
from the wateRmelon package. In total, 353 and 348 CpG
probes were considered for the Horvath and Cortical clock,
respectively, of which five probes are shared. The EPIC platform
lacks 19 Horvath’s clock CpG probes used for DNAm age
estimation, thus these probes could not be included in our
analysis for glial cells. For this reason and due to P-value
filtering, a slightly reduced set of CpG probes was included in
the final agep calculation of DNAm age and we ensured that the
age estimation was not compromised by the 19 missing probes,
as shown in bulk brain and neuronal material (Supplementary
Figure 1).

For the calculation of age acceleration residuals (AAR),
the resid and lm functions from base R were used, with
DNAm age as the dependent variable and chronological age
as the independent variable in the linear model. For AAR
calculation in bulk brain tissue, predicted neuronal proportions
were included as a second independent variable to account
for the reported association of decreased neuronal proportions
and higher DNAm age. By definition, the AAR is independent
of the donors’ chronological age (and neuronal proportions).
Linearity, normality, and homoscedasticity of residuals derived
from the linear model were validated graphically with the plot
and lm functions from base R.

Statistical analysis

Normality and equal variances of AAR, when stratified for
clinical groups (MS/NNC), were tested with Shapiro–Wilk and
Bartlett’s test. The mean AAR of MS and NNC clinical groups
was compared with a two-sided two-sample t-test. If equal
variances could not be assumed, a two-sided Welch’s t-test was
performed instead.

Covariate adjusted P-values for the comparison of AAR
between clinical groups were calculated with a multivariate
analysis of the covariance linear model (MANCOVA). The
covariates included in each analysis were: sex and post-mortem
interval (PMI) for the bulk brain cohort; sex, PMI, and sample
replicate status (i.e., different brain samples taken from the
same individual) for the neuronal cohort; and sex, PMI, sample
replicate status, and principal component 1 (PC1) as a proxy
for glial cohort origin, as the use of glial cohort origin as

a categorical variable would interfere with the clinical group
variable since external datasets only include control samples.

Brain region-specific AAR differences were analyzed with
a Tukey HSD test without adjustments, as sex and PMI had
no significant influence on AAR (PSex = 0.47, PPMI = 0.48) in
these subsets of samples from the same donors. If data from
the same individuals were compared, a two-sided paired t-test
was performed. In the study of age acceleration in subgroups
stratified according to sex, we performed a Tukey HSD test
on the residuals of the MANCOVA model (covariates for glial
cohort: PMI, replicate status, PC1; covariates for neuronal
cohort: PMI, replicate status). The significance level for all tests
was set to P = 0.05.

Results

Performance of Cortical and Horvath’s
clock DNA methylation age
estimations for brain-derived tissue

To assess biological aging in brain cells of MS patients
and controls, we first sought to compare epigenetic clocks that
have been previously used in brain samples, that is, the multi-
tissue Horvath’s clock and the brain-restricted Cortical clock,
in our study samples composed of bulk NAWM (n = 46),
sorted neuronal (n = 54), and glial nuclei (n = 66) from
post-mortem brain material (Table 1). In the bulk brain and
neuronal nuclei, the Cortical clock model showed higher R2

values and lower mean absolute error (MAE) indicative of
a more accurate estimation of epigenetic age over the whole
lifespan (Figures 1A–C and Table 2), confirming previous
reports (Shireby et al., 2020). While a higher R2 value could
also be observed using the Cortical clock compared to Horvath’s
clock in the glial nuclei, higher MAE denoted the systematic
overestimation of DNAm age in glial cells with the Cortical
clock (MAEHorvath = 6.88 vs. MAECortical = 11.48, Figure 1D
and Table 2). This overestimation is typically addressed by using
the aging residuals instead of the absolute difference between
predicted and chronological age, as done in the subsequent
analyses of this study. Unsurprisingly, the estimation of DNAm
age from blood samples was more accurate with the multi-
tissue Horvath’s clock as opposed to the Cortical clock (Table 2).
Moreover, we observed a higher intercept in the neuronal
cohort as opposed to the bulk brain and glial cohorts with
both clocks (Table 2), which implies an overestimation of
younger donors’ DNAm age in neurons specifically by both
clocks. A general underestimation of the DNAm age of older
donors in the bulk brain and neuronal cohorts could be
observed with Horvath’s clock (Figures 1E,F). Such effect could
not be detected when Horvath’s clock was applied to blood
samples (Supplementary Figure 2). Of note, Metascape Gene
Ontology Analysis (Zhou et al., 2019) of CpG-annotated genes
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by both clocks yielded common but also unique pathways
enriched in either one clock or the other (Supplementary
Table 2). This implies that different aspects of aging might be
captured by each clock, which can be reflected by differences
in AAR values generated by one clock compared to the other
(Supplementary Figure 3).

Taken together, these results indicate that aging residuals of
brain tissue-derived samples are more accurately estimated with
the Cortical clock compared to Horvath’s clock.

Exploration of confounding factors for
DNA methylation age and age
acceleration residuals estimates

DNA methylation estimates can be biased by both technical
and biological confounders, the latter commonly referred to
as covariates. To address potential technical confounders,
we first explored putative batch effects and found minimal
variation in DNAm age estimation between replicates loaded
on different platforms or slides (Supplementary Figures 4A,B),
confirming DNAm age reproducibility. We examined different
data normalization methods as well, that is, dasen- (originally
used for training the Cortical clock), BMIQ-, and Noob-based
normalization, and found that dasen-normalized beta values
yielded the highest R2 value in the linear model of both
clocks compared to no normalization or other normalization
methods, prompting us to opt for dasen normalization
(Supplementary Figure 5). While the use of three independent
datasets in each cell type-specific cohort greatly improved the
collinearity between age and clinical group (PNeurons = 0.041
and PGlia = 0.055 with a two-sided two-sample t-test), variation
between datasets was visible only for the glial cohort, as shown
by the PCA separation (PDataset = 2.4 × 10−10 with Kruskal–
Wallis test) (Supplementary Figures 6A,B). This effect was
taken into account in the MANCOVA model by including PC1
as a proxy for glial cohort origin and we ensured that PC1 for
the glial cohort was not majorly confounded by other sample
features (PSex = 0.109, PAnterior/Posterior = 0.402, PNNC/MS = 0.033
with Kruskal–Wallis test; PPMI = 0.2, PAge = 0.014 with
Spearman’s correlation test). The inclusion of external control
samples to cover a larger age range had a modest influence on
the regression line used for AAR calculation (Supplementary
Figures 6C,D).

We next explored putative covariates and addressed the
effect of cell type (glial cells vs. neurons) and brain location
(anterior vs. posterior) on AAR, using samples that were derived
from the same donors. As shown in Figure 2, the DNAm
clocks yielded different AAR depending on the cellular source.
Results from both clocks indicated that, overall, glial cells
displayed a higher variation of AAR compared to neurons
(Figures 2A,C). While the Cortical clock yielded no significant
difference between neurons and glial cells from the same donors

(Figure 2A), the AAR of neurons was significantly lower than
the AAR of glial cells using Horvath’s clock (Figure 2C). It
should be noted that glial and neuronal AAR are derived from
different models, suggesting that a portion of the observed
differences might also arise from different AAR calculations
(based on cell type-restricted regression lines). The effect of
cellular heterogeneity can also be observed when comparing
neuronal DNAm age estimations to the bulk brain tissue they
originate from (Supplementary Figure 4C). Given the cell type-
specific aging pace (Figure 2) and the fact that the DNAm age of
brain samples with lower neuronal proportion is systematically
overestimated (Shireby et al., 2020), we included algorithm-
based estimations of neuronal proportion (Guintivano et al.,
2013) as an independent variable in the bulk brain cohort’s linear
model for the calculation of AAR. Varying AAR in samples
from the same donor could also be observed according to the
location of the brain regions along the anteroposterior axis
(Figures 2B,D), which could be examined only in glial cells
of Kular et al.’s dataset, due to insufficient data availability in
the other glial, neuronal, and bulk datasets. This is particularly
the case with Horvath’s clock applied to NNC individuals,
where glial cells sorted from posterior brain regions showed
significantly lower AAR compared to glial cells located in the
anterior part of the brain (Figure 2D). Posterior glial cells
of NNC also displayed significantly lower AAR compared to
posterior glial cells of MS patients (Figure 2D).

Taken together, these findings suggest that glial cells
and neurons of the same person age at a different
pace and the location of brain samples might influence
epigenetic aging measures.

Glial cells of multiple sclerosis patients
display DNA methylation age
acceleration

We then examined the epigenetic clock-derived measures
of DNAm age acceleration in bulk NAWM, glial, and neuronal
samples of MS patients in comparison to NNC donors. The final
models used for each cohort are described in the Materials and
Methods section and the results are summarized in Table 3 and
illustrated in Figure 3. In glial nuclei, AAR based on Cortical
clock estimates revealed a significant difference between MS
cases and controls after adjusting for covariates (Padj = 0.0263,
Figure 3A and Table 3). Of note, because Kozlenkov et al.
did not report any PMI measures, these samples were not
included in the adjustment. Nevertheless, a MANCOVA without
PMI adjustment applied to all three glial datasets yielded
similar significant results (Padj = 0.0163). Overall, glial cells
of MS patients were estimated to be on average 3.67 years
older than those of NNC and 2.5 years older than what
would be expected from the linear model (Table 3). The same
tendency was observed with Horvath’s clock, but did not reach
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FIGURE 1

Linear models of Cortical and Horvath’s clocks applied to glial cells, neurons, and bulk brain tissue. Linear models of regressing estimated
DNAm age on chronological age with the DNAm age estimated with the Cortical clock [upper panels (A–C)] or Horvath’s clock [lower panels
(D–F)]. Regression of DNAm age on chronological age was performed in glial nuclei (A,D), neuronal nuclei (B,E), and bulk brain tissue (C,F) of
multiple sclerosis (MS) patients and non-neurological controls (NNC). The dashed line represents the x = y bisector and the black line represents
the linear regression line of best fit. For information on model characteristics, see Table 2. Data were retrieved from Huynh et al. (2014),
Kozlenkov et al. (2014), Gasparoni et al. (2018), and Kular et al. (2019, 2022).

TABLE 2 Characteristics of linear regression of DNAm age estimations from Horvath’s and Cortical clock on chronological age.

Horvath’s clock Cortical clock

R2 P MAE Intercept Slope R2 P MAE Intercept Slope

Glia 0.86 < 2.2× 10−16 6.88 8.75 0.77 0.95 < 2.2× 10−16 11.48 8.14 1.05

Neurons 0.67 1.79× 10−14 11.9 22.72 0.49 0.82 < 2.2× 10−16 9.76 32.98 0.61

Bulk 0.74 1.68× 10−14 9.33 8.63 0.69 0.88 < 2.2× 10−16 5.23 -0.52 0.92

Blood 0.87 < 2.2× 10−16 6.53 16.18 0.77 0.78 < 2.2× 10−16 8.11 25.75 0.57

R2 , coefficient of determination; P, P-value for the F-statistic; MAE, mean absolute error.

significance after adjusting for covariates (1AARMS−NNC = 1.41,
Padj = 0.083, Table 3).

In neurons, a significant AAR difference seen with the
Cortical clock did not withstand adjustment for covariates
(1AARMS−NNC = 4.8, Padj = 0.302, Table 3). Similarly,
Horvath’s clock did not indicate any significant difference
after adjustment (1AARMS−NNC = 4.76, Padj = 0.267,
Table 3). In bulk brain tissue, there was no significant

AAR difference between MS patients and controls with
either of the two clocks after the inclusion of covariates,
although a tendency for higher AAR in MS individuals could
be observed with Horvath’s clock (1AARMS−NNC = 1.59,
Padj = 0.059, Figure 3F and Table 3). Stratification for
MS subtypes (chronic-progressive, secondary-progressive,
primary-progressive) in the bulk brain cohort yielded
no significant differences either (PANOVA,Horvath = 0.24,
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FIGURE 2

Effect of cell type and sample location from the same donors in the estimation of DNAm age. Age acceleration residuals (AAR) in glial cells and
neurons sorted from the same control donors [left panels (A,C)] and in glial cells located in anterior and posterior regions of the brain of the
same MS patients and controls [right panels (B,D)] estimated using the Cortical clock (upper panels) and Horvath’s clock (lower panels).
Normality was tested with the Shapiro–Wilk test. (A,C) Sample differences were compared with a paired two-sample t-test. (B,D) Equal
variances were tested with Bartlett’s test and sample means compared with a Tukey HSD test, correcting P-values for multiple testing with the
single-step method (B,D). The significance level for all tests was set to P = 0.05. Glia and neuron data from the same donors (A,C) were taken
from Kozlenkov et al. (2014), Gasparoni et al. (2018), and anterior and posterior data in glia from the same donors [right panels (B,D)] were taken
from Kular et al. (2022). The dotted line denotes the same donor. MS, multiple sclerosis; NNC, non-neurological control; ns, not significant.

PANOVA,Cortical = 0.48). Of note, both clocks applied to blood
samples showed a very significant AAR difference between
healthy controls and MS patients (Table 3). Such a strong

effect is expected in this cohort with a larger sample size
and statistical power in comparison to our glial cohort
(1-βGlia = 0.87, 1-βBlood = 0.96) and confirmed previous
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TABLE 3 Summary statistics of AAR comparisons between MS patients and controls.

Horvath’s clock Cortical clock

mNNC mMS P Padj mNNC mMS P Padj

Glia −0.45 0.96 0.34 0.083 −1.17 2.5 0.0024** 0.0263*

Neurons −1.58 3.18 0.023* 0.267 −1.6 3.2 0.0054** 0.302

Bulk −0.93 0.66 0.24 0.059 0.04 −0.03 0.94 0.51

Blood 0.72 −0.73 0.0002*** 0.0001*** 0.54 −0.55 0.0068** 0.004**

Two-sided two-sample t-tests were performed except when comparing Horvath’s clock-derived sample means of the glial cohort. In this case, a two-sided Welch’s t-test has been performed
to accommodate for unequal variances. m, sample mean; Padj , P-value of clinical group variable (MS/NNC) in MANCOVA with covariates sex (M/F) and PMI included (for blood cohort
only sex was adjusted for as study participants were not deceased, for neuronal and glial cohort sample replicate status (TRUE/FALSE), and for the glial cohort PC1 as a proxy for different
datasets of origin were added to MANCOVA), * = P < 0.05, ** = P < 0.01,*** = P < 0.001.

findings obtained with Horvath’s clock in the same cohort
(Theodoropoulou et al., 2019).

Thus, our findings suggest that glial cells sorted from the
brain of MS patients display higher age acceleration residuals
compared to NNC donors.

Sex differences in DNA methylation
age

Given that MS generally affects women more often than
men and considering previous reports showing that AAR
varies significantly between men and women in blood samples
of MS patients (Theodoropoulou et al., 2019), we examined
sex-associated differences in the bulk brain, sorted neuronal,
and glial nuclei. No significant sex difference was found in
bulk brain tissue with either of the two clocks. In sorted
cells, the Cortical clock (Figures 4A,B) did not result in
significant differences between the groups after adjustment for
multiple testing and covariates. While glials cell displayed no
significant sex difference between clinical groups with Horvath’s
clock (Figure 4C), neurons of female MS patients presented
significantly higher AAR than neurons of male MS patients with
Horvath’s clock (PTukey = 0.046, Figure 4D). A tendency for
significantly faster biological aging was also apparent in neurons
of female MS patients in comparison to neurons of female
controls (PTukey = 0.057, Figure 4D).

Discussion

In this study, we used the brain-specific Cortical clock and
Horvath’s multi-tissue clock to investigate biological aging in
brain-derived tissue of MS patients compared to NNC. We
found a significant difference in AAR between MS patients and
controls in glial cells using the Cortical clock, indicating a faster
pace of biological aging in MS glial cells. Additionally, we found
sex-specific differences in AAR, which were significant only in
neurons using Horvath’s clock.

Glial cells are composed of highly interconnected and
dynamic oligodendrocytes, astrocytes, and microglial cells
that jointly orchestrate a tight control of the CNS homeostasis
notably due to their pivotal roles in myelination of axons,
metabolic support to neurons, and neuroinflammation.
Importantly, accumulating evidence support the role of glial
dysfunction and exhaustion, that is, microglial activation,
failure in remyelination, and oxidative and DNA damage,
among others, in the CNS inability to repair after injury
typically observed at later progressive stages of MS disease
(Haider et al., 2011; Fischer et al., 2013; Nijland et al., 2014).
Given the vast repertoire of dysfunctions observed by glial
cells in the context of progressive MS, the exact mechanisms
underlying the accelerated aging observed in glial cells of MS
patients remain to be clarified. Since DNAm age is known to
correlate with the number of cell divisions, and thus potentially
replicative senescence (Lowe et al., 2016; Horvath et al., 2018),
a plausible explanation of accelerated aging in MS glia could
be attributed to increased proliferation, resulting in exhausted
glial cells. This exhaustion is possibly sustained by the repeated
damage to oligodendrocytes and myelin (Merrill and Scolding,
1999; Miyachi et al., 2021) and the elevated demand for debris
uptake by microglia (Luo et al., 2017), tissue repair by astrocytes,
and remyelination by oligodendrocytes (Ponath et al., 2018).
Considering the intrinsic proliferative capacity of microglia
and astrocytes, higher DNAm age in glial cells could reflect
increased microglial and astrocytic proliferation occurring
during gliosis. This goes in line with findings from Huynh
et al. showing that DNA methylation and expression changes of
bulk brain tissue in MS affect genes regulating oligodendrocyte
survival, proteolytic processing, and immune function in
comparison to controls (Huynh et al., 2014). Furthermore,
we have recently reported that glial cells of NAWM in MS
patients undergo genome-wide DNA methylation changes,
correlating with transcriptional differences, in genes involved in
cytoskeleton organization, cell signaling, molecule transports,
neuroinflammation, cell motility, and metabolic processes
compared to controls (Kular et al., 2022). Altogether, this
suggests that epigenetic aging of glial cells might result from
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FIGURE 3

Age acceleration in glial cells, neurons, and bulk brain of MS patients and controls. Age acceleration residuals (AAR) in glial cells [left panels
(A,D)], neurons [middle panels (B,E)], and bulk brain tissue [right panels (C,F)] of MS patients and controls were estimated using the Cortical
clock (upper panels) and Horvath’s clock (lower panels). Normality was tested with the Shapiro–Wilk test. Equal variances were tested with
Bartlett’s test. Sample means were compared with a two-sided two-sample t-test. In case of unequal variances (D), Welch’s t-test was
performed instead. Significance refers to covariate-adjusted P-values, with Padj < 0.05 considered significant (for unadjusted P-values, see
Table 3). Adjustment refers to sex, PMI, replicate status, PC1 (dataset of origin) in glia; sex, PMI, and replicate status in neurons; and sex, PMI, and
neuronal cell proportions in the bulk brain. Data were retrieved from Huynh et al. (2014), Kozlenkov et al. (2014), Gasparoni et al. (2018), and
Kular et al. (2019, 2022). MS, multiple sclerosis; NNC, non-neurological controls; ns, not significant.

enhanced cellular activity of glial cells, as reflected by DNA
methylation and gene expression changes.

It is still debated whether, and under which circumstances,
aging phenotypes observed in glial cells contribute to a
neurotoxic or neuroprotective microenvironment, as aging
does not seem to affect glial cells in the same way across
brain regions. For example, during aging in mice, attenuated
phagocytosis and motility of microglia could be observed in
the hippocampus, whereas enhanced immune response was
detected in the cerebellum (Grabert et al., 2016). Moreover,
aging seems to affect oligodendrocytes proportion, particularly
in the human frontal cortex, as opposed to other brain regions
(Pelvig et al., 2008). However, there is a consensus that aging
microglia display mitigated surveillance capacities and become
more susceptible to pro-inflammatory signals, while aging
astrocytes and oligodendrocytes increasingly fail to provide
neurotrophic support with, for example, oligodendrocytes
reducing myelination and internode length (Salas et al., 2020)
and astrocytes contributing to memory defects and synaptic
dysfunction (Guerra-Gomes et al., 2018). Additionally, aged rat

astrocytes, cultured for 90 days, produced more reactive oxygen
species than astrocytes cultured for only 10 days (Pertusa et al.,
2007), a finding of relevance in the context of MS, since reactive
oxygen species contribute to the demyelination of neuronal
axons (Ohl et al., 2016; Papadopoulos et al., 2020). The role
of aging oligodendrocyte progenitor cells (OPC) is still elusive,
but recent evidence in rodents and humans suggests that OPC
maturation is impaired during aging, resulting in a declining
population of myelinating oligodendrocytes (Bankston et al.,
2013; Papadopoulos et al., 2020; Salas et al., 2020). Moreover,
findings from Yeung et al. suggested that remyelination in MS is
sustained by pre-existing oligodendrocyte populations, and not
by replenished oligodendrocytes originating from OPCs (Yeung
et al., 2019), further adding to the notion that accelerated aging
in MS could be ascribed to cellular exhaustion. Altogether, this
evidence implies a lower regenerative potential of the aging
CNS, which is likely responsible for the unabating decline of
cognitive functions during MS disease progression.

Notably, the results of this study must be seen in the context
of the limitations which are inherent in post-mortem brain
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FIGURE 4

Age acceleration in glia and neurons of MS patients and controls stratified according to sex. Age acceleration residuals (AAR) in glial cells [left
panels (A,C)] and neurons [right panels (B,D)] of female and male MS patients and controls were estimated using the Cortical clock [upper
panels (A,B)] and Horvath’s clock (C,D). No significant sex difference was found in bulk brain tissue with neither of the two clocks. Normality was
tested with the Shapiro–Wilk test. Equal variances were tested with Bartlett’s test. Sample means were compared with a Tukey HSD test,
correcting P-values for multiple testing with the single-step method. Adjustment refers to PMI, replicate status, and PC1 (only for glia cohort). F,
female; M, male; MS, multiple sclerosis; NNC, non-neurological controls; ns, not significant. Data were retrieved from Kozlenkov et al. (2014),
Gasparoni et al. (2018), and Kular et al. (2019, 2022).

studies in general and due to the scarcity of available data,
particularly in MS. The small sample size of original neuronal
and glial cohorts together with the limited age range and
separation of younger MS donors compared to older controls
prompted us to extend the age range of the participants by
including additional NNC from Kozlenkov et al. (2014) and
Gasparoni et al. (2018). By decreasing the lowest donor age
from 35 to 18 years, we were able to reduce but not fully

eliminate biases, that is, the overestimation of DNAm age in
younger donors in the neuronal model using the Cortical clock
(Supplementary Figure 6B). While the addition of controls
from independent cohorts was not necessary to enhance the
interpretability of the Cortical clock estimations in the glial
cells (Supplementary Figure 6A), it enabled a gain of statistical
power to identify putative differences. Indeed, it is noteworthy
that a significant difference in AAR sample means between
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MS patients and controls could not be observed without
the external control samples. Importantly, the calculation of
AAR based on a model, including both MS patients and
controls allowed a more conservative and unbiased approach,
compared to a model using the difference between epigenetic
and chronological age and/or solely control individuals, as done
in other studies (Horvath and Levine, 2015; Horvath et al., 2015,
2016). Nevertheless, because the AAR values are based on linear
regression, one cannot exclude the potential non-linear effect of
age. Overall, our findings should be taken with necessary caution
due to the modest sample size of the combined cohorts, and
further cell type-restricted studies in larger case-control cohorts
are warranted to replicate our findings.

While a vast number of DNAm-based clocks have emerged
for the analysis of aging in peripheral blood, only limited
research has so far been conducted on epigenetic measures of
aging in brain tissue. With the novel Cortical clock developed by
Shireby et al. (2020), DNAm age can be assessed in brain samples
at an unprecedented level of accuracy measured by root-mean-
square error and Pearson correlation of the chronological and
predicted age. As such, Cortical clock estimations of DNAm age
stand as a considerably better predictor of patients developing
pathologic Alzheimer’s disease than Horvath’s clock estimations
and as the sole epigenetic clock, among Horvath’s clock,
Hannum’s clock, PhenoAge, and GrimAge, that significantly
associated to clinical phenotypes of brain function and cognitive
decline (Grodstein et al., 2021). Yet, our findings should be
viewed in light of the inherent limitations of epigenetic clocks
in general. These pertain, for example, to the Illumina platform
used to create the clock, that is, the Horvath clock was generated
using previous 450K Illumina array and 19 CpG probes are
lacking on the EPIC Illumina platform. Limitations arise also
from the general or specific biases in estimating epigenetic age,
as observed in our data as well, which have been addressed in our
study (see Materials and Methods). In our study, we confirmed
that the Cortical clock provides less biased estimations of DNAm
age in brain tissue than Horvath’s clock. Indeed, it does not
exhibit DNAm age underestimation in donors over 60 years, as
reported in previous studies using Horvath’s clock (El Khoury
et al., 2019; Shireby et al., 2020), which is relevant for the
study of neurodegenerative processes affecting older patients.
Additionally, the Cortical clock appears less sensitive to DNAm
age differences in glial cells across various brain regions in
our study. Interestingly, despite using clocks trained on bulk
brain tissue, differences in AAR between MS patients and NNC
could be visible only in isolated neuronal and non-neuronal
fractions as opposed to bulk brain tissue. It remains unclear
why the AAR differences are not detected in bulk brain tissue.
The limitations arising from bulk tissue analyses have already
been acknowledged in a review by Bell et al. (2019), the main
challenge is that the cell type-specific epigenetic mosaic becomes
obscured when measuring methylation levels in heterogeneous
bulk tissues. Similarly, the analysis of the NeuN− fraction sorted

from brain tissue, including predominantly mixed glial cell
types and to a lesser extent non-glial (e.g., endothelial and
peripheral immune) cells, could undeniably be biased by cellular
heterogeneity. Altogether, these findings highlight the necessity
to take into account cell-type specificity in both the development
of epigenetic clocks, that is, training on neurons or glial cells
independently, and clinical studies of the aging brain.

The difference between the results from the Cortical clock
and Horvath’s clock might be attributed to biologically relevant
reasons. Indeed, as only five CpG probes are shared between
the Cortical clock and Horvath’s clock, different aspects of
aging processes could presumably be captured by each clock,
as suggested by our Gene Ontology analysis. The study of
the biological underpinnings of AAR might shed light on the
interpretation of surprising findings, such as the correlation
between positive age acceleration and better prognosis in
patients affected by gliomas with Horvath’s clock (Zheng et al.,
2020) and negative age acceleration (i.e., “age deceleration”)
observed in the most severely affected patients of Huntington’s
disease (Horvath et al., 2016). Ultimately, it would be of
particular interest to examine the association between epigenetic
aging measures and clinical outcomes of MS patients, such as
disease duration, disease severity, lesion burden, or cognitive
abilities, which might help decipher the sex differences we
observed in neurons.

Conclusion and perspectives

In conclusion, we found that glial cells of MS patients display
an increased epigenetic age acceleration compared to NNC
controls with the Cortical clock. Additional studies investigating
the mechanisms underlying this difference remain to be done.
Because epigenetic changes are reversible by nature, future
approaches, such as epigenetic-based therapies, might aid in
slowing down or halting, if not reversing, age acceleration of
the brain in MS.
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