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Background: Parkinson’s disease (PD) is a common neurodegenerative

disease affecting the movement of elderly patients. Environmental exposures

are the risk factors for PD; however, gut environmental risk factors for

PD are critically understudied. The proof-of-concept study is to identify

gut metabolites in feces, as environmental exposure risk factors, that are

associated with PD and potentially increase the risk for PD by using leverage

of known toxicology results.

Materials and methods: We collected the data regarding the gut

metabolites whose levels were significantly changed in the feces of

patients with PD from the original clinical studies after searching

the following databases: EBM Reviews, PubMed, Embase, MEDLINE,

and Elsevier ClinicalKey. We further searched each candidate

metabolite-interacting PD gene set by using the public Comparative

Toxicogenomics Database (CTD), identified and validated gut metabolites

associated with PD, and determined gut metabolites affecting

specific biological functions and cellular pathways involved in PD by

using PANTHER tools.

Results: Sixteen metabolites were identified and divided into the following

main categories according to their structures and biological functions:

alcohols (ethanol), amino acids (leucine, phenylalanine, pyroglutamic acid,

glutamate, and tyrosine), short-chain fatty acids (propionate and butyrate),

unsaturated fatty acids (linoleic acid and oleic acid), energy metabolism

(lactate, pyruvate, and fumarate), vitamins (nicotinic acid and pantothenic

acid), and choline metabolism (choline). Finally, a total of three identified

metabolites, including butyrate, tyrosine, and phenylalanine, were validated

that were associated with PD.

Conclusion: Our findings identified the gut metabolites that

were highly enriched for PD genes and potentially increase

the risk of developing PD. The identification of gut metabolite
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exposures can provide biomarkers for disease identification, facilitate

an understanding of the relationship between gut metabolite

exposures and response, and present an opportunity for PD

prevention and therapies.

KEYWORDS

gut metabolites, environmental exposures, Comparative Toxicogenomics Database,
visual analyses, Parkinson’s disease

Introduction

Parkinson’s disease (PD) is a common neurodegenerative
disease that is known to affect the movement in the elderly
patients and is mainly characterized by the classical motor
syndromes, such as resting tremor, rigidity, bradykinesia,
akinesia, and postural instability, and accompanied by early
non-motor symptoms (NMSs; Balestrino and Schapira, 2020).
The pathological hallmarks of PD are the death of dopaminergic
neurons in the substantia nigra pars compacta (SNpc) and
the presence of Lewy bodies with abnormal aggregates of
α-synuclein protein, which leads to dopamine (DA) deficiency
within the basal ganglia and movement disorder (Kalia and
Lang, 2015). Nevertheless, the exact cause of PD is still
poorly understood.

Substantial evidence strongly supports environmental
exposures as the risk factor for PD (Noyce et al., 2012).
Earlier epidemiological and sociological studies revealed
that exposure to toxic environmental substances (including
pesticide exposure, prior head injury, and beta-blocker use) and
specific living conditions (including rural living, agricultural
occupation, and drinking well water) are associated with an
increased risk of PD (Langston et al., 1983). However, based
on the PD progress, it is unlikely that the disease pathogenesis
is triggered by acute toxic exposure. Instead, it is possible that
persistent exposures are responsible for the gradual dysfunction
that manifests across myriad cellular pathways throughout the
progression of the disease.

With the evolution of the “exposome” concept, exposomic
studies capture the totality of exposures over a complete
lifetime, including exogenous and endogenous exposures, and
downstream endogenous products along the exposure-disease
continuum. Seminal research has postulated that the cause of
PD might begin in the gut (Braak et al., 2006). Strong evidence
supports that gastrointestinal (GI) systems are gateways to the
environment (Klingelhoefer and Reichmann, 2015). Toxins,
nutrients, microbiota, and metabolites can interact with the GI
tract, initiate the enteric nervous system (ENS), spread into
the central nervous system (CNS), and exert remote effects
via the gut–brain axis. Moreover, the substances can also be
absorbed directly from the GI tract into the circulatory system

and influence CNS functions. These factors may subsequently
induce long-lasting neuroplastic changes in the host’s gut or
brain. As a result, PD pathogenesis studies have focused on the
gut environment.

Many studies on the gut environment have revealed
microbial imbalance (dysbiosis) in the gut of the patients
with PD (Kataoka, 2016; van Kessel and El Aidy, 2019;
Nishiwaki et al., 2020; Sampson, 2020; Shen et al., 2021).
Compositional alterations in the gut microbiota of patients
with PD have been robustly demonstrated. The results
of a meta-analysis showed significantly lower abundance
levels of Prevotellaceae, Faecalibacterium, and Lachnospiraceae
in patients, and significantly higher abundance levels of
Bifidobacteriaceae, Ruminococcaceae, Verrucomicrobiaceae, and
Christensenellaceae in patients with PD (Shen et al., 2021). The
meta-analysis of Nishiwaki et al. (2020) reported that the genera
Akkermansia and Catabacter, as well as the members of the
family Akkermansiaceae, were increased, whereas the genera
Roseburia, Faecalibacterium, and Lachnospiraceae ND3007
group were decreased in PD. Romano et al. (2021) reported
enrichment of the genera Lactobacillus, Akkermansia, and
Bifidobacterium and depletion of bacteria belonging to the
Lachnospiraceae family and the Faecalibacterium genus in PD
gut microbiome by meta-analysis. Nevertheless, the functional
relevance of alterations in the gut microbiota remains unclear,
and a consensus has not been reached on whether a specific
microbial signature exists for PD itself.

Actually, the gut microbiota consists of trillions of
microbes that can produce a variety of bioactive metabolites
that are derived from the microbial fermentation of dietary
and nutritional components. The metabolites represent
the downstream readout of biological activities that relate
to phenotypes (van Kessel and El Aidy, 2019). With the
development of mass spectrometry (MS) or nuclear magnetic
resonance (NMR) metabonomics, specific metabolites
associated with disease phenotypes can be identified based
on fecal, plasma, urine, or other biological fluids to establish
associations between exposures, biological response, and
health effects. Compared with these biological samples, fecal
samples contain a wide array of molecules that reflect the
integrative gut environment of nutrient ingestion, digestion,
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absorption, and metabolism by both gut microbiota and the
host GI tract. Furthermore, the immediate vicinity of feces with
the ENS is a benefit for metabolic products of the host and
microbiota to initiate disease progression in the site. Therefore,
the fecal metabolome could reflect gut metabolite exposures
appropriately and provide new clinico-biological insights into
the etiology of PD.

Currently, various factors create challenges for the
identification of gut metabolite exposures that show the
potential to increase the risk of developing PD. First, there is
a huge number of gut metabolites in feces, but relatively little
is known about the metabolites. Heretofore, the studies of the
gut metabolome have scarcely been investigated in patients
with PD (Unger et al., 2016; Vascellari et al., 2020; Tan et al.,
2021; Yan et al., 2021). Second, the studies of gut metabolome
provide a “snapshot” of the metabolite profile. Although these
previous studies have shown significant differences in the
levels of gut microbial metabolites compared to the non-PD
controls, there are occasionally inconsistent outcomes. The
“snapshot” of the metabolite profile is impacted by small
sample size, heterogeneous patient populations, variations
in methodology, and different statistical methods used for
analyses, which could lead to the different outcomes, even
though temporal stability of the gut microbiome in patients
with PD had been demonstrated (Aho et al., 2019). Third, little
is known about which metabolites contribute to increasing the
risk of developing PD. The studies regarding the association
between the metabolite exposures and the risks of the disease
lack the inference of causality, as gut metabolomic profiling
could offer the understanding of not only how the metabolites
affect the disease, but also how the metabolites are affected by
the disease. Therefore, the role of gut metabolite exposures in
PD is critically understudied.

Comparative Toxicogenomics Database (CTD) is a
robust, publicly available database that aims to advance
the understanding of how environmental exposures affect
human health (Davis et al., 2021). It focuses on environmental
chemicals and provides unique curated data that enable the
development of novel hypotheses about the relationships
between chemical exposures and diseases (Grondin et al., 2016).
A direct chemical-gene statement can be combined with a direct
gene-disease statement to generate a chemical–disease inference
via the shared genes. Indeed, metabolites could be defined as
one of the environmental chemicals that influence susceptibility
to chronic diseases by affecting the genes (Dunn et al., 2019).
This proof-of-concept study is to identify gut metabolites in
feces, as environmental exposure risk factors, that are associated
with PD and potentially increase the risk for PD by using
known toxicology results. Here, we set out to collect the data
of gut metabolites whose levels were significantly changed
in the fecal samples of patients with PD from the original
clinical studies searched from the academic databases, search
each candidate metabolite interacting PD gene set from the

CTD, identify and validate gut metabolites associated with
PD, determine validated gut metabolite impacting on specific
biological functions and cellular pathways involved in PD,
and uncover etiologic mechanisms linking gut environmental
exposures with PD.

Materials and methods

Data collection of candidate
metabolites

The gut metabolites for identification were collected from
the clinical studies on the fecal metabolome of patients
with PD. A systematic search of the corresponding studies
was conducted in several databases, including EBM Reviews
(Ovid), PubMed, Embase (Ovid), MEDLINE (Ovid), and
Elsevier ClinicalKey. The Boolean search term was [(bacterial
metabolites) OR (microbial metabolites) OR (fecal metabolites)
OR (gut metabolites)] AND (Parkinson disease)] in the titles,
abstracts, and keywords. Studies were not limited by language
and year of publication. The last search was performed on 21
October 2021. We then manually checked the reference lists of
relevant reviews and individual studies to identify additional
studies that may have been missed.

After the systematic search, literature triage was conducted
according to the inclusion and exclusion criteria. The inclusion
criteria were as follows: (1) types of studies: a clinical
observational study, especially a case-control study; (2)
participants: patients with PD diagnosed according to the
clinical diagnostic criteria and healthy controls without PD
or free of neurological disorders; (3) comparisons: patients
with PD and the healthy controls; (4) analytical methods
of metabolome: NMR spectroscopy, liquid chromatography
(LC)-MS, gas chromatography (GC), and GC-MS; (5) types
of metabolomics: untargeted and targeted; (6) samples: feces;
and (7) primary outcomes: fecal metabolites. The exclusion
criteria were as follows: (1) participants’ antibiotic use within
the preceding 3 months or probiotic use within the preceding
1 month; (2) analytical methods of metabolome: computational
models; and (3) no data were reported. The selection process was
carried out by two authors independently.

The information of eligible studies was extracted. The fecal
metabolites whose levels were significantly altered in patients
with PD were collected from the eligible studies. According
to the types of metabolomics, metabolites collected from the
studies of untargeted metabolomics were used for identification,
and metabolites collected from the studies of targeted
metabolomics were used for validation. Since untargeted
metabolomics involves a comprehensive and systematic analysis
of metabolites, it is a kind of unbiased analysis that can
discover new biomarkers as broadly as possible. Targeted
metabolomics involves the analysis of a specific class of
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metabolites. Untargeted and targeted metabolomics analyses
are often used in combination for the discovery and accurate
quantification of differential metabolites.

Application of the comparative
toxicogenomics database

Comparative Toxicogenomics Database provides links to
the curated and integrating data interactions between chemicals
and disease. The candidate metabolites, as environmental
chemicals, and their data were searched for identification
by using the CTD1. A list of chemicals associated with
the term “Parkinson’s Disease” in the CTD was searched
through curated association. After the names of candidate
metabolites were unitized as the CTD special vocabularies,
we compared these metabolites to the list of chemicals
associated with the term “Parkinson’s Disease” by using the
CTD MyVenn tool.

The human genome background, human genes that were
associated with PD, the metabolite-interacting genes, and the
metabolite-interacting genes that were associated with PD were
searched in the CTD by the Gene Query. The metabolites were
dropped for further analysis if “No gene matched your query”
was shown in CTD online queries. All data were searched
for enrichment analyses, cross-validation, and proportional
reporting ratios (PRRs).

Statistical tests

Identification by enrichment analyses
To identify the metabolites that were associated with the

PD genes from the candidate metabolites that were collected
from the studies of untargeted metabolomics, enrichment
analyses were conducted using CTD data as recommended by
a previous study (Harris et al., 2020). When the proportion
of the metabolite-interacting PD gene set in the PD genes
was significantly more than random chance compared to that
of the metabolite-interacting human gene set in the human
background, the metabolite was identified and its interacting
gene set was enriched in genes annotated to the CTD disease
term “Parkinson’s Disease.” Fisher’s exact test was adopted for
measure that metabolite-interacting gene set was enriched for
PD genes. P-values were computed by probabilities p over
defined sets of tables (Prob = 6Ap). For 2× 2 descriptive tables,
a was the number of the candidate metabolite-interacting gene
set that was overlapped with PD genes; a+b was the number of
the metabolite-interacting human gene set; a+c was the number
of human gene sets that were overlapped with the PD genes;

1 http://ctdbase.org/

and a+b+c+d was the number of gene sets in the human
background. According to the searched data, data of the cells
in 2 × 2 descriptive tables (a, b, c, and d) were calculated
and obtained. In all cases of multiple comparisons, Benjamini–
Hochberg false discovery rate (FDR) correction was used, with a
significance threshold of FDR-corrected p < 0.05. The analyses
were conducted in R statistics software (version 3.1.0) and the
Statistical Package for Social Sciences (SPSS, version 19; IBM,
Armonk, NY, United States).

Confirmation by cross-validation
To confirm the identified metabolites associated with PD

genes and avoid false-positive results, a 10-fold cross-validation
was performed for enrichment analyses with the metabolite-
targeting PD gene sets. The 45,134 human genes identified in
the CTD were divided into 10 subsets randomly. The specific
size of each subset reflected the range of genes associated with
the metabolites in the subset. The data of each subset was used
as a verification set and set aside at a time, and the data of the
remaining nine subsets were used as a training set to evaluate the
enrichment analyses with the exact PD genes and build a model.
This procedure was repeated 10 times, with each metabolite
being held out exactly once. If any metabolite-interacting human
gene sets in the training set had no gene overlapping with the
PD genes, this metabolite was removed. Then, the final average
accuracy of the 10 models with each metabolite was used to
measure the accuracy of the models. A significance threshold of
the average FDR-corrected p-value was set at 0.05.

Proportional reporting ratios
The PRRs were calculated to verify the magnitude of

enrichment for all metabolites showing significant overlapping
PD genes than expected by chance. They were calculated from
the 2 × 2 tables and identified by the calculation of relative
risk (RR) from the formula (a/a+c)/(b/b+d) (Waller et al.,
2004). A PRR > 1 indicates enrichment. It was important to
understand that when used in this context, they were not meant
to actually estimate RR but to assist in efficiently identifying the
chemical that relates to disease risk.

Validation of the identified metabolites

To further validate the prior selected metabolites that
were associated with PD, metabolites whose levels were
significantly altered in the feces of patients with PD were
collected from the studies of targeted metabolomics.
The raw data of the metabolites in the TXT format
were checked online in Venny software (version 2.1) to
detect the intersection of metabolites between the selected
metabolites and the metabolites reported in the targeted
metabolomics studies.
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Application of protein analysis through
evolutionary relationships

To gain insight into the specific function of PD that
may be influenced by the validated metabolites, we identified
disease-specific biological process gene ontology (GO) terms
and pathways for the metabolites using PANTHER tools.

First, we used the PANTHER tool to identify enriched GO
terms represented by the 106 genes contained in the CTD
term “Parkinson’s Disease” due to the stability and sorting
hierarchical relations by the PANTHER system (Gene Ontology
Consortium, 2021). The PD gene set was directly inputted
for GO enrichment analyses in the gene ontology consortium
(GOC) website2 that is connected to the PANTHER analysis
tool. The options of “Homo sapiens” and “biological process”
were chosen. The GO terms of the FDR < 0.05 were displayed.

2 http://geneontology.org/

Second, the main biological processes were selected to exclude
redundancy according to the FDR values and hierarchical
relations between enriched functional classes. The top five GO
terms with the minimum FDR values were chosen as the main
biological processes of PD according to the results of enrichment
analyses, because the closer the FDR values to zero, the more
significant the particular GO terms associated with the PD gene
set. Notably, based on hierarchical relations, when the FDR
values of two terms were quite close and one term was a child
node of the other, we chose the parent term. Then, enriched GO
terms represented by the 106 PD genes were identified.

To explore the biological processes and pathways for each
validated metabolite, GO analysis and pathway enrichment
analysis were performed using PANTHER tools directly
from the GOC website. The PANTHER tool was repeatedly
applied to identify enriched GO terms among each validated
metabolite-interacting human gene set. When the corrected
FDR value was below a significance threshold (p < 0.05),
the GO term was displayed. Further, the GO terms of

TABLE 1 Characteristics of eligible studies.

Author,
year

Study
design

Location
(City,

Country)

Participants and
interventions

Measurement Type of
metabonomics

Presentation of results

Tan et al.,
2021

Clinical
observational

study

Kuala Lumpur,
Malaysia

Patients with PD (n = 104) their
spouse (n = 91) or sibling (n = 5)
controls living in the same
community. For PD patients:
anti-parkinsonian medication
initiation within the preceding
3 months or adjustment within
the preceding month.

NMR spectroscopy
and LC-MS

Untargeted Increased: Long-chain saturated
fatty acids (17-octadecynoic-acid
and cis-9, 10-epoxystearic acid),

sphingolipids (ceramide
[Cer(d14:1(4E)/22:0(2OH)] and
dehydrophytosphingosine), and
glycolysis products (ethanol and

scyllo-inositol);
Decreased: Ubiquinones
(coenzymes Q6 and Q9),

ceramide (Cer(d18:0/14:0)),
butyrate, amino acids (glutamate
and tyrosine), and substrates of

choline metabolism [choline,
phosphocholine, trimethylamine,

trimethylamine N-oxide
(TMAO)] and energy metabolism

(pyruvate and fumarate).

Vascellari
et al., 2020

Clinical
observational

study

Cagliari, Italy 64 patients with diagnosed
idiopathic PD and 51 healthy
controls, selected among spouses
and family members of study
patients. Patients were received
stable doses of dopaminergic
treatment for at least 4 weeks
before enrollment.

GC-MS Untargeted Increased: Cadaverine,
ethanolamine, hydroxypropionic

acid, isoleucine, leucine,
phenylalanine, and thymine;
Decreased: Linoleic acid, oleic

acid, nicotinic acid, glutamic acid,
pantothenic acid, pyroglutamic
acid, succinic acid, and sebacic

acid.

Unger et al.,
2016

Clinical
observational

study

Homburg,
Germany

34 PD patients and 34
age-matched controls. All 34 PD
patients were on dopaminergic
drugs

GC Targeted Decreased: Acetate, propionate
and butyrate.

Yan et al.,
2021

Clinical
observational

study

Harbin, China 20 PD patients and 20 age, body
mass index and gender-matched
healthy controls. All PD patients
were using anti-parkinsonian
medications

GC-MS Targeted Decreased: Isoleucine, valine,
phenylalanine, tyrosine and

tryptophan.

GC-MS, Gas chromatography-mass spectrometry; NMR, nuclear magnetic resonance; LC-MS, liquid chromatography-mass spectrometry; SCFA, Short chain fatty acids; PD, Parkinson’s
disease.
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validated metabolites were identified, if the biological processes
enriched in validated metabolite gene sets overlapped with our
identified GO terms in PD.

Pathway enrichment analyses were performed using the
“PANTHER pathway” tool (Mi and Thomas, 2009) to identify
the biological pathways affected by these metabolites, because
the “PANTHER pathway” tool focused on both signaling
pathways and metabolic pathways. The validated metabolite-
interacting human gene sets were inputted for pathway
enrichment analyses. The options of “Homo sapiens” and
“PANTHER pathway” were chosen to “launch.” The pathway
terms with an FDR < 0.05 were displayed.

Visualized networks

According to the targeting PD gene sets of the validated
metabolites, the protein–protein interaction (PPI) networks
were constructed to dig out metabolite-associated hub genes
in PD. The STRING database3 was applied for the validated
metabolite targeting PD gene sets to construct the PPI networks.
The restricted organism was “Homo sapiens,” with a confidence
score >0.4. Network analyses were conducted by using a
Cytoscape (version 3.8.2, San Diego, CA, United States) plug-
in CytoHubba, which ranked the top 10 genes in the networks
by Maximal Clique Centrality (MCC) scores and visualized,
ultimately to uncover metabolite-associated hub genes in the
PPI network (Shannon et al., 2003).

Results

The literature collection was performed up to 21 October
2021. After literature triage and selection, four unique studies
were eligible. The key characteristics of included studies are
displayed in Table 1.

Identification and validation of
metabolites that were associated with
Parkinson’s disease

In the four studies, 33 of the 36 metabolites whose
names matched the CTD special vocabularies were chosen,
and the other three metabolites were removed. In the CTD,
187 chemicals linked to the term “Parkinson’s Disease” were
identified through curated association via genes, whereas none
of these 33 candidate metabolites overlapped with the 187
chemicals (data are not shown).

Then, we identified and validated metabolites that were
associated with PD. The identification and validation processes

3 http://string-db.org

of metabolites are shown in the flow diagram (Figure 1 and
Supplementary Table 1).

First, we identified metabolites that were associated with PD
genes by using the CTD curated database through chemical–
gene interactions and gene–disease relationships to discover
chemical–disease connections. Among the eligible studies,
Vascellari et al. (2020) and Tan et al. (2021) explored the
untargeted metabolome in feces. In the two studies, 32 candidate
metabolites whose levels were significantly changed in the
feces of PD patients were detected. Further, 29 of the 32
metabolites whose names matched the CTD special vocabularies
were chosen. The enrichment analyses required that the data
were collected from the CTD. The human genome background
(45,134 human genes in total) and 106 human genes linked to
the clinical term for “Parkinson’s Disease” were searched and
downloaded. We surveyed 29 metabolites for their associated
human genes and targeted PD genes in the CTD. Four out of
the 29 metabolites could not be tested for enrichment due to the
absence of a chemical-interacting gene in the CTD, including
17-octadecynoic acid, 9, 10-epoxystearic acid, ubiquinone 6, and
scyllitol. Six out of the 25 metabolites, including isoleucine,
ethanolamine, succinic acid, trimethyloxamine, ubiquinone 9,
and trimethylamine, were also dropped because the metabolites
were not associated with any PD gene in the CTD curated
database. The enrichment analyses showed that 19 metabolites
were enriched for PD genes (corrected chi-squared p < 0.05).

Second, the results of cross-validation of enrichment
analyses showed that four out of the 19 metabolites, including
sebacic acid, cadaverine, thymine, and tryptophan, were
dropped, because at least one gene set of metabolites in their
training sets had none of the genes overlapped with the targeting
PD genes, or their average FDR-corrected values were above
a significance threshold. Finally, the 16 metabolites that were
associated with PD were confirmed.

Third, we observed the PRR values of prioritized metabolites
were more than 1 (i.e., PRRs > 1), which verified these
metabolites were enriched for PD genes and reflected that
they were associated with a higher risk of PD due to more
overlap with the PD genes. The highest PRRs were observed
for pyroglutamic acid (77.3), tyrosine (75.0), pyruvate (47.2),
linoleic acid (42.3), and phenylalanine (36.1) (Supplementary
Table 1).

Finally, the prior selected metabolites associated with
PD were validated through comparison with metabolites
whose levels were significantly altered in the feces of PD
patients, and these were collected from the studies of
targeted metabolomics. Unger et al. (2016) and Yan et al.
(2021) determined the concentration of short-chain fatty acids
(SCFAs) and amino acids, respectively, by using the targeted
metabolomics technique. Eight metabolites were detected in
the two studies. A total of three intersection metabolites,
including butyrate, tyrosine, and phenylalanine, were obtained
between the selected metabolites and the metabolites reported
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FIGURE 1

The flow diagram showing metabolite identification and validation processes.

in the targeted metabolome studies by using the Venn diagram
(Figure 2). Then, the three metabolites (butyrate, tyrosine,
and phenylalanine) were validated that they were highly
associated with PD.

Functional analyses of validated
metabolite gene sets

The validated metabolite gene sets impacting the PD
biological processes and cellular pathways were identified. First
of all, functional analyses of the PD gene set were performed,
since the human genes that had a curated association with PD
are likely to be the common core of PD etiology. Enriched
GO terms represented by the 106 genes contained in the CTD
term “Parkinson’s Disease” were identified. The GO enrichment

analyses of the 106 PD gene set identified 1,160 enriched
biological process terms (FDR < 0.05). After sorting by the
FDR values and parent–child term hierarchical relationships,
the 106 PD gene set was enriched in five main biological
process terms, including “regulation of neuron death” (GO:
1901214, FDR = 7.88E-23), “regulation of cell death” (GO:
0010941, FDR = 5.55E-19), “response to oxidative stress” (GO:
0006979, FDR = 1.81E-15), “cellular response to chemical
stimulus” (GO: 0070887, FDR = 2.12E-15), and “regulation of
cellular component organization” (GO: 0051128, FDR = 2.56E-
15) (Figure 3A).

Based on these results, we identified the enriched GO
terms for functional analysis of validated metabolites. The
relevant processes enriched for PD genes were also enriched
for the validated metabolite gene sets (Figure 3B). All validated
metabolites influenced the GO terms of “response to oxidative
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FIGURE 2

Validation of intersection metabolites in the selected metabolite
set and the targeted metabolite set through Venn diagram
software. A total of three intersection metabolites, including
butyrate, tyrosine, and phenylalanine, were obtained. Then, the
three metabolites (butyrate, tyrosine, and phenylalanine) were
validated that they were highly associated with Parkinson’s
disease.

stress,” “regulation of cell death,” “regulation of neuron death,”
“cellular response to chemical stimulus,” and “regulation of
cellular component organization.”

To understand the possible pathway of these three validated
metabolites, pathway enrichment was re-analyzed via the
PANTHER pathway tool. Based on the current understanding
of the etiology of PD, pathway analysis identified four distinct
pathways that were involved in the “apoptosis signaling
pathway,” “dopamine receptor mediated signaling pathway,”
“inflammation mediated by chemokine and cytokine signaling
pathway,” and “oxidative stress response.” Phenylalanine
impacting gene set was enriched in the four main pathways.
Butyrate and tyrosine impacting gene sets were enriched for
“apoptosis signaling pathway,” “dopamine receptor mediated
signaling pathway,” and “inflammation mediated by chemokine
and cytokine signaling pathway” (Figure 4).

Identification of metabolite-associated
hub genes

The topological results of the visualized network identified
the hub genes in the targeting PD gene sets of the validated
metabolites. The top 10 hub genes impacted by validated
metabolites are shown in Figure 5. Butyrate targeting PD
hub genes were SOD1, HMOX1, TNF, INS, IL6, BDNF, TH,
SNCA, PPARGC1A, and GFAP; tyrosine targeting PD hub
genes were SNCA, TH, BDNF, SOD1, HMOX1, TNF, IL6,

FIGURE 3

Biological processes enriched for validated metabolite gene sets. (A) The ancestor chart for enriched GO terms represented by the 106 genes
contained in the CTD term “Parkinson’s Disease”. (B) The validated metabolites influenced five main biological process GO terms associated
with Parkinson’s disease.
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FIGURE 4

Signaling pathways enriched for validated metabolite gene sets. Phenylalanine impacting gene set was enriched for the four main pathways.
Butyrate and tyrosine impacting gene sets were enriched for three of the four main pathways.

GFAP, NGF, and AIF1; and phenylalanine targeting PD hub
genes were SNCA, BDNF, TH, SOD1, INS, NGF, GFAP, AIF1,
HMOX1, and TNF. The 12 hub genes were impacted by
at least one of the three validated metabolites. Six of them
were impacted by all validated metabolites, including alpha-
synuclein (SNCA), tyrosine 3-monooxygenase (TH), brain-
derived neurotrophic factor (BDNF), superoxide dismutase 1
(SOD1), heme oxygenase-1 (HMOX1), tumor necrosis factor
(TNF), and glial fibrillary acidic protein (GFAP).

Discussion

Environmental exposures are known to be the risk factors
for PD; however, gut environmental risk factors for PD
are critically understudied. The present study identifies and
validates gut metabolites in feces in feces, as environmental

FIGURE 5

Identification of the hub genes among the targeting PD gene
sets of the validated metabolites. Network analyses were
conducted by using a Cytoscape plug-in CytoHubba. The top 10
genes in the networks were identified by Maximal Clique
Centrality (MCC) scores and visualized.

exposure risk factors, that were associated with PD and
potentially increase the risk for PD. After collection of the
candidate metabolites from the eligible literature, a set of
gut metabolites whose levels are significantly changed in
the feces of PD patients are collected from the studies of
untargeted metabolomics to evaluate whether the metabolites
are associated with the PD genes based on the publicly
available toxicogenomic data. Sixteen metabolites are identified
and divided into the main categories according to their
structures and biological functions: alcohols (ethanol), amino
acids (leucine, phenylalanine, pyroglutamic acid, glutamate,
and tyrosine), short-chain fatty acids (SCFAs, propionate, and
butyrate), unsaturated fatty acids (linoleic acid and oleic acid),
energy metabolism (lactate, pyruvate, and fumarate), vitamins
(nicotinic acid and pantothenic acid), and choline metabolism
(choline). Finally, a total of three identified metabolites,
including butyrate, tyrosine, and phenylalanine, were validated
that were associated with PD through comparison with the
targeted metabolites whose levels were significantly altered in
the feces of PD patients.

The candidate gut metabolites were collected from the
eligible literature according to the inclusion and exclusion
criteria. These original data of clinical studies were robust
to permutation testing. Given the diversity in gut metabolite
structures that were enriched with PD genes, the diversity in
gut metabolite sources from gut microbiota or host, and the
diversity of gut metabolites known or suspected to cause PD,
it seems unlikely that a generalizable set of characteristics will
identify gut metabolites that present a hazard for this endpoint.
Our study leverage known toxicology results to identify the gut
metabolites associated with PD. Then, the results of the study
contribute to the body of evidence that exposure to butyrate,
tyrosine, and phenylalanine constitutes risk factors for PD.

Increased gut permeability and inflammation in patients
with PD have been hypothesized to be linked to low
gastrointestinal SCFAs. However, there is no direct evidence that
SCFAs were correlated with PD or have a known or potential
therapeutic role in PD. Our findings indicate that SCFAs,
particularly butyrate, affect more PD genes than expected by
chance. It has been proven that exposure to specific SCFAs,
especially butyrate in the host body, seems to influence the
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development of PD. SCFAs are the primary end products of
fermentation of non-digestible carbohydrates (NDCs) produced
by the colonic microbiota. For example, butyrate is produced
by Clostridium tyrobutyricum, while acetate and propionate are
produced by Bacteroides thetaiotaomicron (Baldini et al., 2020).
The alteration in the SCFA-producing bacteria has emerged
as the most consistent gut microbiome alteration associated
with PD (Romano et al., 2021). Naturally, a reduction in
SCFAs was observed in the fecal samples of PD patients, in
a manner consistent with the observed changes in the gut
microbiota composition (Unger et al., 2016; Tan et al., 2021).
Their role in PD pathogenesis is to act locally on the colonic
mucosa and exert remote effects via the ENS. Butyrate increases
the proportion of choline acetyltransferase-immunoreactive
neurons to regulate colonic mucosal homeostasis, inhibits
activation of NF-κB and degradation of IκBα to reduce the
expression of pro-inflammatory cytokines to regulate mucosal
immune response, and increases colonic motility in rats
(Sun and Shen, 2018).

Our analyses of fecal metabolites identify and validate that
several amino acids, including tyrosine and phenylalanine, affect
more PD genes than expected by chance. It is determined that
exposure to tyrosine and phenylalanine is associated with PD.
Tyrosine is a precursor to catecholamine neurotransmitters,
including serotonin, DA and norepinephrine, the synthesis and
release of which are sensitive to relatively small, physiological
changes in precursor concentrations. DA is one of the
neurotransmitters that play a critical role in motor control, and
increasing DA function in the brain improves PD symptoms.
Phenylalanine, being the precursor to tyrosine, is involved in
the syntheses of neurotransmitters and hormones, and the
body’s lipid and carbohydrate metabolisms. As such, tyrosine
and phenylalanine could contribute to the pathogenesis of PD.
Of note, Tan et al. (2021) and Yan et al. (2021) found the
same outcomes that fecal levels of tyrosine were significantly
reduced in patients with PD compared to controls, while
the discrepant outcomes in the fecal phenylalanine levels
in patients with PD were reported (Vascellari et al., 2020;
Yan et al., 2021). Generally, except for a few amino acids
produced from the de novo synthesis of the gut microbiota,
most of the amino acids in the gut originate from the
metabolism of host dietary proteins and tissue proteins or
the transformation of other nitrogenous substances. Actually;
phenylalanine is an essential amino acid, and tyrosine is
synthesized by the hydroxylation of phenylalanine. Tyrosine
becomes an essential amino acid when there is a lack of
phenylalanine, hence their concentrations in the fecal samples
are primarily dependent on the host’s dietary composition.
Moreover, tyrosine and phenylalanine belong to aromatic
amino acids, as well as the large neutral amino acids (LNAA).
Aromatic amino acids (tryptophan, phenylalanine, tyrosine, and
also L-dopa) are transported into the brain or the intestinal
cells via LNAA transporters (Fernstrom, 2013; Lu, 2019; Shao

et al., 2021). The transporters are competitive and saturable,
so raising the dose of one LNAA increases the intestinal
absorption of that LNAA, and reduces the absorption of
others. Obviously, the intestinal absorption of essential amino
acids can have an impact on the concentrations of these
amino acids in the fecal samples. In the two abovementioned
studies, Vascellari et al. (2020) included all patients with PD
who received stable doses of L-dopa treatment for at least
4 weeks before enrollment, and Yan et al. (2021) reported
that PD patients were using anti-parkinsonian medications,
but the details were not described. Maybe, the difference in
the drug therapy is an underlying reason for the conflicting
outcomes, which implies that L-dopa treatment may affect the
metabolism of aromatic amino acids, particularly phenylalanine,
in patients with PD.

In our results, some of the identified gut metabolites
affected more PD genes than occurred by chance, but were
not validated. They are not necessarily irrelevant to PD, but
rather the hitherto studies regarding targeted metabolomics
did not cover all metabolites in human feces, including energy
metabolism (lactate, pyruvate, and fumarate), unsaturated fatty
acids (linoleic acid and oleic acid), vitamins (nicotinic acid and
pantothenic acid), choline metabolism (choline), and alcohols
(ethanol). Though these metabolites are mostly simple and non-
specific molecules, exposure to these gut metabolites appears to
play a role in PD pathogenesis and cannot be ignored.

Among the nine metabolites, lactate, fumarate, and pyruvate
were highly enriched for PD genes and involved in energy
metabolism. Pyruvate, a key molecule critical for energy
metabolism (Gray et al., 2014), is the end product of glycolysis
in the cytoplasm and becomes a major substrate for the
tricarboxylic acid (TCA) cycle. In the aerobic condition,
pyruvate, in mitochondria, generates several organic acids,
such as fumarate and succinate through the TCA cycle
to produce ATP, NADH, and FADH2, which ultimately
provide energy. In the absence or scarce oxygen, glycolytic
pyruvate is converted into lactate to provide an energy
source through anaerobic glycolysis, thus pyruvate is prevented
from undergoing mitochondrial oxidative phosphorylation
(OxPHOS). Mitochondrial dysfunction causes high lactate
production, because the “aerobic glycolysis” is a metabolic
compensation for a reduction of the activity of mitochondrial
electron chain transport. Early literature has observed decreased
fumarate and pyruvate levels and increased lactate levels in the
feces of patients with PD (Ghosh et al., 2016; Quansah et al.,
2018). The present results obtained by enrichment analyses and
PRRs identify that lactate, fumarate, and pyruvate are associated
with PD. It indicates that mitochondrial dysfunction, as an
initiating factor (Malpartida et al., 2021), plays an important role
in contributing to the development and progression of PD.

Unsaturated fatty acids are important components of
nerve cell membranes and have neuroprotective, antioxidant,
and anti-inflammatory properties. Linoleic acid is a doubly
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unsaturated fatty acid and is also known as an essential fatty
acid. In the Farming and Exercise Evaluation (FAME) Study,
a nested case-control study in the United States, α-linolenic
acid (αLNA) intake was found to be inversely correlated with
a dose–response trend for PD (Kamel et al., 2014). A Greek
cohort of the European Prospective Study into Cancer and
Nutrition (EPIC) revealed that aLNA and linoleic acid were
significantly associated with a reduced risk of PD (Kyrozis et al.,
2013). Moreover, it was reported that the decreased linoleic
acid level was positively associated with a reduced abundance
of Bacteroidaceae in the stool samples of PD patients (Vascellari
et al., 2020). Oleic acid is an unsaturated C-18 or an omega-
9 fatty acid, which is a component of the normal human
diet. Li et al. (2019) revealed that oleic acid decreased the
death process by inhibiting the production of excessive reactive
oxygen species (ROS) and fatty acids, thereby protecting the
mitochondria in a PD model. Thus, the protective effects of
linoleic acid and oleic acid on PD are confirmed. Patients
with PD are characterized by reduced linoleic acid and oleic
acid levels in the fecal samples, which are associated with an
increased risk of PD.

Nicotinic acid is a water-soluble vitamin and is derived
from feed supplementation, tryptophan metabolism, and
microbial synthesis, such as Lachnospira, Pseudobutyrivibrio,
and Roseburia genera (Vascellari et al., 2020). It displays
anti-inflammatory, antioxidant, and protective effects against
neurodegenerative mechanisms. Some of the PD symptoms,
such as sleep dysfunction, fatigue, and mood changes, appear
to be consistent with nicotinic acid deficiency. Enhancement
of the nicotinic acid levels has the potential to maintain or
improve the quality of life and slow disease progression in
patients with PD (Chong et al., 2021). Pantothenic acid is also
a water-soluble vitamin that is required for coenzyme A (CoA)
synthesis. Pantothenic acid acts on normal epithelial organs,
such as nerves, glands, adrenal, skin, and digestive tract in vivo,
improving the resistance of animals to pathogens. Scholefield
et al. (2021) reported that pantothenic acid was significantly
decreased in the cerebellum, substantia nigra (SN), and medulla
in dementia patients with PD. Our enrichment analytical results
indicate that the decreased concentrations of nicotinic acid and
pantothenic acid in feces could translate into functional losses,
thus affecting the disease phenotype.

It is presented that metabolites involved in choline
metabolism, especially choline, exhibit enrichment for
PD genes. Choline is an essential nutrient predominantly
obtained from dietary supplementation. It plays a role in the
synthesis of essential lipid components of the cell membranes,
phosphatidylcholine by intermediate phosphocholine, and
in the synthesis of the neurotransmitter acetylcholine
by the enzyme choline acetyltransferase. Comparative
analyses indicated abnormality in the choline metabolism
in neurodegenerative diseases. Tan et al. (2021) observed
that choline levels were decreased in the fecal samples of

PD. Indeed, the deregulation of choline metabolic pathways
has profound effects on cellular physiology in PD. On one
hand, the decreased choline levels may affect the synthesis of
acetylcholine and regulation of colonic motility, ultimately
leading to GI symptoms, such as constipation and defecatory
dysfunctions. On the other hand, choline deficiency induces p53
independent apoptosis that is associated with TGFb1 signaling
and ROS production, thus disrupting membrane potentials
and resulting in mitochondrial dysfunction and cell death
(Michel et al., 2006). Dietary choline supplementation improves
a variety of physical functions, including cognition, learning,
and memory. Our findings again highlight abnormal choline
metabolism in PD.

Ethanol is a prioritized metabolite that targets more PD
genes than random chance by the identification of enrichment
analyses. Small amounts of ethanol are endogenously produced
by gut microbes through anaerobic fermentation, while most
of the ethanol detected in biological fluids and tissues is likely
from alcohol consumption. Alcohol consumption is one of
the environmental factors contributing to PD (Noyce et al.,
2012). However, the relationship between alcohol consumption
and PD is complex. First, ethanol in the body is converted
to acetaldehyde which is a highly active and toxic compound
in the ethanol metabolic pathway that enhances 1-methyl-
4-phenyl tetrahydropyridine (MPTP)-induced parkinsonism
in mice (Peng et al., 2020). Second, alcohol intake alters
the microbiota and the microbiota–gut–brain axis. Alcohol-
induced microbiome changes can enhance gut permeability and
neuroinflammation, and affect the balance of the neuroimmune
function (Bode and Bode, 2003). Specifically, increased gut
permeability due to alcohol abuse leads to elevated levels of
lipopolysaccharide (LPS) in the portal blood flow that binds
to TLR4 and activates NF-κB, subsequently stimulating pro-
inflammatory cytokine release, ROS production, and oxidative
stress (Meroni et al., 2019). Therefore, ethanol targeting more
PD genes than random chance has been identified, which
indicates that a relationship exists between ethanol exposure and
the pathogenesis of PD.

The PD genes were enriched in the GO biological processes,
including “regulation of neuron death,” “regulation of cell
death,” “response to oxidative stress,” “cellular response to
chemical stimulus,” and “regulation of cellular component
organization.” These main biological processes are identified as
phenotypes associated with PD in the CTD and are consistent
with the known etiologies of PD. The five main biological
processes were also enriched for all three validated gut
metabolites. Then, the identified main biological processes are
integrated to elaborate an association between environmental
exposures and PD pathogenesis. The mitochondria are the
major sites of ROS production, and are particularly susceptible
to oxidative stress-induced damage. During mitochondrial
dysfunction, oxidative stress becomes a key driver of the
complex degenerating cascade underlying dopaminergic
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neurodegeneration (Trist et al., 2019), resulting in the
loss of dopaminergic neurons in the SNpc and ultimately
leading to motor dysfunction. Notably, the validated gut
metabolites, including butyrate, tyrosine, and phenylalanine,
may be involved in PD pathogenesis through “cellular
response to chemical stimulus.” Hence, it is considered that
gut metabolite exposure might trigger and maintain the
pathogenesis of PD.

Furthermore, it was found that PD genes were enriched
in a series of different signaling pathways, such as “apoptosis
signaling pathway,” “dopamine receptor mediated signaling
pathway,” “inflammation mediated by chemokine and cytokine
signaling pathway,” and “oxidative stress response.” Apoptosis,
the major pathway for programmed cell death (PCD), has
been implicated as the main mechanism of neuronal death
and DA deficiency in PD. Neuroinflammation is marked
by the activation of microglia and reactive astrocytes in
the brain parenchyma, as well as in the release of various
inflammatory mediators, including cytokines (Lin et al.,
2019) and chemokines. Indeed, cytokines can promote the
apoptosis of neurons, oligodendrocytes, and astrocytes and
cause damage to the myelinated axons. However, they
also exhibit neuroprotective effects independent of their
immunomodulatory properties (Policastro et al., 2020), which
are involved in immunological responses, and play an important
role in the development and progression of PD (Hirsch and
Hunot, 2009; Chu et al., 2012). Meanwhile, chemokines act
mainly as mediators of leukocyte recruitment to inflammatory
sites (Scalzo et al., 2011) and modulate neurotransmitter
release that is regulated by neuronal excitability and play a
key role in the pathogenesis of PD (Rostène, 2010). Among
the three validated metabolites, phenylalanine was enriched
in the four pathways. Butyrate and tyrosine were enriched
in the apoptosis signaling pathway, inflammation mediated
by chemokine and cytokine signaling pathway, and dopamine
receptor mediated signaling pathway. These observations
provide a potential mechanistic link between gut metabolite
exposure and PD.

Finally, our results presented that 12 PD hub genes were
influenced by at least one of the three validated metabolites.
Six of them, SNCA, TH, BDNF, SOD1, HMOX1, TNF,
and GFAP, were impacted by all the validated metabolites.
Within the PD hub genes, SNCA, the gene encoding for
a-synuclein, is a pivotal PD-associated gene (Kalia and
Lang, 2015). It may be involved in the regulation of
the misfolding and aggregation of a-synuclein, dopamine
release and transport, induce fibrillization of microtubule-
associated protein tau, and reduce neuronal responsiveness
to various apoptotic stimuli, leading to decreased caspase-
3 activation. Other hub genes also influence the ability
of the host to synthesize dopamine (TH), inflammatory
responses (TNF, IL6, and AIF1) (Alonso-Navarro et al., 2014),
oxidative stress (HMOX1 and SOD1) (Cuadrado and Rojo,

2008; Chang and Chen, 2020), neurotrophy and protection
(BDNF, NGF, and GFAP), and energy metabolism (INS and
PPARGC1A). The gut metabolites provide biological functions
via regulating host gene expression and are involved in the
pathophysiology of PD.

Our findings identify the gut metabolites that are associated
with PD. Among these metabolites, most of them are host–
microbial co-metabolites found in feces. The findings prove that
exposure of the gut to environmental factors from the host diet
and metabolism of host and gut microbiota may be potential
etiologies of PD. Identification of gut metabolite exposures can
provide biomarkers for the identification of the disease, facilitate
an understanding of the relationship between gut metabolite
exposures and response, and present an opportunity for PD
prevention and therapies.

Limitations of the study

There are a number of limitations to this study.
First, some gut metabolites that were identified, but not
validated, are not necessarily irrelevant to PD, but rather
the hitherto studies regarding targeted metabolomics did
not cover all metabolites in human feces. The more targeted
metabolomics studies toward all the detected metabolites
should be further conducted. Second, the analyses could
not address dose–response relationship of metabolites. Our
discussions on the association between fecal metabolite
levels and increasing PD risk were based on the results of
the previous literature. Third, identification of metabolites
via a number of curated gene interactions, but not all PD-
associated genes in humans have been determined, and
the metabolite–gene interactions should be elucidated in
further studies.
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