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Investigation into methods of addressing cognitive loss exhibited later in life is

of paramount importance to the field of cognitive aging. The field continues

to make significant strides in designing e�cacious cognitive interventions to

mitigate cognitive decline, and the very act of learning a demanding task

has been implicated as a potential mechanism of augmenting cognition in

both the field of cognitive intervention and studies of cognitive reserve. The

present study examines individual-level predictors of complex skill learning

and day-to-day performance on a gamified working memory updating task,

the BirdWatch Game, intended for use as a cognitive intervention tool in

older adults. A measure of verbal episodic memory and the volume of a

brain region involved in verbal working memory and cognitive control (the

left inferior frontal gyrus) were identified as predictors of learning rates on the

BirdWatch Game. These two neuro-cognitive measures were more predictive

of learning when considered in conjunction than when considered separately,

indicating a complementary e�ect. Additionally, auto-regressive time series

forecasting analyses were able to identify meaningful daily predictors (that

is, mood, stress, busyness, and hours of sleep) of performance-over-time on

the BirdWatch Game in 50% of cases, with the specific pattern of contextual

influences on performance being highly idiosyncratic between participants.

These results highlight the specific contribution of language processing and

cognitive control abilities to the learning of the novel task examined in this

study, as well as the variability of subject-level influences on task performance

during task learning.
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Introduction

Investigation of factors that influence successful learning has

a long history in the psychological sciences. Aside from obvious

importance to the fields of learning and skill development, the

question of what factors influence individual learning rates is

also of central importance to the field of cognitive training in

normal aging. Several investigations of cognitive training have

found that learning outcomes during the training period directly

relate to training outcomes in terms of transfer to unrelated

or “far” cognitive measures (Basak et al., 2008; Bürki et al.,

2014; Basak andO’Connell, 2016). Based on their findings, Bürki

et al. (2014) concluded that an understanding of the individual

difference factors that influence the learning of the training task

is a critical step in the development of efficacious cognitive

intervention, and other researchers have expressed a similar

position (Taatgen, 2013; Gathercole et al., 2019). Past research

in this domain has revealed several cognitive and brain structure

factors which appear to predict success in novel complex task

learning in older adults (Erickson et al., 2010; Basak et al., 2011;

Ray et al., 2017; Smith et al., 2020).
Both cognitive and structural predictors of learning novel,

computerized tasks have been identified by past research.

Ray et al. (2017) reported that measures of working memory

were predictive of learning rates of two novel video games

in a lifespan sample. This finding was later replicated by

Smith et al. (2020). In addition to working memory, Ray

et al. (2017) found a measure of perceptual discrimination

(cued discrimination task; Posner, 1980) to be predictive of

learning for the strategy game that relied more on working

memory and cognitive control than the action game. In

terms of structural predictors, in younger adults, Erickson

et al. (2010) demonstrated that individual differences in

the gray matter volume (GMV) of the striatum predicted

learning outcomes on a lab-developed game-like computer

task designed to stress working memory, cognitive control,

and response time. In older adults, Basak et al. (2011)

identified a number of predominantly left fronto-parietal

gray matter regions (including left medial frontal gyrus,

left dorsolateral prefrontal cortex, anterior cingulate cortex,

and left postcentral gyrus) and cerebellum, whose volumes

predicted learning of a commercial real-time strategy video

game, which had shown transfer to laboratory-based measures

of cognitive control, working memory, and reasoning (Basak

et al., 2008). White matter correlates of novel computer task

learning have also been identified: Ray et al. (2017) identified

two discreet white matter microstructures (left cingulum-

hippocampus and right fornix-stria terminalis), the integrity

of which predicted the learning rate on two commercial

video games. Importantly, left cingulum-hippocampus integrity

predicted learning in the strategy game in both young and old

adults. In sum, left fronto-parietal gray matter volumes and

structural connectivity between the hippocampus and frontal

cortex have been predictive of novel strategy game learning in

older adults.

Another factor that may strongly contribute to individual

differences in task learning, especially in older adults, is

cognitive reserve. Cognitive reserve is known to be predictive of

performance on episodic and working memory tasks, executive

function, speed of processing, and general cognition (Opdebeeck

et al., 2016). Considering that all of these factors are likely

invoked in the learning of a complex, novel task, such as

those used in cognitive training interventions (Gathercole et al.,

2019), and the known relationship between cognitive reserve

and retained cognitive function in later life (Park et al., 2014; Bak

et al., 2016; Ward et al., 2020), an investigation of how cognitive

reserve interacts with novel task learning is similarly warranted.

As this body of work demonstrates, the field is continuously

making strides in identifying individual difference factors that

influence the learning of novel tasks. However, if our stated

goal is to apply this knowledge to develop efficacious cognitive

interventions for at-risk groups, particularly the elderly, the

above-summarized research exhibits some limitations. First,

most of the studies cited above used a young adult (Erickson

et al., 2010) or lifespan sample (Ray et al., 2017; Smith et al.,

2020), which limits the conclusions we can draw with regard

to our target population, that is, older adults aged 65 years and

above. Second, all but one of the above-cited studies (Basak

et al., 2011 being the exception) utilized short-term learning

periods of 2.5 h or less, which therefore limits any conclusions

we can draw from this research to this early period of task

learning. As most reported cognitive interventions in older

adults are of a substantially greater length (for a meta-analysis,

see Basak et al., 2020), an examination of how such predictors

affect learning at a later training phase is warranted. Third, the

act of task learning requires consistent invocation of episodic

memory, working memory, and cognitive control (Taatgen,

2013), and these capacities are susceptible to a wide range of

cognitive and psychosocial contextual factors (Stawski et al.,

2011). Considering this, it is likely that such factors have a

downstream influence on the task learning process itself, which

may contribute to the large individual differences in patterns of

task learning that have been observed (Bürki et al., 2014), but

examinations of such contextual effects on performance during

training tasks are lacking.

Based on the findings and limitations of the above-

summarized research, the present study was designed to further

examine cognitive and structural correlates of learning on a

working memory training task, as well as daily contextual

factors which may influence training task performance during

the training period. Reasoning and episodic memory were

selected as cognitive predictors in order to expand on the

past research which has already established working memory

ability as a correlate of task learning (Ray et al., 2017; Smith

et al., 2020). To evaluate the cognitive and structural correlates

and daily contextual factors of learning on a training task, we
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used data from a recently completed clinical trial in healthy

aging (registered at ClinicalTrials.gov as NCT03988829), where

variations of a PI-developed working memory training game

(“BirdWatch Game”) were used as interventions. For the present

study, we focused on the BirdWatch Game and baseline

measures of hypothesized cognition and gray matter volume

correlates of learning of that game. If episodic memory and

reasoning interact with BirdWatch Game learning as working

memory has been demonstrated to with other computerized task

learning, we would expect participants with greater pre-training

ability on those constructs to demonstrate more rapid learning

of the BirdWatch Game, and potentially higher maximum

attainment. Additionally, because the BirdWatch Game itself

is a working memory updating training paradigm, initial

performance on the BirdWatch Game can be interpreted as the

baseline working memory ability (both capacity and updating)

of participants in this study. By that conceptualization, we

predict that individuals with greater initial performance on the

BirdWatch Game will show more rapid learning of the task, in

line with past research (Ray et al., 2017). We hypothesize that

cognitive reserve will demonstrate a similar relationship to task

learning as the other examined cognitive constructs, considering

past research which has observed a correlation between

cognitive reserve and initial task learning (Lojo-Seoane et al.,

2020). Alternatively, lower cognitive construct/reserve measures

prior to training may relate instead to greater improvement on

the trained task due to lower initial performance, as similar

results have been observed in some past cognitive training

studies (López-Higes et al., 2018). We expect this alternate

hypothesis to be supported by greater progress in late learning

specifically, if indeed it is supported, considering the past

evidence that relatively lower cognitive ability/reserve results in

slow initial learning (Ray et al., 2017; Lojo-Seoane et al., 2020).

A recent meta-analysis on cognitive interventions across

both healthy aging and older adults with mild cognitive

impairments (Basak et al., 2020), which included 214 cognitive

training studies, found that the immediate cognitive gains

in the cognitive training group is significantly more than

the control group (net gain effect size = 0.28, p < 0.001).

Importantly, the most effective intervention that resulted in

the largest effects of near and far transfer trained either

executive functions or working memory. The PI and her team

designed a computerized cognitive training intervention, the

BirdWatch Game, based on the Theory of Working Memory

Adaptability (Basak and O’Connell, 2016), which predicts that

high cognitive control demands from unpredictable probe-cues

during working memory updating engender greater far transfer

than predictable probe-cues in healthy aging. However, Basak

and O’Connell had used well-learned verbal stimuli (digits), and

the training was not adaptive or gamified to ensure engagement.

The BirdWatch Game features qualities found to be effective

in past cognitive training, including adaptive scaling difficulty

(Boot et al., 2010; Payne et al., 2011; Brehmer et al., 2012; Cuenen

et al., 2016) and computer-based gamification with novel stimuli

that induce greater engagement and show transfer in older adults

(Lampit et al., 2014; for meta-analyses, see Basak et al., 2020).

Considering that the BirdWatch Game is a working memory

updating task, we hypothesize that the gray matter volumes

of regions known to be related to working memory and

cognitive control (e.g., frontal gyri, anterior cingulate cortex,

premotor cortex, etc.) will positively predict its learning. The

volumes of areas known to be related to learning in general

(i.e., hippocampus and striatum) are likely to demonstrate a

similar pattern. Additionally, considering the length of the

training period utilized in this study, this study may reveal a

differential relation between some of these examined volumes

and early vs. late stages of learning. Specifically, the volume

of the hippocampus may selectively relate to initial learning of

the BirdWatch Game, considering its critical role in declarative

learning (Burgess et al., 2002; Lim et al., 2020), and the

theoretical contribution of episodic memory function to the

cognition-dependent and strategy-dependent first and second

stage of procedural learning (Ackerman, 1988; Beaunieux et al.,

2006). Conversely, the volume of the striatum may selectively

relate to later learning of the BirdWatch Game considering that

region’s contribution to procedural/automatized learning which

occurs at later stages (Saint-Cyr and Taylor, 1992; Simonyan,

2019).

In terms of day-to-day predictors of task performance,

contextual factors of sleep duration, stress, busyness,

and physical and emotional wellbeing were examined as

determinates of day-to-day performance on the BirdWatch

Game learning. Sleep quality and duration are positively

related to multiple cognitive abilities (Holanda Júnior and

de Almondes, 2016; Lo et al., 2016; Rana et al., 2018; Zavecz

et al., 2020), but stress negatively impacts working memory and

cognitive control (Shields et al., 2016; Plieger and Reuter, 2020).

Subjective wellbeing is also a positive correlate of working

memory and cognitive control (Luerssen and Ayduk, 2017; Ihle

et al., 2021). A secondary goal of this study was to examine how

these contextual factors contribute to day-to-day performance

on the training task. These measures, assessed at the onset

of each training session, are hypothesized to predict overall

performance during that session. Specifically, we hypothesize

that stress and hours of sleep will have a strong aggregate effect

if high stress or a few hours of sleep recur over several sessions,

whereas wellbeing will relate positively to training performance.

Additionally, considering past evidence (Festini et al., 2016),

busyness may also relate positively to training performance.

Methods

Participants

A total of 55 older adults participated in a randomized

clinical trial (RCT) contrasting different computerized cognitive

training methodologies in healthy older adults (Basak,
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NCT03988829), from which the present study drew data. Of

the 43 participants randomized to the BirdWatch Game—Unity

(BWGU) training, 37 participants (Mage = 71.57, SDage = 4.23,

54% female) completed both baseline cognitive assessments and

BWGU training period sufficient to be included in the present

study. The remaining participants either explicitly ceased

involvement in the study due to the outbreak of the COVID-19

pandemic in early 2020 or ceased responding to scheduling

requests during the period of the pandemic.

Of the 37 participants included in this analysis, seven

participants were unable to complete the structural MRI scans

due to the periodic unavailability of MRI scanners due to the

COVID-19 pandemic, as outlined above, resulting in a sample

size of 30 participants (Mage = 71.17, SDage = 4.21, 57% female)

who contributed cognitive, MRI, and training data sufficient to

be included in all the analyses presented below. Additionally,

the difficulties of collecting data via in-person testing during

the 2020–2021 COVID-19 pandemic resulted in a higher than

expected number of participants with missing data (n = 7).

Five participants were unable to contribute CRIq data due to

technical difficulties arising from remote data collection during

the period of the pandemic. Analyses presented in the following

sections for which some participants were excluded due to

missing data are explicitly noted.

Development of the BirdWatch game
cognitive training program

At the core of this intervention program, titled the

BirdWatch Game—Unity (BWGU), is the n-match paradigm,

a modified n-back task in which participants must maintain

and unpredictably update a number of items in their

working memory simultaneously (Oberauer, 2006; Basak and

Verhaeghen, 2011; Basak and O’Connell, 2016; O’Connell and

Basak, 2018). In a typical n-back paradigm, participants are

presented with a continuous sequence of individual stimuli

and asked to compare the currently presented stimuli with the

stimuli presented n items ago (Owen et al., 2005). Performing

this task successfully requires participants to maintain the past

n presented items within their working memory, continuously

updating this information as new stimuli are presented (Jaeggi

et al., 2010), and manipulating n in this paradigm thereby allows

for the manipulation of participants’ cognitive load.

The n-match paradigm (Basak andO’Connell, 2016) extends

the traditional n-back paradigm by dynamically varying n

during a single run of the task. This is accomplished by randomly

presenting the stimuli in a set number of visuo-spatial contexts,

and requiring participants to compare the currently displayed

stimulus to the stimulus last displayed. For example, Basak

and O’Connell (2016) utilized the numbers 1–9 presented in

one to four different colors (the number of colors represented

the n contexts of n-match task), and tasked participants with

comparing the currently presented number with the most recent

number presented in that same color. An earlier work by Basak

and Verhaeghen (2011) utilized up to four different locations as

contexts in an n-match paradigm to a similar effect. Due to the

random presentation of context (color or location), participants

are forced to actively maintain all n items within their working

memory simultaneously and to unpredictably update this stored

information, thereby increasing cognitive effort compared to

a traditional n-back task where the n is fixed (Basak and

Verhaeghen, 2011; Basak and O’Connell, 2016). The advantage

of the n-match paradigm is that n can be dynamically varied

by varying the sequence order of the context (e.g., Basak and

O’Connell, 2016).

This intervention was based on the efficacy of executive

function training in older adults of which working memory

is an essential process (Basak et al., 2020), commonality of

working memory issues as a subjective complaint in older adult

populations (Newson and Kemps, 2006), and the theoretical

efficacy of using working-memory-based training to address

that complaint and contribute to general wellbeing (Luerssen

and Ayduk, 2017). We elected to utilize the n-match training

paradigm specifically as it has been shown to facilitate far

transfer to measures of reasoning and episodic memory in

older adults (Basak and O’Connell, 2016), and because the n-

match tasks stressed working memory updating rather than just

working memory span, which Miyake and Friedman (2012)

identify as separate contributors to executive functioning.

The n-match paradigm described above was modified in

several ways to produce the BWGU paradigm. First, to render

the n-match paradigm more engaging, the paradigm was

extensively gamified, i.e., modified to resemble a recreational

video game. Simplified renderings of birds were used for

individual stimuli, with trees in spatially distinct locations

utilized as contexts (see Figure 1). Both bird stimuli and tree

contexts are displayed on a rendering of an outdoor scene,

selected to be both aesthetically pleasing and to reinforce the

narrative that the BWGU training task is a “Bird Watching

Game,” as implied by the title of the task.

Additionally, we added game-like player feedback to BWGU

in the form of a score display and a “reward” system. The score

was calculated as follows:

Score= 100(Hit+CR) 50(Miss+FA)+ 1000d′(7−MaxRT)

In the above equation, Hit is the total number of hits from the

previous block, CR is the total number of correct rejections from

the previous block, Miss is the total number of misses from

the previous block, FA is the total number of false alarms from

the previous block, d’ is the memory discriminability measure

from the previous block, and MaxRT is the maximum allowed

response time for the previous block (see below). While this

scoring output is partially determined by performance metrics
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FIGURE 1

A single trial from BWGU, depicting a four-context trial.

relevant to the goals of the present study, this score display

was primarily implemented as an engagement tool that allowed

participants to have a general sense of how their performance

was progressing over time.

A “reward” system was implemented by the “unlocking”

of new background images as participants met performance

milestones, specifically whenever the performance threshold set

by the program was increased (see below). This system was

intended to somewhat reduce the monotony of performing

the same task over multiple hours of training by periodically

providing a different visual appearance over time, and to

reinforce participant’s success by tying this cosmetic change to

performance milestones.

To further gamify this task, we implemented BWGU within

the Unity game engine (Version 2018.4.2f1; 2018), a robust

game development toolkit commonly used in independent game

development. This allows BWGU to be deployed and run

across multiple electronic platforms (i.e., Windows computers,

Android and Apple phones, etc.) as if it were a recreational

video game. As an added benefit, the Unity engine is sufficiently

feature-rich and expandable to be comparable to data collection

software more commonly used in cognitive science research

(i.e., Eprime), which allowed for the collection of detailed

performance metrics as described in the sections below.

Several methods of adjusting the difficulty of the BWGU

task based on the participant’s real-time performance were

implemented within the paradigm based on past research, which

implicates individualized-adaptive training methodologies as

efficacious (Mihalca et al., 2011; Payne et al., 2011; Brehmer

et al., 2012; Cuenen et al., 2016). First, BWGU continuously

adjusts the number of contexts, n, utilized for a given block of

trials based on participant performance in the previous block.

Discrimination accuracy (d’) was utilized as the measure of

participant performance and was calculated as ZFA – Zhit , where

FA is the number of false alarms from the previous block,

and hit is the number of correct identifications made in the

last block. The 1/2N correction was applied to account for

floor and ceiling effects (Macmillan and Creelman, 2005). The

participant’s d’ for each block is compared to a performance

threshold, d’t , and n is incremented by 1 for the next block if

d’ is greater or equal. BWGU scales up to six contexts. Should a

participant perform above threshold, the performance threshold

is increased, and the number of contexts is reduced to one.

This increase in d’t is associated with the “reward system” with

each increase in d’t “unlocking” a new background display. The

performance threshold begins at 0.6, and increments by+0.2 for

each participant’s success on an n = 6 block, to a maximum of

d’t = 3. This system allows the BWGU paradigm to scale up the

difficulty in response to an individual participant’s performance

up to 72 times (six contexts by 12 increases in threshold) over

the course of training (see Figure 2).

Additionally, the response time window in which a

participant is able to enter a response to the current stimuli

also scales in two ways with participant performance. By default,
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FIGURE 2

Depiction of overall di�culty progression by the number of contexts (n) and performance threshold (d’t) in the BWGU paradigm.

participants have 5 s to respond to a new stimulus (i.e., MaxRT

= 5 s). If an input is not detected in that time, that trial is

marked as a “miss,” and the task progresses to the next trial. For

each 10% of the total expected training time elapsed, MaxRT is

decremented by 0.5 s to a minimum of 1 s. Conversely, for every

three consecutive failures to pass the performance threshold at

the end of a block of trials, MaxRT is incremented by 0.5 s, to

a maximum of 6 s. In this way, time pressure is both increased

and decreased in line with the participant’s performance and

progress through training.

Implementation of BWGU in a
multi-armed randomized controlled trial

The BWGU was utilized in two training arms of this RCT

that contrasted various degrees of cognitive control over 20 h

of training (Basak, NCT03988829). The two training arms of

BWGU varied only in the sequence order of the context within

a block, while all other features remained the same.

Recruitment

General inclusion criteria for the RCT were as follows:

minimum age of 65 years, at least a 10th-grade education,

learned English before the age of 5 years, and cognitively

unimpaired (i.e., a Montreal Cognitive Assessment/MoCA score

of 26 or greater; Nasreddine et al., 2005). Exclusion criteria

included a history of cardiovascular disease other than treated

hypertension, diabetes, psychiatric disorder, illness or trauma

affecting the CNS, substance/alcohol abuse, and medication

with anti-psychotics or hypnotics other than occasionally used

at bedtime.

In addition to the above criteria, participants in the

RCT were required to fulfill additional exclusion criteria in

order to undergo the structural MRI portion of the study.

Inclusion criteria for the MRI portion of the trial included

right-handedness. Exclusion criteria for the MRI portion of

the trial included metal medical implants, claustrophobia,

and pregnancy. Initial recruitment for the RCT targeted

only participants that fulfilled both the general and MRI

inclusion/exclusion criteria outlined above. However, the onset

of the COVID-19 pandemic in March of 2020 necessitated the

expansion of the study to include participants who did not meet

the criteria for MRI scans due to (a) high attrition of participants

due to the pandemic, and (b) the necessity to conduct only

remote cognitive testing between March 2020 and March 2021.

Training protocol and cognitive assessments at
baseline

Participants in both BWGU arms were asked to train for 20 h

over a period of 8 weeks on the BWGU paradigm. Participants

were asked to train for 2.5 h each week, divided across two to

three sessions. The training was performed at home using a 9.6’

Android tablet computer provided to the participants, with the

BWGU training program pre-installed on that device.

For the purpose of this longitudinal investigation, BWGU

was configured to administer continuous blocks of 80 trials, with

n, d’t , and MaxRT modulated between blocks as described in
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Section Development of the BirdWatch game cognitive training

program. Between blocks, the BWGU training program pauses

until the participant indicates they are ready to begin another

block or chooses to exit the program. In the latter case, the

current value of n, d’t , and MaxRT, as well as the total training

time completed, are saved by the program for use the next time

the participant activates the training program. An additional

feedback mechanism, a “progress bar,” was added to the BWGU

training program to aid participants in tracking their progress

through training. This progress bar, which can be seen in the top

center of Figure 1, fills relative to the participant’s progression

through the assigned 20 h of training, with the percentage of the

bar filled reflecting the percentage of total training time elapsed.

Trial-wise performance data collected by the program

includes participant accuracy, reaction time, and trial

characteristics (switch trial and update trial). Block-wise

performance data collected includes Score, n, d’, and d’t .

Cognitive reserve was assessed at baseline using the

Cognitive Reserve Index Questionnaire (CRIq; Nucci et al.,

2012). This self-report questionnaire assesses cognitive reserve

as an aggregate effect of occupational, educational, and leisure

activities over the lifetime, and has been demonstrated to both

be independent of measures of general intelligence (Nucci et al.,

2012) and reliable across a wide range of populations (Maiovis

et al., 2016; Ozakbas et al., 2021).

Episodic memory measures administered at baseline and

post-training included the Rey Auditory Verbal Learning Test

(RAVLT; Bean, 2011) and the Story Memory sub-measure of

the Mini-Mental State Examination (Folstein et al., 1975). The

RAVLT is a word-list learning task of 15 that includes measures

of simple learning, long-term memory (LTM) interference

after distraction, LTM interference after delay, and multiple

forms of LTM errors (source memory, semantic, and phonetic

confusions). The Story Recall task is a modified word-list

memory task in which the to-be-remembered items form a

simple narrative separated into 34 distinct units. Participants are

asked to read the story once, and then asked to recite it in as

close to the original language as possible. An everyday test of

memory was also administered, which included sub-measures

of prospective memory, non-verbal recognition memory, and

spatial-relational memory. However, the test proved infeasible

to administer remotely, and as a result of this and the co-

occurrence of the COVID-19 pandemic with data collection for

this study, six participants were unable to contribute data for this

everyday memory test. As a result of this, this test was dropped

as an episodic memory measure in the analysis.

Reasoning measures administered at baseline and post-

training included Visual Puzzles and Matrix Reasoning sub-

measures of the Wechsler Adult Intelligence Scale, 4th edition

(Drozdick et al., 2012). The Visual Puzzles test is a timed non-

verbal reasoning test in which participants are presented with a

series of puzzles of increasing difficulty. The Matrix Reasoning

test is, similarly, a timed non-verbal reasoning test in which

participants are presented with a series of incomplete visual

patterns of increasing difficulty.

The current study used only the pre-training baseline

assessments of the above-mentioned cognitive indices of far

transfer (reasoning, episodic memory, and cognitive reserve).

MRI protocol

Baseline and post-training scanning protocols were

conducted using a Siemens Magnetom Prisma scanner with a

32-channel head coil. High-resolution anatomical images were

acquired using a transverse MPRAGE T1-weighted sequence

with the following parameters: TR = 2,300ms; TE = 2.26ms;

flip angle = 8◦; acquisition matrix = 256 × 256; voxel size = 1

mm3; 208 slices.

Specific information regarding the additional neuroimaging

scans and behavioral assessments can be found in the

preregistration for the RCT (Basak, NCT03988829). Data

from these additional scans were not examined, as the

current study specifically examined brain volume predictors of

BWGU learning.

Daily survey of subjective wellbeing and sleep

To assess the impact of daily wellbeing on training

performance-over-time, a short “daily survey” of subjective

wellbeing and sleep measures was implemented in the BWGU

training program. Participants were required to complete this

survey each time they turn the program on, before their first

block of training (see Figure 3).

The daily survey consists of a four-item Likert questionnaire

on a 1–5 scale. Questions asked include (1) “How well did you

feel in the past 24 h?” (2) “How stressed did you feel in the

past 24 h?” (3) “How busy were you in the past 24 h?” and

(4) “How was your mood in the last 24 h?” Questions 1 and

4 were presented on a scale from “1: very poor” to “5: very

good,” and questions 2 and 3 were presented on a scale from

“1: not at all” to “5: very.” Participant responses to questions 1

through 4 on this survey were taken as the Wellbeing, Stress,

Busyness, and Mood variables, respectively. In addition to these

Likert measures, participants were also asked to estimate their

hours of sleep on the previous night, which was recorded as the

Sleep variable.

Analysis

Calculation of learning rates

The Difficulty Level of each block was assessed by counting

the number of times that the BWGU had adaptively increased

the demands of the task based on the participant’s performance

prior to the beginning of that block (see Section Participants).
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FIGURE 3

Screenshot of the Daily Survey Screen that appears just after the log-in screen in the BWGU.

This calculation can be formally represented as follows:

Difficulty Level= 6
d
′

t −.6

.2
+ n

In the above equation, d
′

t represents the d-prime threshold of

that block, and n represents the number of contexts for that

block. Functionally, this results in the Difficulty Level for a block

incrementing by +1 if either the number of contexts or the d’

threshold has been updated since the previous training block. As

the BWGUparadigm is designed to only adjust difficulty upward

in response to player performance, we can correctly assume

that any change in d
′

t or n to reflect an increase in difficulty,

and therefore the total number of adjustments equates to the

total difficulty of the training block. Assigning the first block of

training theDifficulty Level of 1 results in a range of 1–72 for this

variable (see Figure 2).

In order to differentiate performance on training blocks

of the same difficulty level, the Difficulty Level per block was

multiplied by that block’s unscaled accuracy (hits + correct

rejections, range 0–80, chance performance = 40), to produce

a Simple Score for each block. This Simple Score variable

was used to calculate learning rates for each participant, as

described below.

Past publications have used video game scores to calculate

participant learning rates by fitting logarithmic curves to

participants’ scores over time, and taking the growth rate of

that learning function as indicative of the rate of learning in

older adults (Basak et al., 2011; Basak and O’Connell, 2016; Ray

et al., 2017; Smith et al., 2020). Visual inspection of the Simple

Score variable suggested that it followed a similar logarithmic

pattern (see Figure 4), and so a similar method was employed

in this study. The following logarithmic function was fit to each

participant’s Simple Score block-wise performance:

Y= b0+ (b1 ∗ ln(t))

In the above equation, t is the block of training (ordered

sequentially, analog of training time/session), Y reflects the

participant’s Simple Score for a given t, b0 is the function’s x-

intercept, and b1 is the function’s growth rate or slope. The

growth rate of this function, as fitted to each participant’s

performance-over-time, was taken as that participant’s Overall

Learning Rate.

Compared to earlier studies that have used this method, the

current study utilized a longer training intervention of 20 h (for

an exception, see Basak et al., 2011, where training duration

was 20 h). To account for this longer duration of the training,

learning rates for early, middle, and late learning were calculated

for each participant, corresponding to 1–5, 6–10, and 10–20 h of

training, respectively, in addition to their Overall Learning Rate.

The decision to define early, middle, and late learning in this

way was based on a previous study where extensive practice on

the n-back tasks in young adults stabilized after 5 h of training
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FIGURE 4

Plots of block-wise Simple Score by 30-min training increment over 20h of training. (A) Depicts scores over time for individual participants

represented in grayscale, with the average score over time plotted in red. (B) Depicts average scores over time with 95% confidence intervals, as

well as demarcations of early, middle, and late training periods.
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(Verhaeghen et al., 2004). As can be observed in Figure 4A, older

participants also universally exhibited increasing performance

across the first 5 h of training. Similarly, those participants who

were able to reach asymptotic performance typically did so

by the 10th h of training, as indicated by a relatively stable

performance after 10 h of training. Based on these observations,

hours 1–5 were designated as “early” training, and hours 10–

20 as “late” training. The remaining period of hours 5–10 was

designated as “middle” training, as the majority of participants

appear to reach asymptotic performance within this range, but

with specific achievement being time-variant.

An alternative approach to designating these training

periods for the entire dataset would be to individually assign the

early, middle, and late learning labels based on each individual

subject’s performance curve. However, we elected against this

approach for two reasons. First, assigning learning periods

across the whole group allows these data to be more readily

comparable, a varying time period labeled as “early learning,”

for example, would make interpretation of results related to

that training period problematic. Second, defining those periods

for the entire dataset rather than per participant reduces the

potential for unconscious coder bias during the coder’s division

of the learning period for each individual.

Based on visual inspection of the learning data (see

Figure 4B), logarithmic functions were fitted to participants’

early learning period, with linear functions fitted to their middle

and late learning periods. As with the Overall Learning Rate, the

growth rate of the log function fitted to early learning data was

considered as each participant’s Early Learning Rate. Similarly,

the slope of the linear functions fitted to participants’ middle and

late learning data was considered as each participant’s Middle

Learning Rate and Late Learning Rate, respectively. Due to

variance in total training time, only Early Learning could be

fitted for all participants. Middle Learning could be fitted for 32

of the 37 participants, and Late Learning could be fitted for 31 of

the 37 participants. Information regarding variance in training

time and compliance can be found in Results Section BWGU

adherence and training outcomes.

Calculation of cognitive measures

As mentioned above, episodic memory measures

administered before BWGU training included the Rey

Auditory Verbal Learning Test (RAVLT; Bean, 2011) and the

Story Recall sub-measure of the Mini-Mental State Examination

(Folstein et al., 1975).

The RAVLT includes multiple outcomes of episodic

memory, where target list A is learned across five trials (A1–

A5), followed by incidental learning of non-target List B (B1),

followed by a surprise recall of target list A (A6) after the

interference from the non-target list, and 30-min delayed

memory recall (A7) and recognition test for the target list

(recognition A). Recognition of the target list also included

source monitoring errors on the recognition trial (recognition

B), semantic errors in the recognition trial (recognition SA),

phonetic errors in the recognition trial (recognition PA), and

compound source-semantic and source-phonetic errors on the

recognition trial (recognition SB and PB). To simplify the

outputs, we calculated several aggregate measures from the

RAVLT’s raw output. Trials A1 through A5 were summed to

produce a measure of overall learning (Learning Total). The

difference between trial A5 and A6 was taken as a measure of

interference cost (Interference Cost). The difference between trial

A6 and A7 was taken as a measure of delay cost (Delay Cost).

The sum of all errors on the recognition portion of the RAVLT

(recognition B, SA, PA, SB, and PB) was summed into a single

measure of recognition errors (Recognition Errors). These five

aggregate measures, along with the total score on the Story Recall

measure, constituted the episodic memory variables.

As mentioned above, reasoning measures administered

before BWGU training included the Visual Puzzles and Matrix

Reasoning sub-measures of the Wechsler Adult Intelligence

Scale, 4th edition (Drozdick et al., 2012). Participants’ total score

on each of these respective measures constitutes the reasoning

variables in this analysis.

Assessment of regional gray matter volumes

Cortical reconstruction and volumetric segmentation of the

structural MRI images taken at baseline were conducted with the

FreeSurfer 6.0 image analysis suite (Desikan et al., 2006; http://

surfer.nmr.mgh.harvard.edu/). FreeSurfer 6.0 was selected over

prior versions of FreeSurfer, as that version of the program

has been demonstrated to significantly mitigate segmentation

errors known to be present in previous versions (Brown et al.,

2020; Srinivasan et al., 2020). To further lessen the impact

of segmentation errors potentially resulting from Fressurfer’s

method of automated segmentation, aggregate volumes were

used when appropriate, as described below.

Gray matter regions with established links to cognitive

control, especially working memory updating and complex skill

learning in older adults, were selected as regions of interest

to reflect the cognitive demands of the BWGU; these regions

included superior, middle, and inferior frontal gyri (Adólfsdóttir

et al., 2014; Qin and Basak, 2020), middle temporal gyrus (Zhu

et al., 2019), anterior cingulate cortex (Basak et al., 2011; Qin

and Basak, 2020), and premotor cortex (Basak et al., 2011).

Additionally, the volumes of the hippocampus and striatum

were included, due to the known involvement of these regions’ in

declarative (Burgess et al., 2002; Lim et al., 2020) and procedural

learning (Saint-Cyr and Taylor, 1992; Erickson et al., 2010;

Doppler et al., 2019; Simonyan, 2019).

FreeSurfer volume outputs corresponding to each of these

above regions were summed for each participant to produce

an estimated volume of that region for that participant.

Striatal volume (Striatum) was estimated by summing the
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separate volume outputs for the caudate, putamen, and nucleus

accumbens. Volume estimates of the inferior frontal gyrus

(IFG) were created by summing the respective volume estimates

for the pars opercularis, pars orbitalis, and pars triangularis.

The rostral middle frontal and caudal middle frontal volumes

estimates of the middle frontal gyrus (MFG) were summed

into a single volume estimate of that region. Similarly, rostral

anterior cingulate and caudal anterior cingulate volumes output

by the program were summed into a single volume estimate

of the anterior cingulate cortex (ACC). As FreeSurfer does

not distinguish between premotor and supplementary motor

volumes, the output volume of the precentral gyrus as a whole

(Precentral) was utilized in this study. The FreeSurfer volume

estimates of the superior frontal (SFG) and middle temporal gyri

(MTG), as well as the Hippocampus, were used as outputs to

represent those regions.

Results

BWGU adherence and training outcomes

All participants in the BWGU training arms were instructed

to play 20 h of BWGUover the 2-month training period, but self-

monitored and self-reported their training time for the duration

of the intervention. As a result, a high amount of variance

was observed in terms of total training time (MTime = 17.35 h,

SDTime = 5.93 h). In total, 23 participants successfully reached

20 h of training time with the BWGU paradigm. Of those

participants who did not complete the full 20 h of training, five

participants explicitly discontinued training (MTime = 3.48 h,

SDTime = 1.02 h). The remaining nine participants self-reported

that they had completed 20 h of training time, but in fact had not

when the electronic records of their training time were assessed

(MTime = 16.01 h, SDTime = 2.95 h).

As stated above, participants were required to complete

a daily survey of subjective wellbeing and sleep each time

they activated the training program. On average, participants

completed 29 surveys over the course of the training period

(MSurvey = 29.22, SDSurvey = 14.11), with an average periodicity

of one survey every 0.67 h of training (SDSurveyTime = 0.32). The

number of surveys completed highly correlated with the total

training time (r = 0.67, p < 0.001).

To assess if our variables of interest significantly differed

between those participants who completed training and those

who did not, we next ran a series of one-way ANOVAs

comparing those participants who fully completed the training

(20+), those who completed the training at under 20 total hours

(>20), and those who discontinued training (“Discontinued”).

Variables assessed in this way included age, MoCA score, years

of education, CRIq, and all of our cognitive variables of interest

(RAVLT sub-measures, Matrix Reasoning, Visual Puzzles, and

Story Memory). These one-way ANOVAs demonstrated a

marginally significant difference between the three completion

groups in the RAVLT Total Learning and RAVLT Interference

Cost measures: Total Learning F(2/34) = 2.83, p = 0.073;

Interference Cost F(2,34) = 3.06, p = 0.06. Post-hoc comparisons

using Tukey’s method demonstrated that, in both cases,

these effects were driven by marginal differences between the

discontinued group and the other groups. The group that

discontinued training demonstrated a marginally lower Total

Learning than both the 20+ (p = 0.93) and >20 (p = 0.76)

groups, as well as a marginally higher Interference Cost than

both the 20+ (p = 0.65) and >20 (p = 0.76) groups. Those

that completed training at greater or less than 20 total hours

did not differ on these two measures (Total Learning p =

0.878; Interference Cost p = 0.958), and no other systematic

differences in our variables of interest were detected between

completion groups.

On average, participants reached level 51 of the BWGU

paradigm, the coarsest measure of maximal attainment in this

training paradigm, before ceasing training (MLevel = 51, SDLevel

= 18.22), with subjects reaching maximal performance at∼11 h

of training on average (MTimeHLR = 11.36, SDTimeHLR = 5.86).

A total of nine participants (24.3% of the sample) reached the

maximum difficulty level allowed by the program (72) over

the course of the training period. On average, participants

completed ∼468 individual blocks of the BWGU paradigm

throughout the training period (MBlocks = 467.97, SDBlocks

= 262.23), with each block lasting an average of 2.25min

(MBlockTime = 2.25, SDBlockTime = 1.21). Predictably, both

highest level reached and number of blocks completed highly

correlated with the total training time: HLR r(37) = 0.5, p =

0.002; Blocks r(37) = 0.59, p < 0.001.There were no significant

differences between the two BGWU arms regarding the total

hours played [t(36) = 0.2, p = 0.84], highest level reached [t(36)
= 0.79, p= 0.43], or number of blocks completed [t(36) =−0.29,

p = 0.77]. A summary of participant training statistics can be

found in Table 1.

Assessment of the relationship between
cognitive reserve and cognitive ability
prior to BWGU training

To assess if the cognitive reserve was related to baseline

cognitive measures, we ran a series of partial correlations

between the CRIq measure and the pre-training cognitive

measurements (RAVLT: Total Learning, Interference Cost, Delay

Cost, Recognition Errors; Matrix Reasoning; Visual Puzzles;

Story Memory), controlling for Age. CRIq did not demonstrate

any significant correlation with RAVLT sub-measures, Total

Learning r(29) = 0.16, p = 0.377; Interference Cost r(29) =

−0.15, p = 0.43; Delay Cost r(29) = 0.21, p =0.267; Recognition

Errors r(29) = −0.32, p = 0.082, nor with Matrix Reasoning,

r(29) = −0.01, p = 0.964, or Visual Puzzles, r(29) = 0.04,
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TABLE 1 Summary statistics for demographic variables, cognitive

measures, and the BirdWatch Game—Unity (BWGU) learningmeasures.

Measure Mean (SD)

Demographics

Age 71.57 (4.23)

Female 0.54

Education (years) 17.35 (3.15)

MoCA 27.89 (1.56)

Cognitive measures

CRIq 130.66 (34.66)

RAVLT Learning Total 48.51 (12.25)

RAVLT Interference Cost 2.12 (1.95)

RAVLT Delay Cost 0.27 (1.54)

RAVLT Recognition Errors 2.03 (3)

Matrix Reasoning 16 (4.06)

Visual Puzzles 12.51 (3.88)

Story Memory 13.68 (5.52)

BWGU learning measures

Time trained (hours) 17.35 (5.93)

Blocks completed 467.5 (262.23)

HLR 51 (18.2)

Overall learning (growth) 639.42 (348.27)

Early learning (growth) 712.67 (401.74)

Middle learning (slope) 3.08 (4.51)

Late learning (slope) 0.71 (2.02)

p = 0.827, or Story Memory, r(29) = 0.02, p = 0.93. These

results indicate that cognitive reserve, as measured by the

CRIq, is unrelated to pre-training (baseline) cognitive ability in

this study.

E�ect of individual di�erences in baseline
cognition and cognitive reserve on
BWGU learning

To assess the impact of variance in baseline cognitive

measures on learning of the BWGU task, a series of stepwise

multiple regressions were conducted with participants’ learning

variables (Overall, Early, Middle, and Late Learning) as

dependent variables. In each of these regressions, the cognitive

predictors (RAVLT: Learning Total, Interference Cost,Delay Cost,

and Recognition Errors; Story Memory; Matrix Reasoning; and

Visual Puzzles) were entered in a stepwise fashion until only

significant predictors remained.

Overall Learning was found to be marginally predicted by a

model containing only Story Memory, R2 = 0.14, F(1,35) = 5.86,

p = 0.021, Story Memory β = 22.34, t(35) = 2.21, p = 0.034.

Similarly, Early Learning was found to be significantly predicted

by a model containing only Story Memory, R2 = 0.16, F(1,35) =

6.48, p= 0.015, Story Memory β = 28.78, t(35) = 2.55, p= 0.015.

Models were not successfully fitted to Middle or Late Learning,

as no combination of the examined predictors produced amodel

with p < 0.1. To assess if the above relationships co-varied with

Age, we conducted a series of two-step hierarchical regressions

predicting Overall Learning and Early Learning, respectively.

Age was entered as a covariate in step 1 of these analyses, with

Story Memory entered in step 2. In the analysis correcting for

age, Overall Learning was found to be marginally significantly

predicted by a model containing both Age and Story Memory,

R2 = 0.16, F(2,34) = 3.26, p = 0.051. Within the model, only

Story Memory was significant, β = 22.34, t(34) = 2.21, p =

0.034. Similarly, Early Learning was found to be significantly

predicted by a model containing Age and Story Memory, R2

= 0.31, F(2,34) = 7.72, p = 0.002, where both Age and Story

Memory significantly contributed to that model in the expected

directions, Age: β = −38.23, t(34) = −2.78, p = 0.009; Story

Memory: β = 22.37, t(34) = 2.22, p= 0.033.

Next, a series of regressions were used to assess the

influence of cognitive reserve (CRIq) on BWGU learning. As

with the assessment of cognitive predictors, one regression was

performed with Overall, Early, Middle, and Late Learning as

respective dependent variables. In these regressions, Age was

entered in step 1 as a control variable, followed by CRIq in step

2 as the variable of interest. CRIq did not significantly predict

Overall Learning, R2 = 0.06, F(1,30) = 1.74, p = 0.197, or any

of the discrete learning periods examined [Early Learning: R2

= 0.03, F(1,25) = 1.04, p = 0.316; Middle Learning: R2 = 0.01,

F(1,35) = 0.16, p = 0.69; Late Learning: R2 = 0.01, F(1,25) =

0.23, p = 0.639]. Note that the combination of between-subject

variance in training time and the lack of CRIq data for some

participants resulted in these analyses having substantially lower

n as compared to the analysis of cognitive predictors (overall

and early learning: n = 37 for cognitive predictors, n = 32 for

CRIq; middle learning: n = 32 for cognitive predictors, n = 27

for CRIq; late learning n = 31 for cognitive predictors, n = 27

for CRIq).

E�ect of individual di�erences in gray
matter volume on BWGU learning

To assess the impact of variance in regional gray matter

volumes on learning of the BWGU task, a series of multiple

repressions were conducted with participants’ learning variables

(Overall, Early, Middle, and Late Learning) as dependent

variables. In each of these regressions, the gray matter volumes

from the baseline imaging session (left and right SFG,MFG, IFG,

ACC, Precentral, MTG, Hippocampus, and Striatum volume)

were entered in a stepwise fashion until only significant

predictors remained. These analyses produced a significant

Frontiers in AgingNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2022.936528
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Smith et al. 10.3389/fnagi.2022.936528

model of Early Learning (R2 = 0.16, F(1,28) = 5.36, p = 0.028),

where the volume of the left IFG was the sole contributor

(β = 0.109, t(28) = 2.31, p = 0.028). To evaluate if the

relationship between left IFG volume and Early Learning is

significant even after controlling for nuisance variables, a

stepwise regression was conducted with Early Learning as the

dependent variable, Age and estimated total intracranial volume

(eTIV) as covariates in step 1, and the left IFG volume in

step 2. This resulted in a significant model that predicted Early

Learning (R2 = 0.28, F(3,26) = 3.42, p = 0.032), with both

Age and left IFG volume as marginally significant predictors,

Age: β = −32.75, t(27) = −1.96, p = 0.061; left IFG: β = 0.1,

t(27) = 1.9, p= 0.064.

Combined e�ects of cognitive and gray
matter volume predictors on BWGU
learning

The above analyses identified one significant cognitive

predictor (Story Memory) and one significant brain structure

predictor (the volume of the left IFG) of early learning. The

influence of Story Memory on Early Learning contributed to its

influence on Overall Learning. To evaluate the combined effects

of these predictors, we conducted two stepwise regressions with

Overall and Early Learning as respective dependent variables.

In both regressions, Age and eTIV were entered in step 1 as

control variables, and both left IFG and Story Memory were

entered as variables of interest in step 2. This combinatorial

model was found to significantly predict Early Learning, R2 =

0.44, F(4,25) = 4.82, p = 0.005, with both Story Memory and left

IFG contributing significantly to the model, Story Memory, β =

35.59, t(25) = 2.6, p = 0.016; left IFG, β = 0.11, t(25) = 2.25, p

= 0.033. This combined model was also found to significantly

predict Overall Learning, R2 = 0.38, F(4,25) = 3.86, p = 0.014,

with both Story Memory and left IFG contributing significantly

to the model, Story Memory, β = 41.73, t(25) = 3.44, p = 0.002;

left IFG, β = 0.09, t(25) = 2.02, p= 0.054.

Impact of daily context on daily BWGU
performance: A time series forecasting
analysis

To assess the individual-level influence of daily psychosocial

factors on performance-over-time, we ran a series of auto-

regressive integrated moving average (ARIMA) analyses using

Simple Score as the dependent variable, Training Day as

the indexing variable, and Wellness, Stress, Busyness, Mood,

and Sleep as independent variables. This analysis was run

independently for each participant, allowing for individual

assessment of the impact of each moderator on performance-

over-time. A total of three participants entered the same

response for one or more of the psychosocial context questions

for the entire duration of their training, resulting in those

psychosocial variables exhibiting zero variance for those

participants. Thus, these invariant variables were removed from

those participants’ models.

These ARIMA analyses were accomplished using the

“forecast” package (Hyndman and Khandakar, 2008; Hyndman

et al., 2021) for R (R Core Team, 2013). Instead of setting

the AR, I, and MA, parameters of the ARIMA models a piori,

the auto.arima function of the “forecast” package was used

to procedurally select the ARIMA model that best fitted each

participant’s time series. This auto-ARIMA approach examines

all possible ARIMA models within the bounds specified, and

selects a final model based on the Akaike Information Criterion

(AIC), which is a model criterion that accounts for both

goodness-of-fit and parsimony of the model (Akaike, 1973,

1987; Sawa, 1978; Bozdogan, 1987, 2000). Maximum parameter

bounds for these auto-ARIMA analyses were set to AR ≤ 5, I ≤

1,MA ≤ 5.

Individual ARIMA models of best fit: Prior
performance forecasting future performance

The ARIMAmodels were successfully fit for 34 participants.

The ARIMA models did not fit the remaining three participants

due to a conjunction of low training time (all three

participants discontinued the study prior to completing 5 h

of training) and a sparsity of daily survey responses (i.e.,

longer play sessions resulting in fewer survey prompts occurring

during training).

High heterogeneity was observed in the models of best fit

across these 34 participants. Ten distinct models were found to

be the model-of-best-fit for at least one participant. Of these 10

models, the most common models of best fit were the AR = 0, I

= 0, andMA= 0 model (“000”) and the AR= 0, I = 1, andMA

= 0 model (“010”), each fitting n = 7 participants and together

fitting 14 (41%) participants. Both models-of-best-fit feature AR

and MA terms of 0, indicating that the performance of 14 (out

of 34) participants on a given day was not strongly influenced

by either their prior performances or the moving average of

error of their performance on previous days. A summary of

all models found to fit at least one participant can be found

in Table 2.

For the remaining participants, 17 (50%) participants’

data were best fitted by a model with an AR term of one or

higher (MAR = 1.41, range 1–3, see Figure 5), indicating a

predictive influence of previous days’ performance on the

current day’s performance. Five participants (14.71%) were

fitted by a model counting an MA term of 1, indicating that,

for those participants, current performance on the BWGU

task was predicted by the error term of their previous day’s
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performance. Eighteen participants’ data (52.94%) were

fit by a model that included an integration (I) term of 1,

indicating that these participants’ performance-over-time

exhibited non-stationarity which first-order integration

was able to account for (Papoulis, 2002). In total, the

performance-over-time of 19 participants (55.88%) was

predicted by their previous day’s performance, as indicated

by a model-of-best-fit which included a non-zero AR and/or

MA term.

TABLE 2 ARIMA models found to significantly explain

performance-over-time in at least one participant, grouped by

number of occurrences.

Model AR term I term MA term n

“000” 0 0 0 7

“100” 1 0 0 5

“200” 2 0 0 2

“300” 3 0 0 1

“010” 0 1 0 7

“110” 1 1 0 4

“210” 2 1 0 2

“011” 0 1 1 2

“111” 1 1 1 2

“211” 2 1 1 1

Individual ARIMA models of best fit: Wellbeing
and sleep as predictors of BWGU
performance-over-time

As with the model terms of each participant’s model-of-

best-fit, the value and significance of the psychosocial context

moderators and sleep on each participant’s performance-

over-time also demonstrated notable heterogeneity. Stress

significantly predicted performance-over-time at p < 0.05, in

seven participants (21.21% of the sample), and was found to

be the most common single contextual predictor. Wellness

significantly predicted performance-over-time on the BWGU

task at p < 0.05 in four participants (12.12% of the sample).

Busyness significantly predicted performance-over-time at p

< 0.05 in five participants (12.5% of the sample). Mood

significantly predicted performance-over-time at p < 0.05

in four participants (12.12% of the sample). Sleep also

significantly predicted performance-over-time (p < 0.05) in

three participants (8.82% of sample).

In total, 17 (50%) of the sample demonstrated performance-

over-time which was predicted by one or more of the examined

psychosocial context variables and sleep, whereas the remaining

17 (50%) participants demonstrated no such relationship.

For participants who exhibited significant relationships

between the psychosocial context variables (including sleep) and

BWGU performance-over-time, all five variables demonstrated

a negative relationship with performance: Wellness Mβ =

FIGURE 5

Histogram of AR term values in individual participant’s ARIMA model-of-best-fit.
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−200.67, σβ = 192.43; Stress Mβ = −1,012.94, σβ = 1,175.51;

Busyness Mβ = −201.64, σβ = 295.99; Mood Mβ = −292.19,

σβ = 365.52; Sleep Mβ = −775.64, σβ = 1,063.64. These

results demonstrate a highly individualized effect of the

examined psychosocial variables on BWGU performance-over-

time, including half of our sample for whom performance does

not appear to be influenced by the psychosocial context variables

examined. Full model reports for each participant can be found

in the Supplementary material.

Discussion

The present study was designed to investigate the cognitive

and brain structure correlates of learning a novel gamified

computerized working memory task (the BWGU), in order to

determine if this game is used as an intervention, what is its

potential for far transfer to reasoning and episodic memory and

to induce brain plasticity. The results presented above identify

one cognitive measure and one structural volume predictor of

learning on the BWGU, even after controlling for individual

differences in age, specifically of learning within the first 5 hours

of the task. In terms of cognitive performance, participant’s score

on Story Memory, a measure of episodic memory, positively

related to the participants’ learning rates during the first 5 h of

practice on the BWGU. In terms of structural volume predictors,

estimated gray matter volumes (GMVs) of the participants’ left

inferior frontal gyrus (IFG) were predictive of learning of the

BWGU task during the same period, even after controlling

for age.

The Story Memory task is a modification of a word-list-recall

episodic memory task, with the world list forming a narrative of

a coherent episode (Folstein et al., 1975). The strong narrative

aspect of the Story Memory paradigm may partially explain why

performance on that measure was predictive of performance on

the BWGU task specifically. One of the modifications made to

the BWGU paradigm to increase its efficacy over a traditional

n-match was the application of the “bird watching” narrative to

the task. It is possible that this narrative operated as a contextual

framing device that facilitated performance on the task. If that is

the case, the ability to represent and elaborate on this narrative in

a way that supports memory, indicated by higher Story Memory

performance, may have allowed participants to learn the BWGU

task at an increased rate.

A past study by Beaunieux et al. (2009) found a somewhat

similar pattern of results regarding episodic memory and novel

task learning to what was found in the present study. Beaunieux

et al. (2009) found that measures of both working and episodic

memory predicted a successful acquisition of a novel reasoning

task (the Tower of Toronto, Saint-Cyr et al., 1988) over four

training sessions. Additionally, Beaunieux et al. (2009) found

that episodic memory deficits in older adults (aged 65+ years)

in particular, as compared to their younger adult cohort, were

negatively predictive of learning on the reasoning task. From

this perspective, the results of this study can be interpreted as a

specific case of cognitive reserve: degree of retention (i.e., degree

of reserve) of episodic memory function, measured in this study

by the Story Memory measure, may have facilitated learning of

the BWGU Task, much as Beaunieux et al. (2009) theorized

that preserved episodic memory function did on the Tower of

Toronto task in their study.

If the relationship between Story Memory and BWGU

learning allows for speculation for transfer from training, it is

possible that training older adults on BWGU, especially for 5 h

or so, may engender transfer to Story Memory. This hypothesis

is supported by Basak and O’Connell (2016), where 5 h of

unpredictable n-match training engendered greater transfer to

Story Memory recall than the predictable n-match training in

older adults. Importantly, faster learning rates were related to

greater improvements in Story Memory.

Regarding gray matter volume, left inferior frontal gyrus

volume significantly predicted learning of the BWGU. As

with the Story Memory task, left IFG volume was not only

found to specifically predict learning during the early phase

of the training (hours 1–5), but also significantly contributed

to a model predictive of overall learning along with the

Story Memorymeasure. Considering the IFG’s well-documented

role in language processing (Hagoort, 2013; Fedorenko and

Thompson-Schill, 2014), the conjunction of left IFG volume and

Story Memory performance in predicting BWGU task learning

strongly suggests that language processing contributes to the

learning of the BWGU task. This is a plausible relationship if

it is assumed that participants tended to use a verbalization

or narrative-based strategy to aid in learning the BWGU task,

such as assigning names to the otherwise un-named bird stimuli

or applying/embellishing a narrative as a framing device to

aid in memory and retrieval of the most recent bird stimuli

observed. However, as no strategy self-reports were collected

from participants for this study, we cannot assume this is the

case. In the absence of confirmation of a language-based strategy

for engaging with the BWGU task, exactly how individual

differences in language processing would contribute to the

learning of the BWGU task remain nebulous.

The inferior frontal gyrus is not, however, exclusively

dedicated to language processing: there is ample evidence that

it is involved in expressing cognitive control over memory

processes more generally. A recent fMRI study by Qin and

Basak (2020) found that the IFG is activated not only in

younger but also in middle-aged and older adults during

the unpredictable two-match task, where digits needed to be

retrieved and continuously updated, along with other frontal

and parietal regions that are implicated in cognitive control

and working memory. Badre and Wagner (2007) concluded

based on a review of the literature available at the time that

IFG is specifically involved in enforcing cognitive control on the

memory retrieval process, a capability essential to the expression
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of language but not unique to that process (Fedorenko and

Thompson-Schill, 2014). A model proposed by Hagoort (2013)

specifies that the IFG serves to integrate information from

regions of the brain involved in attentional, integrational, and

memory processes in a way that allows for precise control of

language. This body of work suggests that the IFG is heavily

involved in the cognitive control processes of memory retrieval

and updating, which are generalizable to language and other

tasks. From this perspective, the observed relationship between

greater gray matter volume in the left IFG and faster learning of

the BWGU task can be interpreted not as dependent on language

processing specifically, but that individuals with greater left

IFG volume exhibit better cognitive control over their memory

retrieval processes during training, thereby producing swifter

learning of the task.

Importantly, even when considered together, these

predictors (Story Memory and Left IFG) were independent

contributors to the learning rate across the 20-h training

session, even after accounting for age. They were also predictive

of learning rates within the first 5 h of training. No significant

predictors of the “middle” (hours 5–10) or “late” (hours 10–20)

period of training were identified. Model fit and significance

were greater when fitting the Story Memory + IFG model to

Early Learning compared to Overall Learning (1R2 = 0.06),

which suggests the pattern seen in overall learning may in fact

be driven by the contribution of early learning to that variable.

Indeed, a simple linear regression confirms that variation in

Early Learning significantly explains ∼68% of the variance in

Overall Learning (R2 = 0.68, p < 0.001), with another 17%

of the variance being accounted for when Middle and Late

Learning periods are added to the model (R2 = 0.85, p <0.001).

These results would appear to confirm that learning within the

first 5 h of training on the BWGU was the primary determinant

of overall learning on that task.

The above relationship confirmed, why then were the

observed structural and cognitive predictors of learning of the

BWGU not related to learning rates in hours 5–10 or 10–20 of

the training? The learning model proposed by Ackerman (1988)

states that the first phase of learning is primarily determined by

cognitive factors, with later learning primarily determined by

the development of strategy and automatization of task-relevant

responses. Considering that the potential predictors of learning

that were examined in this study consisted of (a) cognitive

predictors and (b) gray matter volume of regions related to the

training task and cognitive predictors, it is no surprise then that

any relationship uncovered would pertain to the early learning

period specifically. The present study did not assess strategy

formation or use by participants, and as such does not include

a variable with sensitivity to Ackerman’s strategy-dependent

second phase of learning. The automatization-dependent third

stage of Ackerman’s model predicts stability of performance

but improvement of response time on time-sensitive tasks. This

flattening of performance is likely captured in the “late” learning

period of the present study, defined by asymptotic performance

on the BWGU tasks, but again no time-based variables sensitive

to the development of automatized processing were examined

in the analysis presented here. In short, strategy-based learning

and automatization may well have been facilitated over 20 h

of training on the BWGU task, but the game score analyzed

here was not sensitive to those processes. This is not to say

that this study’s findings related to early learning are spurious.

Rather, it should be recognized that variance in individual

learning rates from strategy-based or automatic processes, both

of which hypothetically contribute to later learning, are likely not

accounted for in these analyses due to predictor and outcome

variables utilized in this study.

Ackerman (1988) model of procedural learning offers an

explanation as to why cognitive predictors of early learning were

found in this study generally, but not why episodic memory

measure and left IFG volume specifically predicted early learning

of the BWGU task. Taken together, these predictors appear to

reflect participants’ ability to apply cognitive control to memory

retrieval and, as needed, update the memory to encode it even

for information that is tracked over a few seconds. As discussed

above, aspects of the BWGU task itself, such as heavy emphasis

on working memory updating, incorporating narrative framing

device, as well as the known sensitivity of the Story Memory

measure to n-back-based training (Basak and O’Connell, 2016)

may well account for this. However, past work by Beaunieux

et al. (2006) identified both episodic memory and cognitive

control as indicative of learning a reasoning task (the Tower

of Toronto). Beaunieux et al. (2006) concluded that episodic

memory and executive function contributed to the first stage

of learning in Ackerman’s model. While the authors do not

fully support that position based on the evidence provided by

Beaunieux et al. (2006) that a similar pattern of predictors

was found to relate to early learning on both the Tower of

Toronto and the BWGU task suggests that these results might be

generalizable beyond these select tasks, which is certainly worthy

of future study. This study showed that in older adults who

trained on a novel gamified, individualized-adaptive working

memory updating intervention, the BirdWatch Game—Unity,

for about 20 h, individual differences in a measure of episodic

memory and the volume of left inferior frontal gyrus predicted

individual’s learning rate. These relationships were specifically

applicable to the early phase of novel game learning, where

individuals display rapid gains in game performance.

Importantly, neuro-cognitive predictors of skill learning on

a task, such as BWGU, can inform us about the potential

transfer mechanisms that can result from training on such skills.

Another significance of this study is the potential identification

of individuals who may benefit most from BWGU training.

Notably, the included measure of cognitive reserve (CRIq)

did not reliably predict overall learning of the BWGU task, nor

learning in any of the discrete training periods examined. This

is perhaps not surprising as the cognitive reserve is typically
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conceptualized as a protective factor (Tucker and Stern, 2011;

Opdebeeck et al., 2016), rather than a factor that facilitates

cognitive function, and the existing evidence linking cognitive

reserve to task learning is somewhat weak (Lojo-Seoane et al.,

2020). This is not to say that the study has definitively produced

no evidence of reserve contribution to the learning of the

BWGU task: as mentioned earlier, the observed relationship

between Story Memory recall and BWGU learning may well

be evidence of cognitive reserve, especially considering the

degree of decline in episodic memory typically observed in

older adults (Park et al., 2002; Rozas et al., 2008). A similar

argument can be made regarding brain reserve. However, in

the absence of cognitive or brain structure measurements taken

from these participants earlier in life, these reserve arguments

cannot be directly supported. Importantly, cognitive reserve is

typically indexed by measures of life-time cognitive activity and

educational attainment, and has been found to interact with

cognitive training-related gains in cognition in healthy aging

(for a meta-analysis, see Basak et al., 2020). It can be concluded,

however, that cognitive reserve as measured by the CRIq as a

sum of educational attainments and self-report aggregate of life

experience does not relate to learning of the BWGU task.

The second goal of this study was to determine whether

fluctuating psychosocial context variables and sleep duration

influenced performance-over-time on the BWGU task. The

most general hypothesis that sleep and the psychosocial

variables examined would influence performance-over-time was

demonstrably true for 50% of the sample, or 17 total participants,

while the other 50% of the sample demonstrated no such

relation. This, obviously, limits the conclusions we can draw

based on this evidence. We cannot declare that a random

participant from this sample would be more likely than not to

be affected by one or more of the examined psychosocial context

variables, due to simple probability. However, this result still

allows for some definite conclusions to be drawn.

First, that performance-over-time of 50% of the sample of

this study was influenced by at least one of the daily survey

measures (that is, sleep, stress, busyness, mood, or wellbeing) is

far from a negligible fraction. Indeed, if we assume that these

results are generalizable, then it is fairly likely that performance-

over time on the BWGU task will be influenced by one or more

of these factors for a given participant. Additionally, there are

likely undetected moderators which partially determine whether

a given participant’s performance is influenced by a given

psychosocial context variable or sleep, which are important to

further investigate considering how pervasive the influence of

these psychosocial context variables and sleep are on cognition.

Considering the well-documented negative impact of disrupted

sleep (Holanda Júnior and de Almondes, 2016; Lo et al.,

2016; Rana et al., 2018; Zavecz et al., 2020) and high stress

(Shields et al., 2016; Plieger and Reuter, 2020) on cognitively

demanding tasks in the real world, understanding what variables

may moderate this relationship is of substantial real-world

importance. The results of the present study indicate that sleep

and the psychosocial context variables examined in this study

can have an impact on the performance and learning of complex

tasks, which is warranted enough for further investigation.

Second, while the generalization of these results is

problematic, thesemodels do offer significant explanatory power

with regard to each individual participant. This has potential

utility within the cognitive training domain as a method of

assessing the individual needs of a participant, and providing

cognitive training that is individually adaptive to those needs.

Accurate models were fitted for participants who completed as

little as 3 h of training, and for all participants who completed

more than 5 h of training. Within the timescale of a long-

term cognitive intervention, which typically involves 10-20 h of

training (Basak et al., 2020), an analysis like the one performed

in this study could be conducted with sufficient remaining

time to provide individuated participant feedback or adjust the

prescribed training, to account for any significant psychosocial

effects observed. This is an alternate approach to individualized-

adaptive training to the closed-loop strategy implemented in the

design of the BWGU paradigm, where training difficultly was

manipulated with respect to performance metrics (block-wise

d’ and consecutive failures), but not daily sleep or perceived

wellbeing. Our current approach is agnostic to idiosyncratic

influences on individual subjects, under the assumption that

such sporadic daily influences are reflected in each participant’s

overall performance. Identifying and accounting for specific

factors influencing performance-over-time, which the method

of analysis presented in this study could facilitate, may serve as

an effective additional method of adaptive training independent

of the performance-focused method implemented in BWGU.

Importantly, findings from the time series forecasting analysis

provide evidence for why the individualized-adaptive approach

to training has been generally successful at inducing positive

training outcomes (Payne et al., 2011; Brehmer et al., 2012;

Cuenen et al., 2016). A wide array of patterns of psychosocial

influence were observed even within the age and geographically

restricted sample utilized in this study, and it can be assumed

with some confidence that individuals undergoing any form of

cognitive training or intervention are subject to a similarly wide

array of moderating influences.

The analysis presented in this study also demonstrated

that 50% of the sample (n = 17) exhibited performance-over-

time that was reliably predictable by previous performance,

either through direct auto-regression of past performance onto

a given day’s BWGU score, or via a moving average of error

terms. The finding that for 50% of our sample, current BGWU

performance was not reliably predictable from past performance

is interesting, as it suggests that other factors are primarily

responsible for performance-over-time in this large proportion

of the sample. As discussed, psychosocial context variables

demonstrably accounted for variance in performance in half

of our sample, which includes 11 of the 17 participants for
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whom past performance did not relate to performance-over-

time. However, this still leaves six participants for whom none

of the examined variables, including their own performance,

was predictive of variability in performance-over-time. The

only conclusions that can be drawn about what these other

factors might be are that they (a) have periodicity longer than

the training period observed or (b) are transient events, as

otherwise evidence of any such predictable influence would be

detectable in the auto-regressive or moving average analysis.

In light of these findings, it is clear that individual influences

on performance-over-time on a complex task like the BWGU

task are highly varied, and that they can be very influential.

Further investigation of how these individual-level factors

can be identified, modeled, and accounted for can only

be a boon to efforts to develop efficacious, individualized

cognitive interventions.

As already mentioned, the design of this study limits some

of the conclusions we are able to draw from these results,

and these design limitations can be improved upon in future

iterations of this work. First, the present study did not take

participant strategy into account. This is a particularly pertinent

limitation to the findings of this study considering (a) the

possibility that participants were utilizing a verbalization or

narrative-based strategy to aid learning of the BWGU task,

and (b) the theoretical relevance of strategy generation toward

procedural task learning. A post-hoc self-report could potentially

allow for insight into the effect of strategy on BWGU learning;

however, this self-reported approach would need a much larger

sample size of 250 or more given the variability of self-generated

strategy reports and associated variables of interest, such as

personality factors (e.g., openness to experience), cognitive

flexibility, IQ, etc. Such a research agenda is challenging to

implement in cognitive interventions that last for months and

include brain measures. Another approach to studying the role

of strategy could be a strategy manipulation applied via varied

participant instructions, although this would require an in-lab

intervention and a much larger multi-arm RCT that would have

similar limitations of the feasibility of study implementation

in terms of time and resource as described before. Second,

the design of the present study did not allow for a detailed

investigation of the influence of cognitive/brain reserve on

learning of this task, beyond the retroactive self-report measure

utilized by the CRIq. Addressing this shortcoming is somewhat

difficult: A longitudinal approach by which trajectories of

cognitive/neurological change over time could be calculated

before the training period began could potentially enlighten and

specify the reserve-learning relationship, but this would require

a major expenditure of time and resources to accomplish.

Conclusion

This study showed that in older adults who trained on

a novel gamified, individualized-adaptive working memory

updating intervention, the BirdWatch Game—Unity, for about

20 h, individual differences in ameasure of episodicmemory and

the volume of left inferior frontal gyrus predicted individual’s

learning rate. These relationships were specifically applicable

to the early phase of novel game learning, where individuals

display rapid gains in game performance. These predictors

appear to reflect participants’ ability to apply cognitive control

to episodic memory functions, especially memory retrieval

and subsequently updating the memory to encode it even for

information that is tracked over a few seconds as in BWGU.

Importantly, neuro-cognitive predictors of skill learning on

a task, such as BWGU, can inform us about the potential

transfer mechanisms that can result from training on such

skills. In fact, prior research in older adults has shown that

just 5 h of training on working memory updating, where

stimulus sequence appeared in unpredictable order, results in

far transfer to Story Memory recall, the measure of episodic

memory that was found to be a significant predictor in the

current study. Taken together, these results suggest that neuro-

cognitive predictors of task learning can be informative about

whether we can see potential transfer to tasks that have the same

neuro-cognitive underpinnings. Another significance of the

current study is the potential identification of individuals who

may benefit most from BWGU training. Episodic memory is

considered to be an early marker of mild cognitive impairment;

therefore, it is possible that BWGU training may be beneficial

to not only healthy older adults but to build a reserve in

a key cognitive function known to be impacted in at-risk

older adults, such as those with mild cognitive impairment.

Finally, forecasting analysis on the time series of the game

shows that day-to-day psychosocial wellbeing and hours of

sleep can impact the game performance of that day or of

the next day, but only in about 50% of participants in this

study. Others did not exhibit any relationship between these

daily measures (sleep and wellbeing) and game performance.

Large-scale studies are warranted to understand why some

older adults show such dependencies, and whether resistance

to such dependencies results in the long-term maintenance of

cognition. Importantly, data from these time series forecasting

suggest that for a large proportion of individuals, the efficacy

of the intervention can be improved at an individual level by

incorporating sleep and psychosocial factors into the closed-loop

individualized-adaptive feedback design. Identification through

such modeling of how these individual-level daily variables

(task performance, sleep, mood, etc.) impact our learning

during an intervention can help us develop more efficacious,

individualized cognitive interventions.
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