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Introduction: Mild cognitive impairment (MCI) is considered a transitional 

stage between soundness of mind and dementia, often involving problems 

with memory, which may lead to abnormal postural control and altered 

end-point control when dealing with neuromechanical challenges during 

obstacle-crossing. The study aimed to identify the end-point control and 

angular kinematics of the pelvis-leg apparatus while crossing obstacles for 

both leading and trailing limbs.

Methods: 12 patients with MCI (age: 66.7 ± 4.2 y/o; height: 161.3 ± 7.3 cm; mass: 

62.0 ± 13.6 kg) and 12 healthy adults (age: 67.7 ± 2.9 y/o; height: 159.3 ± 6.1 cm; 

mass: 61.2 ± 12.0 kg) each walked and crossed obstacles of three different 

heights (10, 20, and 30% of leg length). Angular motions of the pelvis and 

lower limbs and toe-obstacle clearances during leading- and trailing-limb 

crossings were calculated. Two-way analyses of variance were used to study 

between-subject (group) and within-subject (obstacle height) effects on the 

variables. Whenever a height effect was found, a polynomial test was used to 

determine the trend. A significance level of α = 0.05 was set for all tests.

Results: Patients with MCI significantly increased pelvic anterior tilt, hip 

abduction, and knee adduction in the swing limb during leading-limb crossing 

when compared to controls (p < 0.05). During trailing-limb crossing, the MCI 

group showed significantly decreased pelvic posterior tilt, as well as ankle 

dorsiflexion in the trailing swing limb (p < 0.05).

Conclusion: Patients with MCI adopt altered kinematic strategies for successful 

obstacle-crossing. The patients were able to maintain normal leading and 

trailing toe-obstacle clearances for all tested obstacle heights with a specific 

kinematic strategy, namely increased pelvic anterior tilt, swing hip abduction, 

and knee adduction during leading-limb crossing, and decreased pelvic 

posterior tilt and swing ankle dorsiflexion during trailing-limb crossing. The 
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current results suggest that regular monitoring of obstacle-crossing kinematics 

for reduced toe-obstacle clearance or any signs of changes in crossing 

strategy may be helpful for early detection of compromised obstacle-crossing 

ability in patients with single-domain amnestic MCI. Further studies using a 

motor/cognitive dual-task approach on the kinematic strategies adopted by 

multiple-domain MCI will be needed for a complete picture of the functional 

adaptations in such a patient group.

KEYWORDS

mild cognitive impairment, kinematics strategies, balance control strategies, 
obstacle-crossing, fall risk

Introduction

Mild cognitive impairment (MCI) is considered a transitional 
stage between soundness of mind and dementia (Montero-Odasso 
et al., 2012). Older people with MCI have an incidence of 12–15% 
for developing dementia compared to 1–2% in healthy peers 
(Petersen et  al., 1999; Roberts and Knopman, 2013). Mild 
cognitive impairment is categorized into amnestic (aMCI) and 
non-amnestic MCI (naMCI) based on whether memory is 
impaired (Hughes et  al., 2011). Amnestic MCI is the more 
common type with higher progression rates toward dementia than 
naMCI, while naMCI presents an inconsistent association with 
subsequent conversion to dementia (Grundman et al., 2004; Yaffe 
et al., 2006; Petersen, 2011). Cognitive decline in MCI leads to 
problems with memory, executive function, or attention, affecting 
instrumental activities of daily living (Saunders and Summers, 
2011; Jekel et al., 2015). Depending on the number of impaired 
cognitive domains, each type of MCI can be further categorized 
into single-domain (impaired memory only) and multiple-domain 
subtypes (Roberts and Knopman, 2013), single-domain aMCI 
being the most prevalent (Brodaty et  al., 2013; Roberts and 
Knopman, 2013). Previous clinical studies have reported abnormal 
postural control, balance disorders during gait, and increased risk 
of falls in patients with MCI (Shin et al., 2011; Nascimbeni et al., 
2015; Lipardo et al., 2017), especially during obstacle negotiation 
(Robinovitch et al., 2013). Obstacle-crossing requires utilization 
of motor planning and attentional resources (Clark et al., 2014), 
adjusted by higher functions of the central nervous system (CNS; 
Haefeli et al., 2011). Identifying the control strategies adopted by 
MCI patients during walking and crossing obstacles will be helpful 
for developing strategies for reducing fall risks in such 
patient populations.

During obstacle-crossing, the motions of the individual joints 
are controlled to maintain dynamic body balance while allowing 
the swing limb to cross the obstacle with sufficient foot-obstacle 
clearance (Chen and Lu, 2006). Since the human pelvis-leg 
apparatus is a multi-link system, a change in the angle of a joint 
may lead to angular changes at other joints, which together 
determine the end-point position of the swing limb. Such 

inter-joint and joint-to-end-point kinematic relationships can 
vary among subject groups and motor tasks, reflecting the 
neuromusculoskeletal control of the person. Any alterations of the 
joint kinematics as a result of injury or pathology of the 
neuromusculoskeletal system will affect the inter-joint and joint-
to-end-point kinematic coordination for a successful obstacle-
crossing. Through synthesizing the kinematic changes of 
individual joints and end-points, the kinematic strategy of 
obstacle-crossing could be  identified. This multi-link system 
approach has been successfully used in revealing the kinematic 
strategies of obstacle-crossing in various populations (Hsu et al., 
2016; Chien and Lu, 2017; Kuo et al., 2017; Wu et al., 2019b). For 
example, older people with type II diabetes mellitus have been 
shown to cross obstacles with reduced swing hip adduction and 
swing knee flexion associated with reduced toe-obstacle clearance, 
which is regarded as the risk of tripping over obstacles (Hsu et al., 
2016). Therefore, data of joint coordination changes enable the 
kinematic control strategies during obstacle-crossing, as well as 
the risk factors for falling, to be identified (Sparrow et al., 1996; 
Pieruccini-Faria et al., 2014).

The risk of falling increases linearly with the number of risk 
factors. Thus, the accumulated effects of disease and obstacle-
crossing may predispose an older person to falling (Tinetti et al., 
1988). Increasing obstacle height may also present an increased 
risk and has been the subject of extensive research (Lu et al., 2006; 
Chien and Lu, 2017). With increasing obstacle-height, the joint 
angles of the swing limb are increased (Chou and Draganich, 
1997) but those of the stance limb reduced (Hsu et al., 2016). 
However, it has been shown via a multi-objective optimal control 
technique that the overall control strategy for obstacle-crossing in 
young adults is independent of obstacle height, suggesting a 
CNS-maintained motor program (Lu et al., 2012). A recent study 
showed that this centrally maintained control strategy is altered 
with aging (Kuo et  al., 2021). Normal aging-related cognitive 
decline has also been shown to affect toe-obstacle clearance 
(Sakurai et al., 2021). For patients with MCI, previous gait analysis 
studies have reported deviations, including temporal–spatial 
parameters such as reduced speed and stride length but greater 
stride width (Fuentes-Abolafio et al., 2021), and joint kinematics 
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such as increased peak extension and ranges of motion at the knee 
(Zhong et  al., 2021). With impaired cognitive functions and 
abnormal gait performance (Verghese et al., 2008), older people 
with MCI may have greater difficulty than their healthy peers in 
dealing with the neuromechanical challenges during obstacle-
crossing. Deficits in higher-order cognitive functions have also 
been shown to limit obstacle negotiation capabilities in MCI, 
showing reduced crossing speeds with increased step length 
variabilities during crossing, and risk of falls (Pieruccini-Faria 
et al., 2019). While no study has reported whether MCI might 
affect the control strategies during obstacle-crossing, as a central 
degenerative disease, it was possible that the CNS-maintained 
kinematic strategy for obstacle-crossing found in healthy people 
might be affected. Identifying the altered kinematic changes in 
individual joints and end-points in older people with MCI when 
crossing obstacles of different heights will be helpful for a better 
understanding of kinematic strategies required or developed to 
overcome the neuromechanical challenges.

The purpose of this study was to quantify the kinematic 
changes in individual joints and end-points of the pelvis-leg 
apparatus in older adults with single-domain aMCI during 
obstacle-crossing as compared to healthy controls. The kinematic 
strategy adopted by the aMCI group was also identified by 
synthesizing the kinematic changes for different obstacle heights. 
It was hypothesized that older adults with aMCI would adopt a 
specific kinematic strategy with altered joint kinematics and 
end-point positions for obstacle-crossing, and that such strategy 
would not be affected by the obstacle height.

Materials and methods

Subjects

This study was approved by the Taipei Medical University 
Joint Institutional Review Board (IRB Permit number: 
N201903100). All the experiments and procedures were carried 
out following the Ethical Principles for Medical Research 
Involving Human Subjects (World Medical Association 
Declaration of Helsinki). Twelve patients with single-domain 
aMCI (MCI group; male/female: 7/5; age: 66.7 ± 4.2 years; height: 
161.3 ± 7.3 cm; mass: 62.0 ± 13.6 kg) and twelve healthy adults 
(Control group; male/female: 4/8; age: 67.7 ± 2.9 years; height: 
159.3 ± 6.1 cm; mass: 61.2 ± 12.0 kg) were recruited from the 
university hospital between October 2019 and January 2021. The 
MCI and Control groups were matched by age, sex, years of 
education, body height, and body mass (Table 1). Each subject 
gave informed written consent as approved by the IRB. The 
diagnosis of aMCI was made by a senior neurologist (YCK) based 
on the following criteria: (1) presence of subjective cognitive 
complaints; (2) objective cognitive impairments (defined as 1.5 
standard deviations (SD) below the age- and education-corrected 
normative means) in memory domain, based on 
neuropsychological assessment (Table 1); (3) Clinical Dementia 

Rating (CDR) global scale score of 0.5; (4) preserved activities of 
daily living confirmed by clinician’s interviews; and (5) absence of 
dementia determined by the Diagnostic and Statistical Manual of 
Mental Disorders Fourth Edition, Text Revision (DSM-IV-TR) 
criteria (Petersen, 2011). A participant would be excluded if he/
she was unable to walk independently or communicate to 
complete the clinician’s interview, had severe uncorrected visual 
or auditory disorders, was functionally dependent, had a central 
nervous system lesion or severe neuromusculoskeletal disorders, 
or had undergone surgery of the lower limbs that would affect 
their gait performance. None of the subjects wore bifocals during 
daily living or during the gait experiment. An a priori power 
analysis based on pilot results using GPOWER (Erdfelder et al., 
1996) determined that a projected sample size of four subjects for 
each group would be needed with a power of 0.8 at a significance 
level of 0.05. Thus, 12 subjects for each group were more than 
adequate for the main objectives of the current study.

Neuropsychological assessment

Global cognition was assessed using the Cognitive Abilities 
Screening Instrument (CASI) (Teng et  al., 1994), including 
attention, memory, language abilities, visual construction, list-
generating fluency, abstraction, and judgment, giving a total score 
ranging from 0 to 100. The Word Sequence Learning Test for recall 
(WSLT Recall) and recognition score (WSLT Recognition) was 
used to assess memory. A verbal fluency (VF) test was used to 
assess executive functions and semantic memory (Nutter-Upham 
et  al., 2008). A Digit Span subtest of the Wechsler Adult 
Intelligence Scale (WAIS Digit Span) was used to assess attention 
and working memory (Webber and Soble, 2018). The raw scores 
of WSLT Recall, WSLT Recognition, VF, and WAIS Digit Span 

TABLE 1 Means (standard deviations) of the demographic 
characteristic and neuropsychological assessment results for patients 
with mild cognitive impairment (MCI, n = 12) and healthy controls 
(Control, n = 12).

MCI Control p-value

Demographic data

Age (years) 66.7 (4.2) 67.7 (2.9) 0.506

Body height (cm) 161.3 (7.3) 159.3 (6.1) 0.454

Body mass (kg) 62.0 (13.6) 61.2 (12.0) 0.874

Sex, number of females/males 5/7 8/4 0.237

Education level (years) 12.5 (3.2) 14.8 (3.7) 0.112

Neuropsychological assessment

CASI 87.0 (7.1) 95.7 (3.8) 0.011*

WSLT recall 3.2 (4.0) 51.5 (29.6) <0.001*

WSLT recognition 24.5 (25.4) 71.3 (32.9) 0.001*

VF (%) 65.8 (27.1) 92.9 (5.5) 0.005*

WAIS digit span (%) 53.9 (30.5) 78.7 (15.1) 0.023*

P-values for between-group comparisons using an independent t-test are also given. 
CASI, cognitive abilities screening instrument; WSLT, word sequence learning Test; VF, 
verbal fluency test; WAIS, Wechsler Adult Intelligence Scale; *indicated a significant 
difference with α = 0.05.
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were converted to normative data by different age and education 
ranges (Cauthen, 1978).

Experiment protocol

Each subject walked at their preferred speed on a 10-m 
walkway and crossed a tube-like obstacle placed horizontally 
across a height-adjustable frame with their natural patterns (Lu 
et al., 2006; Huang et al., 2008). Three obstacle heights (i.e., 10%, 
20% and 30% of the subject’s leg length) were included in the 
experimental trials. Thirty-nine infrared retroreflective markers 
placed on anatomical landmarks commonly used in human 
motion analysis were used to track the motions of the body 
segments, namely anterior superior iliac spines (ASISs), posterior 
superior iliac spines (PSISs), greater trochanters, mid-thighs, 
medial and lateral epicondyles, heads of fibulae, tibial tuberosities, 
medial and lateral malleoli, navicular tuberosities, fifth metatarsal 
bases, big toes and heels, and mandibular condylar processes, 
acromion processes, spinous processes of the seventh cervical 
vertebra (C7), medial and lateral humeral epicondyles, and ulnar 
styloids (Hong et al., 2015; Wu et al., 2021). Three-dimensional 
marker trajectories were measured at 200 Hz using an 8-camera 
motion analysis system (Vicon MX T-40, OMG, United Kingdom) 
and low-pass filtered using a fourth-order Butterworth filter with 
a cutoff frequency of 5 Hz before subsequent kinematic analysis 
(Chien et  al., 2013). The ground reaction forces (GRF) were 
measured at 1200 Hz using three force plates (OR6-7, AMTI, 
United States) placed on either side of the obstacle in the middle 
of the walkway and used to determine the toe-offs and heel-strikes 
during the crossing cycle (Ghoussayni et al., 2004). The starting 
position of the subject of the trials was adjusted by the examiner 
so that the subject would step on the force plates naturally without 
looking at the forceplates. Data for six complete crossing cycles, 
three for each limb leading, were obtained for each subject in the 
MCI and Control groups. For the three obstacle-crossing heights, 
a counterbalanced measures design was used, while the sequence 
of the obstacle condition was decided by a random number table.

Crossing speed and end-point 
parameters

Crossing speed was calculated as the distance traveled by 
mid-anterior superior iliac spines in the walking direction divided 
by the time spent from leading toe-off immediately before crossing 
to trailing heel-strike immediately after crossing. Toe-obstacle 
clearance for both the leading and trailing limb was calculated as 
the vertical distance between the toe marker of the swing limb and 
the obstacle when the swing toe was directly above the obstacle. 
The trailing toe-obstacle distance was defined as the horizontal 
distance between the obstacle and the toe marker of the trailing 
limb during stance immediately before stepping over the obstacle. 
The leading heel-obstacle distance was defined as the horizontal 

distance between the obstacle and the heel marker of the leading 
limb during stance immediately after stepping over the obstacle 
(Wu et al., 2019b).

Joint kinematic variables

Each body segment was embedded with an orthogonal 
coordinate system with the positive x-axis directed anteriorly, the 
positive y-axis superiorly, and the positive z-axis to the right in 
accordance with ISB recommendations (Wu and Cavanagh, 1995). 
The angular motions of the pelvis were described relative to the 
laboratory coordinate system with the leading limb as the 
reference limb. Pelvic upward list indicates that the contralateral 
hip is higher than the ipsilateral hip while ipsilateral rotation 
indicates that the ipsilateral hip is anterior to the contralateral hip 
(Wu et al., 2019a). A Cardanic rotation sequence of z-x-y was used 
to calculate the rotational movements of each lower limb joint 
(Grood and Suntay, 1983). Effects of soft tissue artifacts of the 
pelvis-leg apparatus were reduced using a global optimization 
method that minimized the weighted sum of squared distances 
between measured and calculated marker positions with joint 
constraints (Lu and O’connor, 1999). Values of the calculated 
angular motions when the leading and trailing toes were above the 
obstacle were extracted for subsequent statistical analysis (Chen 
and Lu, 2006).

Statistical analysis

For statistical comparisons between MCI and Control, 
independent t-tests were used for the demographic data and 
neuropsychological assessment scores, while a two-way mixed-
design analysis of variance (ANOVA) was used for the crossing 
speed, end-point parameters, and all the calculated kinematic 
variables with one between-subject factor (group) and one within-
subject factor (obstacle height). For all the statistical analyses, data 
from each calculated variable were averaged across crossing cycles 
for each subject, and data from both sides were further averaged 
for the two groups. All the calculated variables were determined 
to be  normally distributed by a Shapiro–Wilk test and the 
homogeneity of variance across groups was confirmed by the 
Levene’s test. Whenever an obstacle height effect was found, a post 
hoc analysis was performed using a polynomial test to determine 
the trend. A significance level of α = 0.05 was set for all test 
conditions. All statistical analyses were performed using SPSS 
version 20 (SPSS Inc., Chicago, IL, United States).

The multi-link system approach (Hsu et al., 2016; Chien and 
Lu, 2017; Wu et al., 2019b) was used to synthesize the significant 
kinematic changes of individual joints and end-points to identify 
the kinematic strategies of obstacle-crossing in MCI compared to 
the Control group. Computer simulations using subject-specific 
multi-link system models were performed to identify the effects 
of the significant change of an individual joint on the end-point 
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position at instances when the leading and trailing toe was above 
the obstacle using the model of a typical subject (with a stature 
closest to the mean of both groups). At each instance, the posture 
of the model subject was first defined by the mean joint positions 
of the Control group. With the stance foot fixed to the ground, the 
joints with significant deviations from the Control were then 
rotated one at a time according to the mean angular change of the 
MCI group, while keeping the angles of the other joints fixed and 
the segments of the stance limb and the segments of the swing 
limb proximal to the current joint stationary. For each joint 
rotation, the toe-obstacle clearance was obtained to reveal the 
effects of the significant angular changes at individual joints on the 
end-point positions. The simulation results for each joint were 
then presented using stick figures of the model subject.

Results

Compared to Control, the MCI group showed significantly 
worse performance in CASI, WSLT Recall, WSLT Recognition, the 
VF test, and WAIS Digit Span (Table 1). During obstacle-crossing, 
there were no significant between-group differences in crossing 
speeds, leading toe-obstacle clearance, trailing toe-obstacle 
clearance, leading heel-obstacle distance, and trailing toe-obstacle 
distance (Table 2). The two groups showed similar patterns in the 
pelvic and lower limb joint motions but with quantitative 
differences in some kinematic components, primarily in the 
frontal plane during leading-limb crossing (Figure 1) and in the 
sagittal plane during trailing-limb crossing (Figure 2).

When the leading toe was above the obstacle, the MCI group 
showed significantly increased pelvic anterior tilt, hip abduction, 
and knee adduction in the swing limb (Tables 3, 5). When the 

trailing toe was above the obstacle, the MCI group showed 
significantly decreased ankle dorsiflexion and pelvic posterior tilt 
in the swing limb (Tables 4, 5). The observed significant angular 
changes at individual joints showed different effects on the leading 
and trailing toe-obstacle clearances in the MCI group when 
compared with the Control, some tending to increase the 
toe-obstacle clearance while others showed opposite effects 
(Figures 3, 4).

There were no interactions between the group and height 
factors for any of the variables. With increasing obstacle height, 
both MCI and Control linearly reduced their crossing speeds, but 
linearly increased their trailing toe-obstacle clearance (Table 2). 
When the leading toe was above the obstacle, both groups linearly 
increased the pelvic upward list, contralateral rotation and 
anterior tilt, hip flexion and abduction, knee flexion, ankle 
dorsiflexion and abduction, but linearly decreased the pelvic 
downward list of the swing limb, as well as linearly decreased the 
hip adduction and ankle dorsiflexion of the stance limb (Tables 3, 
5). On the other hand, when the trailing toe was above the 
obstacle, both groups linearly decreased the pelvic upward list and 
knee abduction, but increased the pelvic contralateral rotation and 
posterior tilt, hip flexion, knee flexion, and ankle dorsiflexion of 
the swing limb, as well as linearly decreased the hip adduction and 
knee flexion of the stance limb (Tables 4, 5).

Discussion

The current study aimed to identify the kinematic strategies 
of the pelvis-leg apparatus in patients with single-domain aMCI 
when crossing obstacles of three different heights. Compared to 
healthy controls, the patients were found to cross obstacles with 

TABLE 2 Means (standard deviations) of the crossing speeds and end-point parameters for patients with mild cognitive impairment (MCI) and 
healthy controls (Control) when crossing obstacles of heights of 10, 20, and 30% of the subject’s leg length (LL).

Variables Obstacle height (% LL) MCI Control PG PH

Crossing speed (mm/s) 10 896.5 (146.7) 931.6 (101.4) 0.477 <0.001↓

20 798.7 (124.4) 831.1 (90.4)

30 752.0 (128.9) 783.5 (106.8)

Leading toe-obstacle clearance 

(% LL)

10 18.7 (4.9) 18.6 (5.2) 0.787 0.308

20 19.9 (3.8) 19.5 (5.1)

30 19.4 (5.0) 21.4 (4.3)

Trailing toe-obstacle clearance 

(% LL)

10 16.9 (7.2) 18.0 (10.2) 0.416 0.025↑

20 16.9 (8.2) 20.0 (10.6)

30 18.5 (9.4) 23.0 (8.3)

Leading heel-obstacle distance 

(mm)

10 157.3 (54.9) 161.4 (41.9) 0.972 0.531

20 155.2 (40.8) 149.8 (38.5)

30 151.1 (30.8) 150.9 (40.4)

Trailing toe-obstacle distance 

(mm)

10 177.7 (23.2) 178.8 (26.4) 0.263 0.449

20 173.5 (24.1) 185.8 (28.8)

30 176.4 (16.0) 191.9 (27.8)

P-values for main group and height effects are given as no interactions were found. PG, MCI vs. Control; PH, value of p for obstacle height; *indicates a significant group effect (PG < 0.05); 
↑ indicates a linearly increasing trend and ↓ indicates a linearly decreasing trend (PH < 0.05).
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increased pelvic anterior tilt, swing hip abduction and knee 
adduction during leading-limb crossing, and decreased pelvic 
posterior tilt, swing ankle dorsiflexion during trailing-limb 
crossing. Such a specific kinematic strategy enabled the MCI 
group to maintain the leading and trailing toe-obstacle clearances 
similar to those of their healthy peers for all tested obstacle 
heights. The current results suggest that regular monitoring of 
obstacle-crossing kinematics for reduced toe-obstacle clearance or 
any signs of changes in crossing strategy may be helpful for early 
detection of compromised ability to cross obstacles in patients 
with single-domain aMCI.

During leading-limb crossing, the specific strategy observed 
in the MCI group for normal leading toe-obstacle clearance 
involved primarily sagittal-plane kinematic changes in the pelvis 
and frontal-plane kinematic changes in the swing limb, namely 
increased pelvic anterior tilt, hip abduction, and knee adduction 
in the swing limb. While the increased pelvic anterior tilt would 
have decreased the leading toe-obstacle clearance (Figure 3)–an 
indication of increased risk of tripping as toe-obstacle contact is 
more likely to occur (Sparrow et al., 1996)–the changes at the hip 

and knee would have increased the leading toe-obstacle clearance. 
In other words, the potential unfavorable downward deviations of 
the end-point owing to the increased pelvic anterior tilt were 
compensated for by the increased hip abduction and knee 
adduction. Being proximal to the hip and knee, the pelvis had a 
greater effect on the position of the end-point and thus the 
toe-obstacle clearance (Chen et  al., 2016; Wu et  al., 2019b), 
requiring kinematic changes at two distal joints to provide 
compensation. A different compensatory mechanism was also 
observed during trailing-limb crossing. While the decreased 
pelvic posterior tilt would have increased the trailing toe-obstacle 
clearance (Figure 4), such potential favorable upward deviations 
of the end-point were neutralized by the opposite effects from the 
decrease in the swing ankle dorsiflexion, resulting in the observed 
normal toe-obstacle clearance. The altered pelvic motions in MCI 
during leading-limb crossing not only had potential negative 
effects on the end-point, but may also affect the rotation of the 
trunk and thus the dynamic balance control. This is critical as the 
neuromechanical challenges for balance control are already 
greater during leading-limb crossing than trailing-limb crossing. 

A B

FIGURE 1

The mean curves of the angles of the hip, knee, and ankle joints of the leading limb in the sagittal (A) and frontal plane (B) for the MCI (black) and 
control (grey) groups when crossing obstacles of 30% of leg length. (TO, toe-off of the leading limb; LTC, leading toe above the obstacle; HS, 
heel-strike of the leading limb; TTC, trailing toe above the obstacle; *significant group effects for all obstacle heights, p < 0.05).

https://doi.org/10.3389/fnagi.2022.950411
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Lu et al. 10.3389/fnagi.2022.950411

Frontiers in Aging Neuroscience 07 frontiersin.org

A B

FIGURE 2

The mean curves of the angles of the hip, knee, and ankle joints of the trailing limb in the sagittal (A) and frontal plane (B) in the MCI (black) and 
control (grey) groups when crossing obstacles of 30% of leg length. (TO, toe-off of the leading limb; LTC, leading toe above the obstacle; HS, 
heel-strike of the leading limb; TTC, trailing toe above the obstacle; *significant main group effect, p < 0.05).

TABLE 3 Means (standard deviations) of the crossing angles of the pelvis relative to the global norm in patients with mild cognitive impairment 
(MCI) and healthy controls (Control) when the leading or trailing toe was above the obstacles of heights of 10, 20, and 30% of the subjects’ leg 
length (LL).

Variables Group
Obstacle height (% LL) Main effect

10% 20% 30% PG, PH

Leading toe above obstacle

Upward (+)/downward (−) list MCI 4.3 (3.6) 6.8 (3.9) 8.9 (4.6) 0.726, <0.001↑

Control 3.6 (2.5) 6.7 (3.9) 11.2 (5.9)

Ipsi (+)/contra (−) rotation MCI −2.6 (3.1) −4.3 (5.3) −4.9 (6.7) 0.518, 0.018↓

Control −1.7 (2.5) −4.4 (4.6) −6.5 (5.9)

Anterior (+)/posterior (−) tilt MCI 2.7 (4.6) 4.4 (5.3) 6.2 (5.6) 0.037*, <0.001↑

Control 0.9 (3.2) 3.1 (4.6) 5.2 (4.3)

Trailing toe above obstacle

Upward (+)/downward (−) list MCI 2.1 (1.8) 1.0 (2.6) −0.5 (3.3) 0.627, <0.001↓

Control 2.5 (0.8) 1.1 (2.2) 0.1 (2.9)

Ipsi (+)/contra (−) rotation MCI −2.6 (3.1) −4.3 (5.3) −4.9 (6.7) 0.017*, 0.001↓

Control −5.6 (3.5) −8.6 (6.0) −12.8 (6.4)

Anterior (+)/posterior (−) tilt MCI −2.7 (4.3) −3.3 (5.2) −6.1 (6.0) 0.042*, <0.001↓

Control −3.8 (3.4) −4.7 (4.5) −7.9 (5.6)

P-values for main group and height effects are given as no interactions were found. PG, MCI vs. Control; PH, value of p for obstacle height; *indicates a significant group effect (PG < 0.05); 
↑ indicates a linearly increasing trend and ↓ indicates a linearly decreasing trend (PH < 0.05). Upward list (+) indicates that the contralateral hip joint center is higher than the ipsilateral 
hip; Ipsi rotation (+) indicates that the ipsilateral hip joint center is anterior to the contralateral hip; Ipsi, ipsilateral, Contra, contralateral.
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During leading-limb crossing the body is moving away from the 
trailing stance limb while it is moving towards the leading stance 
limb during trailing-limb crossing (Wu et  al., 2020). Further 
studies on the motion of the upper body will be needed to gain 
more insight into the effects of the observed kinematic strategy on 
the balance control in patients with aMCI. The current results 
suggest that patients with aMCI can be distinguished from their 
healthy peers mainly by the increased pelvic anterior tilt during 
leading-limb crossing and decreased pelvic posterior tilt during 
trailing-limb crossing, of which the effects on toe-obstacle 
clearance were compensated for by swing limb kinematic changes 
at the hip and knee and at the ankle, respectively. Such kinematic 
features in MCI were not affected by obstacle heights up to 30% of 

the leg length, as indicated by the independence between the 
height and group effects (Tables 2–5).

While the precise mechanism underlying the observed 
kinematic strategy for obstacle-crossing in the current patients 
with aMCI could not be identified with the current results, a 
plausible possibility of the connections between the kinematic 
changes and impaired cognitive function is related to the 
degeneration of the hippocampus that leads to memory deficits 
and impaired cognitive functions in MCI (Scheff et al., 2006). 
Memory involves the acquisition and maintenance of relevant 
sensory stimuli used to guide movements (Jonides et al., 2008), 
which provide the ability to cross obstacles without directly 
looking at the lower limbs and the obstacle (Patla and Vickers, 

TABLE 4 Means (standard deviations) of the crossing angles of the hip, knee, and ankle joints of the leading swing limb and trailing stance limb in 
the patients with mild cognitive impairment (MCI) and healthy controls (Control) when the leading toe was above the obstacle of heights of 10, 20 
and 30% of the subject’s leg length (LL).

Variables Group
Obstacle height (% LL) Main effect

10% 20% 30% PG, PH

Leading swing limb

Hip

Flexion (+)/extension (−) MCI 56.9 (5.5) 65.9 (5.4) 71.5 (5.7) 0.465, <0.001↑

Control 58.3 (7.6) 67.2 (7.4) 74.5 (7.0)

Adduction (+)/abduction (−) MCI −0.2 (4.0) −3.1 (5.0) −4.5 (6.1) 0.042*, <0.001↑

Control 1.9 (2.7) −0.5 (4.1) −2.7 (3.2)

Knee

Flexion (+)/extension (−) MCI 92.7 (8.0) 108.1 (10.0) 117.0 (9.2) 0.835, <0.001↑

Control 90.3 (11.2) 106.7 (11.8) 118.4 (11.1)

Adduction (+)/ abduction (−) MCI −2.0 (10.4) 0.6 (11.7) 2.4 (14.0) 0.036*, 0.099

Control −11.4 (10.9) −11.5 (13.6) −10.7 (16.4)

Ankle

Dorsiflexion (+)/plantarflexion (−) MCI 7.3 (3.9) 7.3 (3.6) 8.9 (4.7) 0.405, 0.002↑

Control 9.5 (5.1) 8.9 (5.0) 10.0 (6.4)

Adduction (+)/abduction (−) MCI −1.4 (3.3) −2.1 (3.2) −2.4 (3.6) 0.377, 0.023↑

Control 0.0 (4.3) −0.6 (4.2) −0.9 (4.9)

Trailing stance limb

Hip

Flexion (+)/extension (−) MCI 0.9 (7.2) 2.0 (7.1) 1.9 (6.6) 0.435, 0.330

Control 3.4 (3.9) 3.5 (4.2) 3.4 (4.7)

Adduction (+)/abduction (−) MCI 2.1 (4.4) 0.0 (4.1) −2.6 (5.4) 0.316, <0.001↓

Control 4.1 (2.1) 2.2 (3.0) −1.9 (5.2)

Knee

Flexion (+)/extension (−) MCI 7.7 (6.7) 8.4 (5.9) 8.5 (6.5) 0.878, 0.722

Control 8.8 (6.3) 8.9 (6.4) 8.2 (6.6)

Adduction (+)/abduction (−) MCI −1.1 (3.6) −1.4 (2.9) −1.5 (3.0) 0.627, 0.202

Control −1.7 (2.5) −2.0 (2.9) −2.1 (3.2)

Ankle

Dorsiflexion (+)/plantarflexion (−) MCI 2.9 (2.4) 2.6 (2.8) 1.9 (2.9) 0.923, <0.001↓

Control 3.7 (2.0) 2.9 (1.9) 1.1 (2.7)

Adduction (+)/abduction (−) MCI −4.5 (1.8) −4.6 (2.1) −3.8 (2.5) 0.681, 0.050

Control −4.9 (2.3) −5.1 (2.4) −3.8 (2.0)

P-values for main group and height effects are given as no interactions were found. PG, MCI vs. Control; PH, value of p for obstacle height; *indicates a significant group effect (PG < 0.05); 
↑ indicates a linearly increasing trend and ↓ indicates a linearly decreasing trend (PH < 0.05).
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1997; Mohagheghi et al., 2004). The hippocampus thus plays an 
important role in the ability of working memory regarding the 
environment with an obstacle and the ability to reassign spatial 
orientation and navigation precisely to and from the obstacle 
before and during crossing (Wilkinson and Sherk, 2005; 
Whishaw et al., 2009). The hippocampus is involved not only 
in the formation and storage of long-term memories but also 
in the integration of visual, vestibular, and proprioceptive 
sensory and contextual information into spatial maps (Nutt 
et  al., 1993; Scherder et  al., 2007). Degeneration of the 
hippocampus thus has a direct impact on the performance of 
obstacle-crossing when the ability of spatial orientation and 
navigation is affected (Buzsáki and Moser, 2013; Eichenbaum 
and Cohen, 2014).

Apart from the degeneration of the hippocampus, the 
prefrontal cortex may also play a role in the formation of the 
kinematic strategy for obstacle-crossing in MCI, as both brain 
regions have been shown to have a positive relationship, especially 
during a spatial working memory task (Sigurdsson and Duvarci, 
2016). The prefrontal cortex is a key structure for executive 
functions (Funahashi and Andreau, 2013) and is the main brain 
region shared by the control of cognitive and gait function under 
the neural control mechanisms (Cohen et al., 2016). Executive 
functions refer to a set of cognitive processes, including mental 
flexibility, planning, decision-making, and cognitive control of 
behavior (Shallice and Burgess, 1991; Miyake et  al., 2000). 
Obstacle-crossing requires not only the ability of motor planning 
(Clark et al., 2014), but also an adequate allocation of cognitive 

TABLE 5 Means (standard deviations) of the crossing angles of the hip, knee, and ankle joints of the trailing swing limb and leading stance limb in 
the patients with mild cognitive impairment (MCI) and healthy controls (Control) when the trailing toe was above the obstacle of heights of 10, 20, 
and 30% of subjects’ leg length (LL).

Variables Group
Obstacle height (% LL) Main effect

10% 20% 30% PG, PH

Trailing swing limb

Hip

Flexion (+)/extension (−) MCI 29.7 (5.2) 32.4 (5.9) 35.1 (7.3) 0.593, <0.001↑

Control 26.5 (6.4) 31.8 (7.0) 35.0 (7.8)

Adduction (+)/abduction (−) MCI −2.0 (2.5) −1.9 (2.9) −2.6 (2.7) 0.511, 0.077

Control −1.0 (3.6) −1.2 (3.3) −2.0 (3.4)

Knee

Flexion (+)/extension (−) MCI 101.7 (11.0) 114.1 (12.1) 127.4 (12.7) 0.965, <0.001↑

Control 98.7 (17.5) 114.9 (16.1) 129.0 (15.3)

Adduction (+)/abduction (−) MCI −10.2 (7.2) −8.7 (6.6) −6.9 (7.1) 0.277, <0.001↑

Control −12.1 (7.3) −12.2 (8.2) −11.4 (7.5)

Ankle

Dorsiflexion (+)/plantarflexion (−) MCI −10.2 (9.4) −4.5 (6.7) 1.9 (4.1) 0.038*, 0.028↑

Control −3.7 (10.5) 0.8 (6.1) 5.0 (7.8)

Adduction MCI −2.1 (2.6) −3.1 (2.6) −2.8 (3.9) 0.328, 0.560

Control −0.6 (6.0) −0.9 (7.0) −0.3 (7.1)

Leading stance limb

Hip

Flexion (+)/extension (−) MCI 10.9 (6.8) 11.3 (7.5) 11.8 (6.8) 0.777, 0.185

Control 12.2 (3.1) 11.4 (3.5) 12.3 (4.6)

Adduction (+)/abduction (−) MCI 5.9 (2.6) 4.2 (2.9) 1.3 (4.6) 0.730, <0.001↓

Control 6.3 (2.6) 3.1 (5.5) 0.3 (5.3)

Knee

Flexion (+)/extension (−) MCI 9.0 (7.7) 8.3 (7.7) 6.5 (7.1) 0.588, <0.001↓

Control 8.7 (5.7) 6.5 (5.2) 4.4 (4.8)

Adduction (+)/abduction (−) MCI 0.1 (3.0) −0.1 (3.3) 0.2 (3.3) 0.852, 0.123

Control −0.4 (2.5) −0.2 (2.4) 0.1 (2.3)

Ankle

Dorsiflexion (+)/plantarflexion (−) MCI 0.9 (2.9) 1.4 (2.9) 0.8 (2.7) 0.821, 0.058

Control 1.5 (2.2) 1.0 (2.1) −0.0 (2.3)

Adduction (+)/abduction (−) MCI −2.4 (1.8) −2.8 (1.5) −1.8 (2.0) 0.868, 0.089

Control −2.7 (2.9) −2.0 (4.3) −1.6 (4.0)

P-values for main group and height effects are given as no interactions were found. PG, MCI vs. Control; PH, p-value for obstacle height; *indicates a significant group effect (PG < 0.05); ↑ 
indicates a linearly increasing trend and ↓ indicates a linearly decreasing trend (PH < 0.05).

https://doi.org/10.3389/fnagi.2022.950411
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Lu et al. 10.3389/fnagi.2022.950411

Frontiers in Aging Neuroscience 10 frontiersin.org

resources, including memory (Patla and Vickers, 1997; 
Mohagheghi et al., 2004), attention and executive function (Clark 
et al., 2014; Clark, 2015). Both the hippocampus and prefrontal 
cortex are responsible for memory, attention, and executive 
functions and are associated with the changes in temporal–spatial 
gait parameters of patients with MCI, and with avoiding obstacles 
(Malouin et al., 2003; Allali et al., 2016; McGough et al., 2018; 
Beauchet et  al., 2020). Individuals with aMCI and additional 
executive dysfunction also show a greater risk of a misstep from 
choosing the incorrect motor responses during walking in a 
complex obstructed walkway that requires some decision-
making, mental flexibility, or cognitive control of behavior 

(Persad et al., 2008). Although the current patients were impaired 
with single-domain aMCI, they showed significantly lower scores 
in global cognition, executive function, and attention compared 
to healthy controls (Table 1). It appears that the observed specific 
kinematic strategies for obstacle-crossing in the current patients 
were a result of both compromised ability of spatial orientation 
and navigation associated with the degeneration of the 
hippocampus, and the compromised executive function 
associated with the prefrontal cortex. Further comparative studies 
on multi-domain aMCI may be needed to identify the specific 
effects of impairments of domains such as executive functions 
and attention on the kinematics of obstacle-crossing.

A B

C                                         D E

FIGURE 3

Effects of the observed significant angular changes at individual joints on the leading toe-obstacle clearance in the MCI group (black stick figure) 
compared to Control (A and C, grey stick figure) when the leading toe was above an obstacle of 30% LL in height. The stick model was drawn 
using marker positions of a typical subject from each group. The segments with solid grey circles are joints of the reference limb. With the stance 
foot fixed to the ground, only one joint was rotated at a time according to the mean angular change reported in Tables 3, 4, while keeping the 
angles of the other joints fixed, and the segments of the stance limb and the segments of the swing limb distal to the current joint stationary. The 
MCI group showed increased pelvic anterior tilt (B), and increased hip abduction (D) and knee adduction (E) in the swing limb. As indicated by the 
black stick figure, while (D,E) tended to increase the leading toe-obstacle clearance, (B) gave the opposite effect, leading to the observed normal 
toe-obstacle clearance. Note that the stick figures were drawn based on the statistical results of the averaged values of both limbs reported in  
Tables 3, 4.
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The current study was the first to identify the kinematic 
strategies used by patients with amnestic MCI during obstacle-
crossing. Further studies on patients with multiple-domain aMCI 
and non-amnestic MCI would be needed to determine whether 
kinematic strategies for obstacle-crossing would change with 
different cognitive impairment subtypes or with the progression 
of the disease. Individuals with cognitive deficits display a 
decreased ability to estimate balance hazards when navigating, 
particularly under increased cognitive challenges (Pieruccini-
Faria et al., 2019). Further studies may also examine the effects of 
the neurological pathway mediating both cognitive and motor 
functions via dual-tasking on the kinematic strategies in older 
people with MCI or populations with increased fall risks. Further 
studies on the kinematic strategies under cognitive/motor dual-
task conditions will be  needed to better identify the roles of 
degraded cognitive function in the observed postural adjustments 
during obstacle-crossing. Understanding the similarities or 
differences in the control strategies and the resulting joint 
mechanics between normal and patient groups would be useful 
for developing improved fall-prevention strategies and for making 
better use of the obstacle-crossing task in rehabilitation programs.

Conclusion

The current study identified the kinematic changes in the 
pelvis-leg apparatus in patients with single-domain aMCI during 
obstacle-crossing as compared to healthy controls. The patients 

were able to maintain normal leading and trailing toe-obstacle 
clearances for all tested obstacle heights with a specific kinematic 
strategy, namely increased pelvic anterior tilt, swing hip abduction, 
and knee adduction during leading-limb crossing, and decreased 
pelvic posterior tilt and swing ankle dorsiflexion during trailing-
limb crossing. The current results suggest that regular monitoring 
of obstacle-crossing kinematics for reduced toe-obstacle clearance 
or any signs of changes in crossing strategy may be helpful for 
early detection of compromised ability to cross obstacles in 
patients with single-domain aMCI. Further studies using a motor/
cognitive dual-task approach in patients with multiple-domain 
MCI may be  needed for a complete picture of the functional 
adaptations in such patient groups.
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FIGURE 4

Effects of the observed significant angular changes at individual joints on the trailing toe-obstacle clearance in the MCI group (black stick figure) 
compared to Control (A, grey stick figure) when the trailing toe was above an obstacle of 30% LL in height. The stick model was drawn using 
marker positions of a typical subject from each group. The segments with solid grey circles are joints of the reference limb. With the stance foot 
fixed to the ground, only one joint was rotated at a time according to the mean angular change reported in Tables 3, 5, while keeping the angles of 
the other joints fixed, and the segments of the stance limb and the segments of the swing limb distal to the current joint stationary. The MCI group 
showed decreased pelvic posterior tilt (B) and decreased ankle dorsiflexion in the swing limb (C). As indicated by the black stick figure, (B) tended 
to increase the toe-obstacle clearance while (C) gave the opposite effect, leading to the observed normal trailing toe-obstacle clearance. Note 
that the stick figures were drawn based on the statistical results of the averaged values of both limbs reported in Tables 3, 5.
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