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Objective: Acoustic neuroma (AN) is a common benign tumor. Little is known 

of neuropsychological studies in patients with acoustic neuroma, especially 

cognitive neuropsychology, and the neuropsychological abnormalities of 

patients affect their life quality. The purpose of this study was to explore the 

changes in the cognitive function of patients with acoustic neuroma, and 

the possible mechanism of these changes by structural magnetic resonance 

imaging.

Materials and methods: We used a neuropsychological assessment battery 

to assess cognitive function in 69 patients with acoustic neuroma and 70 

healthy controls. Then, we used diffusion tensor imaging data to construct 

the structural brain network and calculate topological properties based 

on graph theory, and we  studied the relation between the structural brain 

network and cognitive function. Moreover, three different subnetworks (short-

range subnetwork, middle-range subnetwork, and long-range subnetwork) 

were constructed by the length of nerve fibers obtained from deterministic 

tracking. We studied the global and local efficiency of various subnetworks 

and analyzed the correlation between network metrics and cognitive function. 

Furthermore, connectome edge analysis directly assessed whether there were 

differences in the number of fibers in the different brain regions. We analyzed 

the relation between the differences and cognitive function.

Results: Compared with the healthy controls, the general cognitive function, 

memory, executive function, attention, visual space executive ability, visual 

perception ability, movement speed, and information processing speed 

decreased significantly in patients with acoustic neuroma. A unilateral hearing 

loss due to a left acoustic neuroma had a greater impact on cognitive function. 

The results showed that changes in the global and local metrics, the efficiency 

of subnetworks, and cognitively-related fiber connections were associated 

with cognitive impairments in patients with acoustic neuroma.
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Conclusion: Patients exhibit cognitive impairments caused by the decline 

of the structure and function in some brain regions, and they also develop 

partial compensation after cognitive decline. Cognitive problems are frequent 

in patients with acoustic neuroma. Including neuropsychological aspects in 

the routine clinical evaluation and appropriate treatments may enhance the 

clinical management and improve their life quality.
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Introduction

Acoustic neuroma (AN), also known as vestibular 
schwannoma, is a benign tumor with a high incidence of 85% in 
the cerebellopontine angle, which mostly originates from the 8th 
cranial nerve sheath (Fortnum et al., 2009). About 90% of the 
patients present gradual progressive unilateral hearing loss 
(UHL)(Suzuki et  al., 2010). AN is a common cause in UHL 
patients. UHL is defined as an asymmetric loss of hearing in 
which one side has a hearing loss and the other has a normal 
hearing (Vincent et al., 2015). The incidence of UHL is 7.2% in 
the United  States (Golub et  al., 2018). The difficulty of 
understanding and communicating in a noisy environment and 
the decreased ability of the sound source localization in patients 
with UHL, which affect the ability to receive important 
information from both sides simultaneously (Nelson et al., 2019).

Previous studies on patients with bilateral deafness have 
confirmed that the severity of hearing loss was positively 
correlated with cognitive impairment. Cognitive impairment in 
presbycusis with moderate and severe hearing loss is 1.4 and 1.6 
times higher than in healthy people, respectively (Davies et al., 
2017). Presbycusis is related to the increased risk of cognitive 
impairment, including decreased executive function (Gurgel et al., 
2014), memory (Lin et al., 2011), and psychomotor processing 
disorders (Chen et al., 2018). Early intervention of the hearing can 
improve the cognitive function and behavior state in bilateral 
presbycusis patients (Ma et al., 2016; Adrait et al., 2017). Studies 
have shown that a partial or unilateral decrease in hearing in 
patients with UHL, which can affect the central auditory cortex 
and remodel vision and other sensory systems (Propst et  al., 
2010), even cognitively-related brain regions (Zhang et al., 2018), 
resulting in the decline in advanced cognitive functions such as 

memory, language, and learning. Children with UHL have poorer 
language development and cognition than normal children, and 
they have problems such as language retardation and inattention 
(Carew et al., 2018; van Wieringen et al., 2019), among whom the 
proportion of children with behavioral problems (25%) is higher 
than the normal children (Lieu et al., 2012). The connections in 
the brain network of executive function, language comprehension, 
and cognition in children with UHL are different from those of 
normal children (Jung et al., 2017).

To date, there are few reports on whether the hearing loss in 
UHL, especially AN patients, will cause cognitive dysfunction; the 
conclusions from previous studies were different; the number of 
reported cases was low; and little was known about the mechanism. 
In this study, we analyzed the cognitive function between AN patients 
and healthy controls (HCs) using various neuropsychological tests. 
Furthermore, we first systematically explored the possible underlying 
mechanism of cognitive impairment in AN patients using diffusion 
MRI. We constructed the structural brain network based on diffusion 
tensor imaging (DTI) data, and analyzed the network based on graph 
theory and other related analyses of brain networks, in order to study 
the brain connectomics of cognitive dysfunction in AN patients.

Materials and methods

Participants

Sixty-nine right-handed AN patients (44 females and 25 
males, age range: 19–76 years) were recruited from the outpatient 
and ward of Neurosurgery of West China Hospital of Sichuan 
University, from October 2019 to July 2020. Seventy right-handed 
hearing controls (48 females and 22 males, age range: 26–74 years) 
were also enrolled in our study. The demographic information for 
these subjects is shown in Table 1; Supplementary Tables 2, 3. The 
experiment was approved by the hospital ethics committee, and 
all participants signed the informed consent.

The inclusion criteria of AN were as follows: (1) unoperated 
unilateral acoustic neuroma; (2) no history of mental or neurological 
diseases; (3) right-handedness; (4) no contraindications of MRI 
(such as spatial claustrophobia and metal implants). Healthy control 

Abbreviation AN - Acoustic neuroma DMN - Default ode network DTI - 

Diffusion tensor imaging Eg - Global efficiency Eloc - Local efficiency FN - Fiber 

number FL - Fiber length HC - Healthy control LAN - Left acoustic neuroma 

MoCA - Montreal cognitive assessment PTA - Pure tone average RAN - Right 

acoustic neuroma RAVLT - Rey Auditory Verbal Learning Test SDMT - Symbol-

digital modalities test TMT - Trail-making test UHL - Unilateral hearing loss.
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(HC) group: (1) normal hearing; (2) right-handedness; (3) no 
history of craniocerebral trauma; (4) 18–75 years old.

Exclusion criteria were as follows: (1) previous diseases 
such as chronic otitis media that affect hearing threshold; (2) 
excluding the previous history of ear surgery, hearing loss 
caused by ototoxic drugs, or wearing hearing aids; (3) bilateral 
acoustic neuroma, such as neurofibromatosis type 2; (4) 
conductive hearing loss; (5) craniocerebral trauma; (6) tumors 
with other intracranial sites and nature; (7) excluding the 
history of craniocerebral surgery; (8) those who could not 
cooperate to complete the neuropsychological test (including 
daltonism and color weakness).

The average air conduction thresholds at four frequencies (0.5, 
1, 2, and 4 kHz) were calculated as the pure tone average (PTA), 
representing the hearing levels of the subjects. According to the 
World Health Organization, hearing loss was classified as mild 
(PTA 26-40 dB HL), moderate (PTA 41–60 dB HL), severe (PTA 
61–80 dB HL), profound (PTA > 81 dB HL).

Patients with acoustic neuroma are often complicated with 
tinnitus symptoms. In this study, AN patients accompanying 
tinnitus were assessed using the tinnitus handicap inventory 
(THI) scale (Newman et al., 1996). Higher scores indicate greater 
severity and greater impact on daily life.

Cognitive functions of all subjects were assessed, including the 
following measures: Montreal cognitive assessment (MoCA), Rey 
auditory verbal learning test (RAVLT) immediate memory and 
delayed memory, Stroop color-word test A, B, and C (Stroop A, B, 
and C), symbol digit modalities test (SDMT), Trail-Making Test 
A and B (TMT A and B), Hamilton depression scale (HAMD), 
and Hamilton anxiety scale (HAMA).

MRI data acquisition

The data acquisition parameters were as follows: DTI and 
3D high-resolution T1WI were acquired on GE 750 W 3.0Tesla 

TABLE 1 Comparison of clinical data and cognitive function among LAN, RAN, and HC groups.

LAN (n = 44) RAN (n = 25) HC (n = 70) F/H/T values p value Post-hoc

gender (male) 19 (43.2%) 6 (24.0%) 22 (31.4%) 2.979 0.225a N/A

age (yrs) 50.28 ± 13.58 50.26 ± 12.49 46.54 ± 10.05 1.769 0.174b N/A

years of education 

(yr)

11.00 (7.30) 9.00 (9.00) 9.00 (7.00) 3.790 0.150c N/A

Course of disease (yr) 2.00 (4.17) 2.50 (4.50) N/A −1.111 0.267d N/A

THI 14.00 (6.00) 12.00 (8.00) N/A −0.131 0.896d N/A

Left PTA (dB HL) 55.73 ± 26.14 22.15 ± 10.67 N/A 5.186 <0.001e* N/A

Right PTA (dB HL) 17.50 (10.00) 66.74 ± 34.06 N/A −4.784 <0.001d* N/A

tumor diameter (cm) 3.02 ± 1.21 3.06 ± 1.13 N/A −0.138 0.891e N/A

MoCA scores 21.00 (6.00) 20.00 (9.00) 25.50 (4.00) 38.792 <0.001c* RAN<HC

LAN < HC

RAVLT immediate 

recall

34.00 (16.00) 31.00 (15.00) 47.00 (19.00) 32.651 <0.001c* RAN<HC

LAN < HC

RAVLT delay recall 6.00 (5.00) 5.00 (4.00) 9.00 (5.00) 18.441 <0.001c* RAN<HC

LAN < HC

Stroop A (s) 32.00 (27.00) 36.00 (16.75) 27.00 (14.50) 5.714 0.057 N/A

Stroop B (s) 49.00 (32.00) 53.00 (24.00) 38.00 (20.00) 15.631 <0.001c* RAN>HC

LAN > HC

Stroop C (s) 129.00 (83.00) 131.00 (64.00) 85.50 (53.00) 24.963 <0.001c* RAN>HC

LAN > HC

SDMT 39.00 (28.00) 34.00 (34.00) 45.00 (28.00) 10.824 0.004 c* RAN<HC

LAN < HC

TMT A (s) 52.00 (65.00) 67.00 (63.00) 40.50 (30.00) 18.100 <0.001c* RAN>HC

LAN > HC

TMT B (s) 170.00 (193.00) 230.00 (191.00) 104.00 (116.00) 15.320 <0.001c* RAN>HC

LAN > HC

HAMD 9.00 (7.00) 10.00 (5.00) 2.00 (3.00) 69.242 <0.001c* RAN>HC

LAN > HC

HAMA 6.00 (6.00) 7.00 (6.00) 2.00 (2.00) 62.254 <0.001c* RAN>HC

LAN > HC

ap and bp values were obtained by the R × C chi-square test and ANOVA test, respectively. cp and dp values were obtained by Kruskal-Wallis and Mann–Whitney (nonparametric test), ep 
values were obtained by t-test. F values, H values, and T values were obtained by ANOVA, Kruskal-Wallis, and t-test. All data were expressed as mean ± SD, median (interquartile range), 
or number (percentage). The significance level was set at p < 0.05. *p < 0.05. LAN: left acoustic neuroma; RAN: right acoustic neuroma; HC: healthy controls; PTA: pure tone average; THI: 
tinnitus handicap inventory; N/A: not available. HAMD/ HAMA.
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magnetic resonance equipment (General Electric Medical 
System, Milwaukee, WI, United States) with a 32-channel head 
coil. Acquisition parameters used for DTI sequence were as 
follows: TR = 7,000 ms, TE = 72 ms, FOV = 24 cm × 24 cm， 

acquisition matrix = 256 × 256，flip angle = 90°，slice thickness 
/ slice spacing = 4.0 mm/0.0 mm (no intervals). A total of 34 
slices were scanned. Diffusion-sensitive gradients were applied 
in 51 directions (b = 1,000 s/mm2) and one b0 (b = 0 s/mm2) 
images. T1 scanning parameters were as follows: slice 
thickness = 1 mm, scanning matrix = 512 × 512, voxel size = 0.5 ×  
0.5 × 1.0 mm3.

Data preprocessing

The MRI data preprocessing and network construction were 
performed using PANDA (www.nitrc.org/projects/panda; Cui 
et al., 2013). The main steps were as follows: data quality check, 
data format conversion, and head eddy-current effect correction. 
The whole brain fiber bundle was tracked using deterministic 
fiber tracking (Mori et al., 1999). The main results tracked by 
PANDA software were fiber number (FN) and fiber length (FL). 
The next steps were to explore the possible mechanism of 
cognitive function changes in patients with AN from different 
perspectives based on these results. Firstly, the structural brain 
network was constructed using the fiber number, and we analyzed 
the network properties and the correlation between the network 
properties and cognition function. Secondly, we  directly 
compared the FN in any two brain regions between AN patients 
and healthy controls. Thirdly, the FL was used to construct short-
range, middle-range, and long-range subnetworks, and the 
relationships between subnetwork topological properties and 
cognition decline were discussed.

Network construction and graph theory 
metrics calculation

The FN was calculated by the deterministic fiber tracking and 
was registered to the individual Anatomical Automatic Labeling 90 
regions (AAL90). Due to tumors compressing the cerebellum and 
brainstem in some patients, it may affect the study of the cerebellum, 
so we constructed networks based on the 90 cerebral regions of the 
AAL atlas, excluding the cerebellar regions. The FN value of every 
two brain regions constructed a weighted matrix. The connections 
were considered effectively structurally connected if at least three 
fibers in two brain regions in 80% of the subjects (Shu et al., 2015), 
transforming the weighting matrix into a binary matrix. Network 
topological properties were calculated using the GRETNA toolbox 
(http://www.nitrc.org/projects/gretna/), including global network 
metrics (Shu et al., 2015; Wang et al., 2015a): 1. small world property: 
shortest path length (Lp), clustering coefficient (Cp), and small-
world parameters (λ, γ, and σ). 2. global efficiency (Eg), local 
efficiency (Eloc); local metrics: node local efficiency, node efficiency, 

node shortest path, node clustering coefficient, and degree centrality 
(see Supplementary Table 1).

Meanwhile, for the weighted FN matrix, we compared the FN 
between 90 × 90 brain regions using network-based statistic (NBS) 
multiple comparison correction (Zalesky et al., 2010). The NBS 
procedure was performed as follows: (1) admit weighted connections 
with statistical analysis surpassing p < 0.001 between groups; (2) seek 
clusters that suprathreshold connections; and (3) via permutation 
testing (5,000 permutations), compute p values (FWE-corrected) for 
each cluster. Significant differences between groups were performed 
using p < 0.05 to control the FWE after NBS correction.

The FL was classified according to the following criteria: 1. 
short-range subnetwork: fiber length less than 40 mm 2. middle-
range subnetwork: fiber length 40-80 mm; 3. long-range 
subnetwork: fiber length was greater than 80 mm (Wang et al., 
2013). The global and local efficiency of these subnetworks were 
calculated, respectively. And Spearman correlation was assessed 
between the network metrics and the cognitive scale.

Statistical analysis

SPSS (version 23.0, IBM, United States) was used for statistical 
analysis. Data are presented as mean ± standard deviation for 
normally distributed variables or median (interquartile range) for 
not normally distributed variables. Categorical variables were 
expressed as percentage. When comparing two groups of 
independent data, t-test (two-tailed) was used if the data were 
satisfied normal distribution with homogeneous variance, 
otherwise, Mann–Whitney U nonparametric test was performed. 
According to the comparison among the two subgroups of AN 
(LAN&RAN) and the HC groups, one-way ANOVA or Kruskal-
Wallis H test was used to test whether the data were satisfied normal 
distribution and homogeneous variance. The qualitative data were 
compared by χ 2 test. Spearman correlation analysis was used to 
explore the relationship between clinical data and cognitive 
function. The statistically significant p value was less than 0.05.

The global metrics of the brain network were statistically 
analyzed by using the SPSS23.0 and the GRETNA software (http://
www.nitrc.org/projects/gretna/; Wang et al., 2015b) was used for 
statistical analysis for local metrics. The comparison of local 
metrics is p < 0.05, using a False Discovery Rate (FDR) for multiple 
comparison correction.

Results

Demographic characteristics

A total of 139 subjects were included in this study, including 
69 patients with AN (LAN: RAN = 44: 25) and 70 HC patients. No 
significant differences in gender, age, and years of education 
between the two groups or among the left acoustic neuroma 
(LAN), right acoustic neuroma (RAN), and HC groups were 
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attested (p > 0.05), as reported in Table 1, Supplementary Table 2. 
There were no significant differences in the course of the disease, 
PTA on the affected side, and THI scores between the LAN and 
RAN groups, as displayed in Table 1.

Comparison of cognitive function and 
correlation analysis between AN and HC 
groups

Compared with the HC group, the patients with AN 
performed worse in MoCA, RAVLT, Stroop, SDMT, and TMT 
(p < 0.05; See Supplementary Tables 2, 3), and both groups (LAN 
and RAN) also performed worse in MoCA, RAVLT, Stroop B, C, 
SDMT, and TMT (p < 0.05; see Table 1; Supplementary Table 4). 
Spearman correlation analysis showed that the left-sided PTA of 
patients with LAN was negatively correlated with MoCA 
subscores on visuospatial executive and delayed recall, and 
SDMT, and positively correlated with Stroop A and B. In RAN 
patients, the right-sided PTA was negatively correlated with 
MoCA subscores on orientation, RAVLT, and SDMT, while 
positively correlated with Stroop B and TMT-A. See Figure 1.

Comparison of cognitive function among 
patients with different grades of AN and 
HC groups

According to Koos et al., (1993), all AN patients were graded 
into four groups: grade 1 (tumor diameter < 1 cm) in 1 cases; grade 2 
(tumor diameter 1-2 cm) in 16 cases; grade 3 (tumor diameter 
2–3 cm) in 17 cases; grade 4 (tumor diameter > 3 cm) in 35 cases. 
Because the number of patients with grade 1 was too small to analyze 
statistically, the cognitive functions of patients of other grades were 
compared with those of the HC group. The results showed that 
compared with the HC group, the cognitive function of patients with 
grades 2–4 decreased, as listed in Supplementary Tables 5, 6. To 
investigate whether tumor size affects cognitive function, tumor size 
was defined on the basis of the longest diameter, and Spearman 
correlation analysis was performed between tumor diameter and 
cognitive function, and no significant correlation was found between 
tumor size and cognitive function.

Comparison of cognitive function among 
patients with different degrees of hearing 
loss and HCs

According to WHO grade (1997), the hearing of the affected 
side (tumor side) of the patients with AN were as follows: normal 
hearing (PTA < 25 dB HL) in 5 cases, mild loss (PTA 26–40 dB HL) 
in 12 cases, moderate loss (PTA 41–60 dB HL) in 9 cases, severe loss 
(PTA 61–80 dB HL) in 13 cases, profound loss (PTA > 81 dB HL) in 
10 cases. Compared with the HC group, the cognitive function of 

AN patients with mild to profound hearing loss decreased to 
various degrees, see Supplementary Tables 7, 8.

Results of global metrics

Small world property
The small world property with LAN was tested by one-sample 

t-test, the same for RAN. The results were p < 0.001, showing that 
both left and right AN patients have obvious “small world 
property.” No significant differences were found among the LAN, 
RAN, and HC groups. The small-world networks can highly 
effectively integrate, segregate, and transmit information with low 
cost. The above results indicated that patients with auditory 
neuroma still have the characteristics of high efficacy and less 
energy loss. Compared with the HC group, the Cp and λ were 
significantly lower in RAN patients (p < 0.001, p = 0.002, 
respectively), and the Lp was significantly higher in LAN patients 
(p = 0.003). See Figure 2.

Global efficiency (Eg) and local efficiency (Eloc).
Compared with the HC group, the Eg of the LAN and RAN 

groups decreased (p = 0.009, 0.003, respectively); the Eloc of the RAN 
group decreased significantly (p < 0.001). The Eloc of the RAN group 
was lower than that of the LAN group (p = 0.036). See Figure 2.

Results of local metrics

The results of local metrics were as follows:
Compared with the node efficiency of the HC group, both left 

and right AN patients showed a more extensive decrease, mainly 
in the frontal lobe, occipital lobe, parietal lobe, limbic system, 
basal ganglia, thalamus, and so on. Only in the LAN group, the 
node efficiency of the left middle and inferior temporal gyrus 
increase, which was associated with compensation for auditory 
deprivation. The differential brain regions of node efficiency are 
shown in Figure 3B; Supplementary Tables 8, 9. Furthermore, 
compared with the HC group, all the other local metrics decreased, 
such as node local efficiency, node shortest path, node clustering 
coefficient, and degree centrality, see Supplementary information 
(p < 0.05, FDR corrected).

Correlations between graph theory 
metrics and cognitive performance

The results showed that the Eg and Eloc were positively 
correlated with the MoCA (r = 0.180, p = 0.034; r = 0.207, p = 0.014, 
respectively), and the Eloc was positively correlated with RAVLT 
delayed recall (r = 0.209, p = 0.014), as shown in Figure 3A.

The node efficiency of 90 brain regions can reflect the inherent 
property of each brain region to some extent, so Spearman 
correlation analysis was performed between the node efficiency of 
differential brain regions and cognitive performance. Widespread 
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decreased node efficiency affected general cognitive function 
mainly in the frontal lobe, parietal lobe, insular, and limbic system, 
involving the default mode network (DMN), frontoparietal 
network, and salience network, which related to advanced 
cognition. The results are shown in Supplementary Tables 9, 10.

Results of connectome edge analysis

Using connectome edge analysis, fiber number in the brain 
region between AN and HC groups was directly compared. 
We defined positive or negative connections according to the 
increase or decrease in the number of fibers between brain 
regions. We found that compared with the HC group, the LAN 
and RAN patients had both positive and negative connections. 
See Figure 4 for details.

Eg and Eloc of the three subnetworks

Compared with the HC group, the Eg of the LAN group 
decreased significantly in the short-range subnetwork (p = 0.002), 
middle-range subnetwork (p < 0.001), and long-range subnetwork 

(p = 0.001), and the Eloc of LAN patients in the short-range 
subnetwork decreased significantly (p = 0.002). There was no 
significant change in RAN patients. See Figure 5.

Correlation analysis between metrics of 
subnetworks and cognitive scale

The Eg of short-range and middle-range subnetwork was 
positively correlated with MoCA, RAVLT, and SDMT, and 
negatively correlated with Stroop and TMT. The Eg of the long-
range subnetwork and the Eloc of the short-range subnetwork were 
negatively correlated with Stroop C and TMT, respectively. See 
Figure 5; Supplementary Figure 3.

Discussion

The cognitive performance in AN 
patients

The LAN and RAN groups performed worse on MoCA, RAVLT, 
Stroop, SDMT, and TMT tests than those of the HC group, revealing 

A

C

B

FIGURE 1

Relation between pure tone average (PTA) and cognition. (A) Scatter plots representing the distribution of PTA in the left acoustic neuroma (LAN) 
and right acoustic neuroma (RAN) groups. The numbers in the box represent the average PTA of the affected side in LAN and RAN patients, 
respectively. (B) Scatterplots showing the associations between right PTA and cognitive scale in the RAN patients. (C) Scatterplots showing the 
correlations between left PTA and cognitive scale in the LAN patients. The correlation analysis between PTA and cognition shows that hearing loss 
in AN patients affects cognitive functions such as visuospatial executive, memory, attention, motor speed, visual perception, and executive control. 
Error bars in (A) represent mean ± standard deviation. The gray regions in (B,C) show a 95% confidence interval. *, p < 0.05;**, p < 0.01.

https://doi.org/10.3389/fnagi.2022.970159
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Deng et al. 10.3389/fnagi.2022.970159

Frontiers in Aging Neuroscience 07 frontiersin.org

that both LAN and RAN patients developed cognitive dysfunction 
such as memory, attention, executive function, movement speed, and 
information processing speed. Previous studies have established that 
UHL children are more likely to develop cognition dysfunction such 
as hypoprosexia, language development retardation, and poor 
learning. Goebel and Mehdorn (2018) enrolled 27 patients with AN 
and 18 patients with posterior fossa meningioma, and the authors 
found that most of the patients (69%) develop cognitive impairment, 
the most common performance is attention (such as alertness) and 
visual movement speed, which is consistent with our findings. Fan 
et  al., (2020) investigated 25 LAN and 15 RAN patients and 
demonstrated that the general cognitive function is normal in the AN 
group, but the attention, information processing efficiency, executive 
function, and memory decreased. Our conclusion is inconsistent with 
theirs. We found that general cognitive function, attention, executive 
function, memory, visuospatial and perception, movement speed, 
and information processing speed in AN patients were significantly 
lower than those of normal people. In our study, the AN patients 
performed worse in more neuropsychological tests, maybe because 
our sample was larger and the statistical efficiency was relatively 
efficient. The course of the disease was negatively correlated with 
cognition, showing that with the development of the course of the 
disease, the ability of visuospatial executive, attention, memory, motor 
speed, and information processing speed decrease gradually, so early 
intervention may delay the effect of disease on cognitive function 

(Supplementary Figures 1, 2). We found that patients with different 
grades of AN had different degrees of cognitive decline, however, 
there was no correlation between tumor size and cognitive function, 
demonstrating that tumor size was not the main factor for cognitive 
decline in AN patients. Meanwhile, this study also found that 
cognitive function decreased in patients with different degrees of 
hearing loss, and there was a significant correlation between PTA and 
cognitive function. It is suggested that hearing loss may have a greater 
effect on the cognitive function of patients with AN. Better hearing 
protection or reconstruction, may be better cognitive function.

The relation between global metrics and 
cognitive function

We found that AN patients had small-world properties, 
however, the average shortest path was higher than that of normal 
people. The Eg was lower than that of normal people, and the Eloc 
decreased in RAN patients. The small-world networks can highly 
effectively integrate, segregate, and transmit information with low 
cost (Bullmore and Sporns 2012). Generally, the fundament of brain 
organization efficiently is two basic principles: functional separation 
and integration (Tononi et al., 1994; Sporns 2011). The clustering 
coefficient and Eloc reflect the functional separation; the average 
shortest path and Eg reflect the functional integration. In our study, 

A

C D

B

FIGURE 2

The comparisons of global metrics in three groups. (A) Scatter plots representing the distribution of global efficiency (Eg) and local efficiency (Eloc) 
in LAN, RAN, and HC groups. (B) Scatter plots representing the distribution of small world properties (σ) in the LAN, RAN, and HC groups. (C) Eg and 
Eloc of structural brain network for three groups. Eg and Eloc in AN patients decreased compared to the HC group. (D) Shortest path length (Lp), 
clustering coefficient (Cp), and small-world parameters λ (λ = Lpreal / Lprandom, Lpreal: the Lp of the real network; Lprandom: the Lp of random network) of 
structural brain network for three groups. The numbers in the box represent mean values. Error bars represent mean ± standard deviation.
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the clustering coefficient, the average shortest path, Eg, and Eloc 
changed, suggesting that functional separation and integration 
decreased in AN patients. The correlation analysis between global 
and local efficiency and cognitive scale in AN patients showed that 
global and local efficiency (Eg, Eloc) were positively correlated with 
MoCA, and local efficiency (Eloc) was also positively correlated with 
RAVLT delayed recall. The decrease in the global and local efficiency 
of patients led to general cognitive impairment, and the decrease in 
delayed recall ability was related to the decrease in local efficiency of 
the brain network. The global efficiency reflects the ability of the 
brain network to transmit information and the degree of network 
polymerization, and the local efficiency is used to measure the 
efficiency of distributed information processing in the whole brain 
structure network. The decrease in global and local efficiency in AN 
patients led to the decline of whole brain information transmission 
ability and information processing efficiency, which may be  the 
reason for cognitive impairment.

The relation between local metrics and 
cognitive function

The brain regions with decreased node efficiency affected 
MoCA (representing general cognitive function) mainly in the 

frontal lobe, parietal lobe, insular, and limbic system, involving 
the default model network (DMN), frontoparietal network, 
salience network which are related to advanced cognition. 
We first found that the decline of immediate and delayed recall 
in RAVLT was mainly related to the decrease of node efficiency 
in the right supramarginal gyrus, dorsolateral superior frontal 
gyrus, opercular part of inferior frontal gyrus, rolandic 
operculum, insula, precentral gyrus, postcentral gyrus, superior 
parietal gyrus, cuneus, angular gyrus, and precuneus 
(Supplementary Tables 9, 10). The process of memory includes 
encoding and retrieval, and the memory retrieval brain region 
includes the right frontal lobe, anterior cingulate cortex, 
mid-parietal regions, and thalamus (Nyberg et al., 1996). Tulving 
et al., (1994) found that the left frontal lobe is more active in 
memory encoding and the right frontal lobe in memory 
retrieval, which is called HERA model by authors. We also found 
the brain regions related to RAVLT immediate and delayed recall 
were mainly located in the frontal lobe, insular, and parietal lobe. 
Smith et  al., (1991) demonstrated that the visuospatial 
components of working memory are significantly activated in 
the right hemisphere, including the prefrontal lobe, premotor 
area, parietal lobe, and occipital lobe. In this study, the brain 
regions related to immediate memory were also located in the 
prefrontal lobe, premotor area, and parietal lobe, which was 

A

B

FIGURE 3

Correlations between global metrics and cognition. (A) Correlations between global metrics (Eg and Eloc) and cognitive scales (MOCA and RAVLT 
delay recall); Statistically significant Spearman correlation coefficients (n = 139, p < 0.05) are shown (MOCA: Montreal cognitive assessment; RAVLT: 
Rey auditory verbal learning test). (B) Schematic diagram of the differential node efficiency among the LAN, RAN, and HC groups. AN patients 
showed a more extensive decrease of node efficiency, mainly in the frontal lobe, occipital lobe, parietal lobe, limbic system, basal ganglia, 
thalamus.
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consistent with the literature. The decline in memory in AN 
patients was related to the decrease of node efficiency in brain 
regions involved in memory retrieval and working memory.

Connectome edge analyses and 
cognitive function

Previous studies have supported that the right 
parahippocampal gyrus, temporal pole, and fusiform gyrus are 
involved in the composition of memory (Aminoff et al., 2013). 
We had confirmed that decreased memory occurred in LAN 
patients in our study. The fiber connections between the right 
precuneus and the occipital lobe were strengthened, indicating 
that the compensation of the visual pathway increased after left 
auditory deprivation in LAN patients. The negative connections 
in LAN patients were as follows: (1) Right precuneus and left 
calcarine cortex, left posterior cingulate gyrus, postcentral 
gyrus. The precuneus and posterior cingulate gyrus are the key 
brain regions of the DMN, and their functions include 
memorizing, making social inferences, and looking forward to 

the future (Buckner and DiNicola 2019). The internal 
connections of DMN in LAN patients were weakened, which 
may affect the corresponding cognitive function. (2) Right 
precentral gyrus and supplementary motor area, dorsolateral 
superior frontal gyrus; right paracentral lobule and precentral 
gyrus and postcentral gyrus. These brain regions belong to the 
somatosensory motor system. Studies have affirmed that the 
sensorimotor system initiates and regulates the sensation and 
movement of the body, and plays an important role in speech 
processing such as vocabulary, phonetics, sentences, and 
chapter processing (Fischer and Zwaan 2006). During 
phonological processing, hearing syllables can activate the 
motor cortex corresponding to the mouth and tongue related 
to pronunciation (Pulvermüller et  al., 2006). When 
understanding certain movements, the premotor area or motor 
cortex can be  specifically activated (Shtyrov et  al., 2014). 
Activations in the sensorimotor area increase during reading 
action-related texts (Speer et al., 2005). Therefore, we speculate 
that the decrease in sensorimotor network connections may 
lead to the decline of language and abstract ability in LAN 
patients. (3) Right thalamus and pallidum; left thalamus and 

A B

C D

FIGURE 4

The results of connectome edge analysis. Ninety brain regions constitute the circle part of the circos diagram. Red lines represent the increase in 
the number of white matter fibers compared to the HC group, which are defined as positive connections, and blue lines represent the decrease in 
the number of fibers, which are defined as negative connections. The red and blue lines have the same meaning in (A–D), (A,B) Significant 
differences in the number of white matter fibers in 90 brain regions between LAN and HC groups are shown. The brain regions of negative 
connections mainly involve the default mode network, sensorimotor network, dorsolateral prefrontal loop, basal ganglia and thalamus, and medial 
temporal lobe memory (MTL) system, and are related to cognition declines such as memory, language, abstraction, and visuospatial ability. The 
positive connections mainly involve brain regions between the precuneus and occipital lobe fibers and memory-related fiber connections, 
suggesting that the body compensates for hearing loss and cognitive decline. (C,D) Significant differences between RAN and HC groups are 
shown. Fibers between the left lenticular putamen and the left hippocampus were the only negative connection in RAN patients. The fibers 
belonging to the MTL system are associated with memory. Positive connection regions mainly involve the occipital lobe, the frontostriatal circuits, 
the salience network, and the MTL system, and are associated with the visual system, attention, cognition switching, and memory, revealing that 
the body presents anatomical fiber connection enhancement to compensate for cognitive declines such as attention and memory.
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pallidum, putamen. The fibers which involve projection fibers 
from the dorsolateral prefrontal lobe loop originate from the 
frontal lobe, pass through the caudate nucleus, pallidum, 
thalamus, and final project to the dorsolateral area of the 
frontal lobe. The function is to mediate executive function, and 
executive dysfunction is observed after injury (Grahn et al., 
2009). The decline of executive function in AN patients may 
be associated with the negative connections in this loop. The 
subthalamic globus pallidus and globus pallidus subthalamic 
fibers are the afferent and efferent fibers of the globus pallidus, 
respectively, belonging to the basal ganglion nucleus. 
Numerous studies have confirmed that basal ganglia lesions 
may lead to cognitive function, including decreased memory 
(Grahn et al., 2009), visuospatial impairment (Su et al., 2007), 
and so on. (4) Left putamen and left hippocampus. The fibers 
belong to the medial temporal lobe system and are involved in 
memory (Sekeres et al., 2018).

The positive connections in RAN patients were as follows: 
(1) Right precuneus and right superior and middle occipital 
gyrus. The enhanced connections may indicate that the 
activation of visual fibers in RAN patients compensates for 
auditory deprivation. (2) Left orbital part of inferior frontal 
gyrus and anterior cingulate and paracingulate gyri, gyrus 
rectus. The fibers involve the frontostriatal circuits, including 
the orbitofrontal gyrus, anterior cingulate gyrus, striatum, 
ventromedial prefrontal lobe, and other nerve loops, which are 
mainly related to attention function (Fan et al., 2005). The 

enhancement of the connections between the left orbitofrontal 
and anterior cingulate gyrus may be linked to compensation 
of function after attention dysfunction in RAN patients. (3) 
Left anterior cingulate and paracingulate gyri and insular. 
Both regions are key nodes of the salience network (Seeley 
et al., 2007), which mainly plays a key role in the switching 
between cognitive function-related networks (Sidlauskaite 
et al., 2016). In RAN patients, the connections between the left 
anterior cingulate gyrus and insular were enhanced, suggesting 
that patients may need additional resources to maintain 
attention to the outside world after auditory deprivation. 
Fibers between the left lenticular putamen and the left 
hippocampus were the only negative connection in RAN 
patients. The fibers belonging to the medial temporal lobe 
system are associated with memory (Lisman et al., 2017). The 
negative connection may play a role in memory dysfunction 
in RAN patients.

The study of subnetworks and cognitive 
function

This study found that the Eg of the three subnetworks and the 
Eloc of the short-range subnetwork decreased in LAN patients, 
showing a decline in the ability of information integration and 
transmission in LAN patients, while no significant changes in 
RAN patients (Figure 6). The short-range subnetwork is usually 

A B

FIGURE 5

Correlations between the global metrics (Eg, Eloc) of short-range subnetwork and cognitive scale. (A) Correlations between the Eg of short-range 
subnetwork and cognitive scale. The Eg of short-range subnetwork was negatively correlated with cognition function (n = 139, p < 0.05). 
(B) Correlations between the Eloc of short-range subnetwork and TMT. MOCA: Montreal cognitive assessment; RAVLT: Rey auditory verbal learning 
test; SDMT: symbol digit modalities test; Stroop: Stroop color-word test; TMT: trail-making test.
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located in the same brain region and reflects changes in local brain 
regions, and the middle-range subnetwork is distributed in the 
same functional region, while the long-range subnetwork connects 
different brain regions and is mainly responsible for information 
transmission (Su et  al., 2015). These subnetworks ensure the 
separation and integration of brain functions. The subnetworks 
had changed in AN patients, affecting information transmission 
in the brain. In LAN patients, the Eg of the three subnetworks and 
the Eloc of the short-range subnetwork decreased, resulting in a 
decline in the ability of brain information transmission and  
integration.

In this study, we found that the effects of LAN and RAN on 
the brain may be different. The LAN tends to decrease in structure 
and function, while the RAN tends to be compensated in structure 
and function, which is more resistant to hearing loss and more 
stable. The LAN patients may be  more sensitive to auditory 
deprivation, and the RAN patients may tend to be functionally 
compensated. The RAN mainly affected the left dominant 
hemisphere and may have a stronger compensatory mechanism, 
so the RAN had less impact on patients and the performance was 
more stable. This was consistent with the literature (Wang et al., 
2014; Zhang et al., 2015).

A

D

B C

FIGURE 6

The results of subnetworks. (A) Short-range subnetwork of one subject (B) middle-range subnetwork of the same subject. (C) long-range 
subnetwork of the same subject. (D) Comparison of global metrics (Eg and Eloc) in the three groups. The global metrics of the three subnetworks in 
AN patients significantly decreased. The numbers above the error bars represent median values. Error bars represent median ± 95%CI. * p < 0.05, ** 
p ≤ 0.01, *** p ≤ 0.001; LAN: left acoustic neuroma; RAN: right acoustic neuroma; HC: health control.
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The shortcomings of this study are as follows: 1. This study is 
a cross-sectional study, which failed to follow up on the changes 
in cognitive function with the development of disease course and 
hearing level. However, the correlation analysis part provides a 
gradual decline in cognitive function with the progress of the 
disease course. 2. This study failed to follow up on whether the 
cognitive function of patients with acoustic neuroma recovered 
after hearing improvement.

Conclusion

In summary, in this study, we  found that the cognitive 
function decreased in AN patients, and first systematically 
studied its possible mechanism. The results showed that 
widespread changes occurred in the cognition-related structural 
and functional regions of AN patients. The global efficiency and 
local efficiency of the structural brain network decrease in AN 
patients, which is closely related to cognitive dysfunction. In this 
study, using the edge analysis of brain structural networks in AN 
patients for the first time, we found that AN affected the fiber 
connections between cognitive-related brain regions. The global 
and local efficiency of subnetworks based on fiber length 
decreased, which affected patients’ general cognition, memory, 
execution, attention, processing speed, and visuospatial ability. 
The mechanisms of the left and right acoustic neuromas affecting 
the brain network are different. The LAN tends to decrease in 
structure and function, while the RAN tends to be compensated 
in structure and function, which is more resistant to hearing loss 
and more stable. Cognitive problems are frequent in AN patients. 
Including neuropsychological aspects in the routine clinical 
evaluation and appropriate treatment may enhance clinical 
management and improve the quality of life of patients.
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