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predicting early Parkinson’s
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symptoms progression
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Mingzhu Tao and Anmu Xie* on behalf of Parkinson’s
Progression Markers Initiative

Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China

Background: Identifying individuals with high-risk Parkinson’s disease (PD) at

earlier stages is an urgent priority to delay disease onset and progression. In

the present study, we aimed to develop and validate clinical risk models using

non-motor predictors to distinguish between early PD and healthy individuals.

In addition, we constructed prognostic models for predicting the progression

of non-motor symptoms [cognitive impairment, Rapid-eye-movement sleep

Behavior Disorder (RBD), and depression] in de novo PD patients at 5 years of

follow-up.

Methods: We retrieved the data from the Parkinson’s Progression Markers

Initiative (PPMI) database. After a backward variable selection approach to

identify predictors, logistic regression analyses were applied for diagnosis

model construction, and cox proportional-hazards models were used to

predict non-motor symptom progression. The predictive models were

internally validated by correcting measures of predictive performance for

“optimism” or overfitting with the bootstrap resampling approach.

Results: For constructing diagnostic models, the final model reached a

high accuracy with an area under the curve (AUC) of 0.93 (95% CI:

0.91–0.96), which included eight variables (age, gender, family history,

University of Pennsylvania Smell Inventory Test score, Montreal Cognitive

Assessment score, RBD Screening Questionnaire score, levels of cerebrospinal

fluid α-synuclein, and SNCA rs356181 polymorphism). For the construction

of prognostic models, our results showed that the AUC of the three

prognostic models improved slightly with increasing follow-up time. The

overall AUCs fluctuated around 0.70. The model validation established good

discrimination and calibration for predicting PD onset and progression of

non-motor symptoms.

Conclusion: The findings of our study facilitate predicting the individual risk

at an early stage based on the predictors derived from these models. These
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predictive models provide relatively reliable information to prevent PD onset

and progression. However, future validation analysis is still needed to clarify

these findings and provide more insight into the predictive models over more

extended periods of disease progression in more diverse samples.
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Parkinson’s disease, predictive model, diagnosis, non-motor symptoms, progression

Introduction

Parkinson’s disease (PD, OMIM 168600), the most common
motoric neurodegenerative disease, affects approximately
1–2% of people older than 60 years (Wirdefeldt et al.,
2011; Ascherio and Schwarzschild, 2016). When a classical
feature of bradykinesia is present and combined with other
features such as rigidity, tremor, and postural instability, a
clear clinical diagnosis of PD can be made (Postuma et al.,
2015). Although PD is categorized as a movement disorder,
non-motor symptoms (for instance, olfactory disorders,
constipation, and sleep disorders) indeed frequently occur
in the early stage of the disease, and may even precede
the emergence of motor dysfunction (Postuma et al., 2012;
Schapira et al., 2017). Non-motor symptoms are almost
inevitably linked to the later development of diseases and
a lower quality of life (Schrag et al., 2000; Santos García
et al., 2021). With the increasing understanding of PD as a
multi-system heterogeneous disorder, the modern scientific
diagnosis should include the assessment and management
of non-motor symptoms (Chaudhuri et al., 2006). There is
inconsistency in the manifestation of these symptoms and
their rate of progression in PD patients, which presents a
challenge for researchers developing drugs to modify the
disease process (Olanow et al., 2009; Smedinga et al., 2021).
Therefore, evaluating non-motor symptoms, especially in
the prodromal and early stages of the disease, can help
determine whether individuals are at risk for developing PD or
later complications.

In the past decades, researchers have made many efforts
to identify patients with PD during the prodromal and early
periods of the disease, such as the Parkinson Progression Marker
Initiative (2011). A few recent diagnostic and prognostic models
have been generated that are devoted to predicting different
aspects of PD symptomatology specifically (Ma et al., 2020;
Ren et al., 2021). Most previous diagnostic models focused on
various clinical motor scores as predictors (Nalls et al., 2015;
Searles Nielsen et al., 2017; Schrag et al., 2019). However, given
the heterogeneous nature of motor symptoms, the predictive
accuracy of many existing risk models is only moderate or even
low (Fereshtehnejad et al., 2015; Searles Nielsen et al., 2017).
Considering the potential value of non-motor symptoms for
early identification, developing the predictive models utilizing

non-motor predictors may identify high-risk PD groups.
Olfactory dysfunction and Rapid-eye-movement sleep Behavior
Disorder (RBD) are the most common non-motor symptoms.
The findings from a prospective study suggested that 10% of
individuals with olfactory dysfunction developed PD during a
2-year follow-up, and thus idiopathic hyposmia can be as a
preclinical sign of PD (Ponsen et al., 2004). Many candidate
biomarkers have been tested in different study cohorts, such
as cerebrospinal fluid (CSF) α-synuclein (α-syn), amyloid-β42

(Aβ42), and total tau (t-tau) (Parnetti et al., 2013). Recently,
CSF or serum neurofilament light chain (NFL) as one promising
candidate biomarker has added diagnostic value to biomarker
panels (Oosterveld et al., 2020).

From observational and longitudinal studies, several non-
motor symptoms affecting cognition, sleep, and psychosis
appeared to be correlated with the later progression of PD
(Schrag et al., 2015; Galtier et al., 2019). Dementia is one
of the most common non-motor symptoms of PD, with a
prevalence of about 30% (Aarsland et al., 2005). The cumulative
incidence of dementia steadily increases with age and duration
of PD, increasing to 80% by age 90 (Buter et al., 2008). RBD
is another common non-motor symptom reported in all stages
of PD, with a combined prevalence of 42% (Zhang et al.,
2017). In total, 10–45% of PD patients will become depressed
as the disease progresses (Lemke, 2008). The progression of
non-motor symptoms has dominant-negative effects on health-
related quality of life, thus identifying prognostic factors of
non-motor symptoms is vital for minimizing impairments and
proposing the personalization of PD management (Gómez-
Esteban et al., 2011; Duncan et al., 2014). Yet lack of longitudinal
assessments in a few previous studies, there was no fuller
insight into the potential role of developing comprehensive
multivariable prognostic models.

Our goals in the present study were to: (i) establish
and validate the most explanatory model on a baseline
dataset to diagnose early PD groups with non-motor clinical
characteristics, biomarkers and genetic information; (ii)
construct prognostic models for predicting the progression
of non-motor symptoms in de novo PD patients, for
instance, cognitive impairment, RBD and depression at
5 years of follow-up; and (iii) identify the predictors
in order to better predict individual prognosis and
guide the prevention.
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Materials and methods

Parkinson’s Progression Markers
Initiative database and participants

In the present study, we retrieved the data from the PPMI
database. The PPMI is a global, multicenter, prospective research
with the design goal of investigating and verifying biomarkers
that may slow the disease progression. As described previously,
the study investigated drug-naive, de novo PD patients and age-
and gender-matched healthy controls (HCs) between June 2010
and May 2013 (2011). The participants with PD were recruited if
they met the following requirements: (1) age older than 30 years;
(2) existence of two symptoms as below: bradykinesia, rigidity,
resting tremor, or asymmetric resting tremor, or asymmetric
bradykinesia; (3) diagnosis recently made within the last 2 years;
(4) PD drug naivety; and (5) dopamine transporter deficit
in the putamen on the DaTscan by central reading. HCs
were required to meet the following criteria: no significant
neurological dysfunction, no first-degree relatives with PD and
Montreal Cognitive Assessment (MoCA) score above 26. In this
article, the baseline dataset used for diagnostic models and the 5-
year follow-up dataset used for constructing progression models
were downloaded on 5 March 2022. More detailed information
could be sought at http://ppmi-info.org/.

Standard protocol approvals,
registrations, and patient consent

The study was approved in all participating sites,
respectively, by each local ethical standards committee on
human experimentation as described (Lee et al., 2019).
Written informed consent for research was obtained from
all study participants. The PPMI study is registered with
clinicaltrials.gov_(identifier: NCT01141023).

Cerebrospinal fluid and blood
biomarker assessments

Biomarker analyses have been previously described
and based on the PPMI biologics manual (Marek et al.,
2018). CSF was collected by standardized lumbar puncture
procedures. Measurements of Aβ42 and t-tau were analyzed by
using the xMAP-Luminex platform with INNOBIA AlzBio3
immunoassay kit–based reagents (Fujirebio-Innogenetics,
Ghent, Belgium) at Penn (Kang et al., 2013). Additionally, CSF
total α-syn levels were measured by BioLegend (San Diego,
CA, United States) by means of a commercially accessible
and previously described sandwich immunoassay. Serum NFL
was quantified by the Simoa Human NF-light Advantage Kit

(Quanterix, Lexington, MA, United States) using the Single
Molecule Array technology in a fully automated SIMOA HD-1
analyzer. Biochemical analyses of uric acid have been carried
out in Covance laboratories in a uniform fashion, as per
the study protocol.

Genetic assessments

We analyzed genetic data for MAPT, and single-nucleotide
polymorphisms related to SNCA (rs3910105 and rs356181),
provided from the PPMI Genetics Core. SNPs of SNCA and
MAPT genes were determined using Illumina NeuroX array
on whole-blood extracted DNA per manufacturer’s protocol
(Illumina Inc., San Diego, CA, United States) (Nalls et al., 2016).

Predictor variables

Predictive variables included demographic data (age,
gender, years of education, family history, age at onset,
and ethnicity), disease duration, risk gene (SNCA_rs356181,
SNCA_rs3910105, and MAPT status) and measures of non-
motor function. For non-motor symptoms evaluation, sleep
quality and disturbances of patients were measured by the
Epworth Sleepiness Scale score (ESS) and RBD Screening
Questionnaire score (RBDSQ). MoCA was the most common
screening instrument for cognitive function. The University of
Pennsylvania Smell Inventory Test (UPSIT) score was applied
to assess olfactory function. The Questionnaire for Impulsive-
Compulsive Disorders in Parkinson’s Disease (QUIP) score was
a rating scale designed to evaluate impulse control disorders.
The Geriatric Depression Scale (GDS) score was applied to
assess depression. The global motor impairment was assessed
using total score and section III of the Movement Disorder
Society-Sponsored Revision of the Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS). In addition, we assessed whether
biomarkers including CSF Aβ42, t-tau and CSF α-syn, serum
uric acid, and NFL had impacts on the risk models in this study.

Longitudinal assessments

All the above predictive variables are remeasured annually.
We constructed 5-year longitudinal models to evaluate
the progression of non-motor symptoms (cognitive impairment,
RBD, and depression) in early PD. Patients with less than 1-year
follow-up were excluded from the longitudinal analyses. For
constructing three prognostic models, we excluded PD patients
who had corresponding outcome status at baseline. In the
present study, defining the presence of non-motor symptoms
was determined by several neuropsychological assessments.
Cognitive status was defined based on the MDS task force
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FIGURE 1

Flowchart of data analysis. PPMI, Parkinson’s Progression Markers Initiative; PD, Parkinson’s disease; MoCA, Montreal Cognitive Assessment;
UPSIT, University of Pennsylvania Smell Inventory Test; RBM, Rapid-eye-movement sleep Behavior Disorder Screening Questionnaire;
MDS-UPDRS, Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale; CSF, cerebrospinal fluid; Aβ,
amyloid-β.

level II guideline criteria: PD with normal cognition (PD-NC)
if MoCA > 26, PD with mild cognitive impairment (PD-
MCI) if MoCA between 23 and 26, and PD with dementia
(PD-D) if MoCA < 23 (Litvan et al., 2012). During the
longitudinal follow-up, PD-NC patients who progressed to
PD-MCI or PD-D were classified as “cognitive impairment
progression.” The RBDSQ consists of 10 questions with 13
items overall, and RBD positive was defined if RBDSQ was
above 6-points. RBD-negative patients who progressed to
RBD positive were considered to have “RBD progression.”
The GDS is a self-report questionnaire for rating depressive
symptoms, with a score of ≥5 indicating clinically significant
depression in PD. Progression from no depressive symptoms
at baseline to depressive symptoms was considered “depressive
progression.”

In the PPMI cohort, individuals were evaluated at baseline
and followed for 5 years, during which some subjects started
dopamine replacement therapy (DRT) such as levodopa,
dopamine agonist, and others. The prescribed dose of DRT at
the 5th year follow-up was expressed as levodopa equivalent
daily dose (LEDD) in milligrams (mg). Therefore, we added
LEDD as a candidate predictor in the prognostic model
to examine the effect of DRT on the progression of non-
motor symptoms.

Statistical analyses

All statistical analyses were performed by R software
(version 4.1.3). Baseline characteristics were presented as
mean ± standard deviation (SD) or number (percentages,
%), as appropriate. Differences cross groups were evaluated
by the Mann–Whitney–Wilcoxon test for continuous variables
and the Chi-square test for categorical variables. Missing
values were excluded from the analysis. For constructing
diagnostic models, all candidate risk factors were entered
into the logistic regression analysis and the assumption of
proportional hazards was confirmed. Additionally, we used
multivariate cox proportional-hazards models to predict non-
motor symptom progression. A backward variable selection
approach with a cut-off value at the P < 0.05 was used
to identify the set of independent predictors. Final variables
were tested by the Spearman rank correlation analysis to
ensure that Spearman’s correlation coefficients of no more
than 0.5. Receiver operating characteristics analysis (ROC), the
area under the ROC curve (AUC), sensitivity and specificity
at each optimal cut-off value were applied to assess the
model performance. The statistical analyses of ROC curves
were carried out using the “pROC” packages in R. Model
calibration was evaluated by generating a smooth curve in the
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calibration plot between the observed and predicted outcomes.
The calibration plot would equal 1 (optimization criteria)
if the observed and predicted probabilities represent perfect
agreement. The predictive models were internally validated by
correcting measures of predictive performance for “optimism”
or overfitting with bootstrap resampling approach (with 1,000
replicas) in the rms packages in R.

Results

Demographic and clinical
characteristics of included participants

Figure 1 presents a flowchart outlining the main analysis in
this study. In the risk model for distinguishing between early
PD and healthy normal, a total of 194 HC individuals and 415
de novo PD patients were included. The baseline characteristics
of participants are shown in Table 1. For clinical characteristics,
no significant differences in age (P = 0.65), gender (P = 0.66),
education level (P = 0.08), ethnicity (P = 0.61), ESS score
(P = 0.28), and QUIP score (P = 0.62) were found between
the two diagnostic groups. While the family history of PD,
Hoehn and Yahr, MoCA score, UPSIT score, GDS score, RBDSQ
score, and UPDRS score differed between groups (P < 0.05).
For CSF and blood biomarkers, CSF α-syn (P = 0.01), Aβ42

(P = 0.05), and t-tau (P = 0.003) were lower in the PD group
compared to control group, but serum NFL levels were higher in
the de novo PD group than control. For genetic characteristics,
only SNCA rs356181 status differed between two diagnostic
groups (P = 0.005). Using longitudinal data to predict non-
motor symptoms progression in de novo PD patients, three
prognostic models were performed separately to estimate the
risk of cognition, RBD, and depression. The three models
included 309, 240, and 322 de novo PD patients, respectively.
The baseline characteristics of three prognostic models are
summarized in Supplementary Table 1.

Predictive modeling for distinguishing
between early Parkinson’s disease and
healthy normal

The first model was constructed with demographics,
neuropsychological tests and health variables which can be
easily available from primary clinical assessments. After stepwise
logistic regression, we retained six PD risk factors in Model 1:
age, gender, family history of PD, total UPSIT score, the MoCA
score and the RBDSQ score (see Supplementary Table 2). None
of these risk factors were used as part of the PD diagnosis
criteria. The model has acceptable accuracy for predicting
whether subsets of healthy individuals with abnormal baseline
linical characteristics will develop de novo PD; the AUC was

0.91 (95% CI: 0.89–0.94, sensitivity 86.6% and specificity 84.4%,
Figure 2).

Cerebrospinal fluid biomarkers (α-syn, Aβ42, and t-tau) and
blood biomarkers (serum uric acid and NFL) were included
as possible variables besides the easily available variables used
in the construction of Model 2. After variable selection by
backward stepwise logistic regression, Model 2 included age,
gender, family history of PD, total UPSIT score, the MoCA
score, RBDSQ score, and CSF α-syn (Supplementary Table 2).
The AUC was improved to 0.92 (95% CI: 0.89–0.94, sensitivity
79.7% and specificity 92.2%, Figure 2) with the inclusion
of new variables.

Model 3 evaluated the genetic status (MAPT status, SNCA
rs356181, and SNCA rs3910105) of PD adjusted for the
covariates included in Model 2 to acquire more accurate
calculation in predicting risk individuals. Age, gender, family
history of PD, total UPSIT score, the MoCA score, RBDSQ
score, CSF α-syn, and SNCA rs356181 polymorphism were
selected as final variables in Model 3, and Model 3 as the
final diagnostic model predicted early PD in this study. In this
analysis, the ROC curves demonstrated an AUC of 0.93 (95% CI:
0.91–0.96, Figure 2) with a sensitivity of 88.1% and a specificity
of 87.3%. Figure 3A described the heatmap of the Spearman
correlation coefficients between the final variables, and there was
no strong correlation between the final eight included variables
(Supplementary Table 3). All variables were superior predictive
indicators in the multifactorial analyses (P < 0.05, Figure 3B).

Internal validation and calibration of
the diagnostic model

Finally, Model 3 was selected as the prediction model for
distinguishing early PD from healthy normal, and we conducted
model-fitting analysis and internal validation based on Model 3.
This model showed calibration (calibration slope, 1; Brier score,
0.10; Hosmer–Lemeshow χ2 = 15.17; P = 0.06, Supplementary
Figure 1). Internal validation showed minimal mean optimism
of 0.008 with bootstrap optimism corrected AUC of 0.92 based
on 1000 resamplings.

Prognostic modeling for predicting
non-motor symptoms progression in
de novo Parkinson’s disease patients

Candidate variables used in the construction of cognitive
decline, depression and RBD model included age, gender,
education years, ethnicity, family history, age at symptom
onset, disease duration, UPSIT score, GDS score, QUIP
score, MoCA score, CSF Aβ, α-syn, t-tau, MDS-UPDRS total
score, MDS-UPDRS Part III score, ESS score, RBDSQ score,
and level of LEDD.
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TABLE 1 Baseline demographic and disease characteristics of included participants.

Characteristics PD subjects
(n = 415)

HC subjects
(n = 194)

P-value

Demographic and clinical characteristics

Age (mean, SD) 61.7 (9.7) 60.9 (11.2) 0.65

Gender (male/female) 272/143 124/70 0.66

Education years (mean, SD) 15.6 (3.0) 16.1 (2.9) 0.08

Family history of PD (any family with PD/no family with PD) 102/313 10/184 <0.0001

Ethnicity (Hispanic or Latino/not Hispanic or Latino) 9/406 3/191 0.61

Age of PD onset 59.5 (10.0) NA NA

Hoehn and Yahr <0.0001

Stage 0 0 192

Stage 1 182 2

Stage 2 231 0

Stage 3–5 2 0

MoCA score (mean, SD) 27.1 (2.3) 28.2 (1.1) <0.0001

UPSIT score (mean, SD) 22.3 (8.3) 34.0 (4.9) <0.0001

RBDSQ score (no RBD/RBD) 258/157 156/38 <0.0001

GDS score (not depressed/depressed) 356/59 194/0 0.01

ESS score (not sleepy/sleepy) 350/65 156/38 0.28

QUIP score (mean, SD) 0.3 (0.6) 0.3 (0.7) 0.62

MDS-UPDRS Part I score (mean, SD) 5.6 (4.1) 1.2 (2.2) <0.0001

MDS-UPDRS Part II score (mean, SD) 5.9 (4.2) 0.5 (1.0) <0.0001

MDS-UPDRS Part III score (mean, SD) 20.8 (8.8) 2.9 (3.0) <0.0001

MDS-UPDRS total score (mean, SD) 32.2 (13.1) 4.6 (4.5) <0.0001

CSF and blood markers

α-Synuclein (pg/ml, mean, SD) 1,550.7 (687.2) 1,703.8 (731.8) 0.01

Aβ42 (pg/ml, mean, SD) 931.8 (420.5) 1,030.8 (504.0) 0.05

Total tau (pg/ml, mean, SD) 171.1 (59.0) 193.8 (80.1) 0.003

Urate (pg/ml, mean, SD) 313.8 (75.6) 322.7 (78.4) 0.18

NFL (pg/ml, mean, SD) 13.1 (7.2) 11.9 (6.7) 0.03

Genetic characteristics

SNCA_rs356181 0.005

C/C 114 32

C/T 183 95

T/T 86 51

Missing 32 16

SNCA_rs356105 0.09

C/C 63 44

C/T 197 82

T/T 123 52

Missing 32 16

MAPT 0.77

H1/H1 240 114

H1/H2 126 56

H2/H2 17 8

Missing 32 16

PD, Parkinson’s disease; HC, healthy control; SD, standard deviation; MoCA, Montreal Cognitive Assessment; UPSIT, University of Pennsylvania Smell Inventory Test; RBDSQ, Rapid-
eye-movement sleep Behavior Disorder Screening Questionnaire; ESS, Epworth Sleeping Scale; GDS, Geriatric Depression Scale; MDS-UPDRS, Movement Disorder Society-Sponsored
Revision of the Unified Parkinson’s Disease Rating Scale; NFL, neurofilament light; CSF, cerebrospinal fluid; Aβ42 , amyloid-β 42 .
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FIGURE 2

Predictive modeling for distinguishing between early Parkinson’s disease and healthy normal. AUC, area under receiver operating characteristic
curves.

Of the 309 early PD patients with cognitive normal
at baseline were included in the cognitive decline model
with eight variables (age at symptom onset, education
years, MoCA score, UPSIT score, RBDSQ score, LEDD
and levels of CSF Aβ42, and t-tau, Supplementary Table 4).
As shown in Figure 4, the model predicted the incident of
cognitive decline within 1, 3, and 5 years with moderate
accuracy (AUC of 0.73, 0.77, and 0.78, respectively,
Figures 4A–C).

A subcohort of 240 individuals with normal RBD score at
baseline were included to develop the RBD prognostic model.
One hundred and twenty-six subjects (52.5%) converted to RBD
over the follow-up period while others remained negative. Cox
proportional-hazards models demonstrated individuals with
baseline abnormal UPSIT score, MDS-UPDRS total score, QUIP
score and CSF t-tau levels had a higher risk of conversion from
RBD-negativity to RBD-positivity (AUC 0.65 with 1 year; AUC
0.66 within 3 years; AUC 0.68 within 5 years; Figures 4D–
F and Supplementary Table 4). Given the small sample
size, the results of the RBD prognostic model should be
interpreted with caution.

Furthermore, we explored the depression prognostic model
in a subgroup of 322 subjects without depression at baseline. The
predictive accuracy performed moderate using the combined
variables (education years, MDS-UPDRS total score, MDS-
UPDRS Part III score, UPSIT score, CSF Aβ42 and t-tau levels,
Supplementary Table 4), and the ROC curves demonstrated an
AUC of 0.79 within 1 year, 0.70 within 3 years and 0.70 within
5 years (Figures 4G–I).

Internal validation and calibration of
the prognostic models

Calibration plots of three prognostic models indicated a
good agreement between predicted and observed probabilities
(Supplementary Figure 2). Internal validation using the
bootstrapping technique with 1,000 repetitions resulted in
optimism corrected AUC within 5 years of 0.75 (cognitive
decline model), 0.60 (RBD prognostic model), and 0.62
(depression prognostic model).

Discussion

In the present study, we aimed to develop and validate
clinical risk models using non-motor predictors to distinguish
de novo PD from individuals. In addition, we constructed
prognostic models for predicting the progression of non-motor
symptoms (cognitive impairment, RBD, and depression) in de
novo PD patients at 5 years of follow-up. The model validation
established good discrimination and calibration for predicting
PD onset and progression of non-motor symptoms.

Parkinson’s disease is a heterogeneous disorder, especially in
the early disease course (Marras and Chaudhuri, 2016). Non-
motor symptoms are prominent factors that influence fatality
rate and mutilation rate in PD. It has long been recognized that
many of them precede the motor features in many patients (Hely
et al., 2005). In the models for distinguishing between early PD
and HCs, we identified three general categories of predictors:
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FIGURE 3

The eight predictors in the final diagnostic model. (A) Correlation heatmap between the eight variables; (B) multivariate analysis of eight
variables in the diagnostic model. MoCA, Montreal Cognitive Assessment; UPSIT, University of Pennsylvania Smell Inventory Test; RBM,
Rapid-eye-movement sleep Behavior Disorder Screening Questionnaire; CSF α-syn, cerebrospinal fluid α-synuclein.

clinical-related predictors, biomarker-related predictors and
genetic-related predictors. Model 1 was developed with easily
available and low-cost variables like demographics, health
factors and functional assessments that can be widely used for
screening PD risk in primary care settings. Model 2 added
CSF and blood biomarkers to Model 1, and the final model
(Model 3) reached a high accuracy with an AUC of 0.93 (95%
CI: 0.91–0.96), which included three categories of predictors.
The diagnostic performance in this study was similar to that
of Nalls et al. (2015), with high accuracy and sensitivity
(AUC 0.92, sensitivity 83.4%). Moreover, compared with their
study, our analysis reported the CSF biomarkers’ influence
on the disease risk models. Despite diagnostic decisions
still relying on clinical features in practice, encouragingly,
breakthroughs have been made recently in PD biomarker
discovery (Parnetti et al., 2019). CSF biomarkers in PD (such as
α-syn, Aβ42, tau, and NFL) have been suggested to possess the
potential diagnostic and prognostic value of PD (Parnetti et al.,
2019; Kwon et al., 2022). Tracking pathophysiological processes
of PD, abnormal deposition of α-syn plays a critical role,
which should become the foundation of composite biomarker
panels (Majbour et al., 2016). In addition, biomarker-related
factors, missense mutations as well as duplications in the α-
syn protein-encoding SNCA gene are associated with SNCA-
related parkinsonism, providing further support for a central
neuropathological role of α-syn in PD (Kay et al., 2008;
Rosborough et al., 2017). As the results showed, the value of
logistic regression AUC improved slightly (0.02) after adding
the CSF α-syn and SNCA rs356181 polymorphism, suggesting
a predictive link of PD with α-syn levels. Approximately

10% of patients clinically diagnosed as PD have normal
dopamine transporter (DAT) single-photon emission computed
tomography (SPECT) imaging (Marek et al., 2014). This
subgroup is referred to as having scans without evidence
of dopaminergic deficit (SWEDD). In the present study, the
exclusion of SWEDD participants from the PD model allows
us to focus our efforts on more etiologically typical PD as
defined by the clinical diagnosis and DAT scanning data. We
also attempted an extended analysis to validate whether our
diagnostic model could discriminate SWEDD from etiologically
typical PD. The results suggested this model only achieved
an AUC of 0.59 (95% CI: 0.52–0.66), with a low diagnostic
value. Therefore, clinical features and non-motor symptoms
cannot accurately distinguish between SWEDD and etiologically
typical PD. DAT-SPECT imaging is a valuable diagnostic tool
to help differentiate between PD and SWEDD, and imaging
features will be taken into account to optimize our model in
the future studies.

Longitudinal data provided the most substantial evidence on
prognostic modeling, whereas relatively few previous studies
accounted for longitudinal measurements when constructing
NMS progression models. Our findings indicated that the
AUC of prognostic models improved slightly with follow-up
time. The overall AUCs fluctuated around 0.70. The present
findings proved that participants with abnormal accumulation
of amyloid, tau, older age at onset, higher level of LEDD, a
lower level of education, abnormal measurements of UPSIT,
MoCA, and RBDSQ had a significantly higher likelihood of
cognitive decline. Similar results were suggested in a previous
study which tested the five variables (age, UPSIT score, RBDSQ,
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FIGURE 4

Prediction accuracies of three prognostic models. (A) Cognitive decline model within 1 year with area under receiver operating characteristic
curves (AUC) of 0.73 (95% CI: 0.63–0.83). (B) Cognitive decline model within 3 years with AUC of 0.77 (95% CI: 0.71–0.83). (C) Cognitive decline
model within 5 years with AUC of 0.78 (95% CI: 0.72–0.83). (D) Rapid-eye-movement sleep Behavior Disorder (RBD) prognostic model within
1 year with AUC of 0.65 (95% CI: 0.55–0.75). (E) RBD prognostic model within 3 years with AUC of 0.66 (95% CI: 0.58–0.73). (F) RBD prognostic
model within 5 years with AUC of 0.68 (95% CI: 0.61–0.75). (G) Depression prognostic model within 1 year with AUC of 0.79 (95% CI:
0.70–0.89). (H) Depression prognostic model within 3 years with AUC of 0.70 (95% CI: 0.61–0.79). (I) Depression prognostic model within
5 years with AUC of 0.70 (95% CI: 0.62–0.78).

CSF Aβ42, and mean caudate uptake) by logistic regression
analysis and generated the AUC of 0.80 (95% CI: 0.74–
0.87) (Schrag et al., 2017). Differently, our models possessed
apparent advantages in predicting prognostic risk in multiple
time dimensions. Besides, the early identification of patients
at risk for depression and depression-related predictors as
soon as possible is necessary to improve the quality of life
(Reijnders et al., 2008). Previous studies also reported the
association of several clinical information and CSF biomarkers
with development of depression in PD using machine learning
algorithm methods (Byeon, 2020a; Gu et al., 2020). Compared
with our cohort, Gu et al. (2020) reported a slightly higher

predictive value (AUC 0.94, 95% CI: 0.89–0.99). Similarly,
the findings suggested that RBD and education levels were
associated with depression in PD in previous studies, which
supported our results (Byeon, 2020a). Sleep behavior disorders
could serve as prodromal markers with a high risk for predicting
neurodegeneration, and there has been a strong correlation with
depression (Postuma et al., 2013). The presence of RBD in early
PD patients may be a key determinant of increased risk of
functional dependency, which indicated that RBD portended
an unfavorable prognosis in Parkinson’s processes (Kim et al.,
2019). We constructed the RBD prognostic model that could
detect conversion from RBD-negativity to RBD-positivity with
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moderate accuracy. This finding was in line with the recent
study, which developed a model for predicting the high-risk
groups of RBD using random forest model with the prediction
accuracy of 71.5% (Byeon, 2020b). Together, the UPSIT score
was selected as a final predictor in three prognostic models.
Our findings suggested that olfactory impairment may be a
significant predictor predicting the occurrence of non-motor
symptoms in PD, particularly cognitive decline. Considering
the low cost and ease of assessment, olfactory impairment has
become an attractive biomarker and also correlated with other
non-motor features that may present later in the disease course
(Fullard et al., 2017).

Our research possesses some strengths. Firstly, in our
cohort, we constructed clinical risk models using non-motor
predictors to distinguish between early PD and healthy
individuals. In addition, we developed prognostic models for
predicting the progression of non-motor symptoms among de
novo, untreated PD. This study is the most comprehensive
analysis of predictive models available in PD diagnosis and
progression, keeping with overall assessments of the list of risks
proposed in current clinical guidelines (Lennaerts et al.,
2017). Additionally, this study provided relatively convenient
methods, with low-cost and easily available clinical information
as model features, which made the models feasible for
practical application. Furthermore, in order to predict non-
motor symptoms progression based on the patient’s baseline
clinical data, clinicians can embed the predictive models in
the electronic medical record system. The PPMI database
collected data from multiple hospitals, which can improve
the accuracy of our predictive models. The database describes
a dynamic process of repeating measurements of clinical
data annually with a higher degree of practical clinical
application value.

There are also several potential limitations. First, the sample
size is limited, especially a few participants were excluded
from this study for missing records for CSF biomarkers and
genetic assessments, which may cause bias in the final results.
Future, more comprehensive research in larger cohorts is
required to define prediction accuracy of models. Although
the models were validated internally, developing risk model is
still a work in progress that requires continuous refinement
and revalidation in different cohorts. Besides, the data of this
study were obtained from the PPMI database, which is not
particularly appropriate to represent the general PD population,
as it is an early study within 2 years of diagnosis. Further
studies with more extended follow-up periods may enable long-
term predictions.

Conclusion

In total, the findings of our study facilitate predicting
the individual risk at an early stage based on the predictors

derived from these models. These predictive models provide
reliable information to prevent PD onset and progression
and further establish management strategies. Further
research in large cohorts should explore how the clinical
measurements and biomarkers combinations would present
the best value for clinical and research purposes. Finally,
future validation analysis is still needed to clarify these
findings and provide more insight into the prognostic models
over more extended periods of disease progression in more
diverse samples.

Data availability statement

The original contributions presented in this study are
included in the article/Supplementary material, further
inquiries can be directed to the corresponding author.

Ethics statement

Written informed consent was obtained from the
individual(s) for the publication of any potentially identifiable
images or data included in this article.

Author contributions

KD participated in the design of the study, drafted
the manuscript, and carried out the conceptualization
of the study. JM, XZ, WS, and MT performed the
data analysis and drafted the manuscript. AX carried
out the conceptualization of the study, reviewing,
and critiquing the article at the same time. All
authors contributed to the article and approved the
submitted version.

Funding

This study was supported by grants from the National
Natural Science Foundation of China (81971192). Parkinson’s
Progression Markers Initiative (PPMI) – a public–private
partnership – is funded by the Michael J. Fox Foundation
for Parkinson’s Research and funding partners, including
Abbvie, Avid, Biogen, BioLegend, Bristol-Myers Squibb,
GE Healthcare, Genentech, GlaxoSmithKline, Lilly,
Lundbeck, Merck, Meso Scale Discovery, Pfizer, Piramal,
Roche, Sanofi, Servier, Takeda, Teva, UCB, and Golub
Capital.

Frontiers in Aging Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnagi.2022.977985
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-977985 August 22, 2022 Time: 16:40 # 11

Dou et al. 10.3389/fnagi.2022.977985

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fnagi.2022.977985/full#supplementary-material

References

Aarsland, D., Zaccai, J., and Brayne, C. (2005). A systematic review of prevalence
studies of dementia in Parkinson’s disease. Mov. Disord. 20, 1255–1263. doi: 10.
1002/mds.20527

Ascherio, A., and Schwarzschild, M. A. (2016). The epidemiology of Parkinson’s
disease: Risk factors and prevention. Lancet Neurol. 15, 1257–1272. doi: 10.1016/
s1474-4422(16)30230-7

Buter, T. C., van den Hout, A., Matthews, F. E., Larsen, J. P., Brayne, C.,
and Aarsland, D. (2008). Dementia and survival in Parkinson disease: A 12-
year population study. Neurology 70, 1017–1022. doi: 10.1212/01.wnl.0000306632.
43729.24

Byeon, H. (2020a). Development of a depression in Parkinson’s disease
prediction model using machine learning. World J. Psychiatr. 10, 234–244. doi:
10.5498/wjp.v10.i10.234

Byeon, H. (2020b). Exploring the predictors of rapid eye movement sleep
behavior disorder for Parkinson’s disease patients using classifier ensemble.
Healthcare (Basel) 8:121. doi: 10.3390/healthcare8020121

Chaudhuri, K. R., Healy, D. G., and Schapira, A. H. (2006). Non-motor
symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurol. 5,
235–245. doi: 10.1016/s1474-4422(06)70373-8

Duncan, G. W., Khoo, T. K., Yarnall, A. J., O’Brien, J. T., Coleman, S. Y.,
Brooks, D. J., et al. (2014). Health-related quality of life in early Parkinson’s disease:
The impact of nonmotor symptoms. Mov. Disord. 29, 195–202. doi: 10.1002/mds.
25664

Fereshtehnejad, S. M., Romenets, S. R., Anang, J. B., Latreille, V., Gagnon,
J. F., and Postuma, R. B. (2015). New clinical subtypes of parkinson disease
and their longitudinal progression: A prospective cohort comparison with other
phenotypes. JAMA Neurol. 72, 863–873. doi: 10.1001/jamaneurol.2015.0703

Fullard, M. E., Morley, J. F., and Duda, J. E. (2017). Olfactory dysfunction
as an early biomarker in Parkinson’s disease. Neurosci. Bull. 33, 515–525. doi:
10.1007/s12264-017-0170-x

Galtier, I., Nieto, A., Lorenzo, J. N., and Barroso, J. (2019). Subjective cognitive
decline and progression to dementia in Parkinson’s disease: A long-term follow-up
study. J. Neurol. 266, 745–754. doi: 10.1007/s00415-019-09197-0

Gómez-Esteban, J. C., Tijero, B., Somme, J., Ciordia, R., Berganzo, K., Rouco, I.,
et al. (2011). Impact of psychiatric symptoms and sleep disorders on the quality
of life of patients with Parkinson’s disease. J. Neurol. 258, 494–499. doi: 10.1007/
s00415-010-5786-y

Gu, S. C., Zhou, J., Yuan, C. X., and Ye, Q. (2020). Personalized prediction of
depression in patients with newly diagnosed Parkinson’s disease: A prospective
cohort study. J. Affect Disord. 268, 118–126. doi: 10.1016/j.jad.2020.02.046

Hely, M. A., Morris, J. G., Reid, W. G., and Trafficante, R. (2005). Sydney
multicenter study of Parkinson’s disease: Non-L-dopa-responsive problems
dominate at 15 years. Mov. Disord. 20, 190–199. doi: 10.1002/mds.20324

Kang, J. H., Irwin, D. J., Chen-Plotkin, A. S., Siderowf, A., Caspell, C., Coffey,
C. S., et al. (2013). Association of cerebrospinal fluid β-amyloid 1-42, T-tau,
P-tau181, and α-synuclein levels with clinical features of drug-naive patients with
early Parkinson disease. JAMA Neurol. 70, 1277–1287. doi: 10.1001/jamaneurol.
2013.3861

Kay, D. M., Factor, S. A., Samii, A., Higgins, D. S., Griffith, A., Roberts,
J. W., et al. (2008). Genetic association between alpha-synuclein and idiopathic

Parkinson’s disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 1222–1230.
doi: 10.1002/ajmg.b.30758

Kim, R., Yoo, D., Im, J. H., Kim, H. J., and Jeon, B. (2019). REM sleep behavior
disorder predicts functional dependency in early Parkinson’s disease. Parkinsonism
Relat. Disord. 66, 138–142. doi: 10.1016/j.parkreldis.2019.07.025

Kwon, E. H., Tennagels, S., Gold, R., Gerwert, K., Beyer, L., and Tönges, L.
(2022). Update on CSF biomarkers in Parkinson’s disease. Biomolecules 12:329.
doi: 10.3390/biom12020329

Lee, J. W., Song, Y. S., Kim, H., Ku, B. D., and Lee, W. W. (2019). Alteration
of tremor dominant and postural instability gait difficulty subtypes during the
Progression of Parkinson’s disease: Analysis of the PPMI Cohort. Front. Neurol.
10:471. doi: 10.3389/fneur.2019.00471

Lemke, M. R. (2008). Depressive symptoms in Parkinson’s disease. Eur. J.
Neurol. 15(Suppl. 1), 21–25. doi: 10.1111/j.1468-1331.2008.02058.x

Lennaerts, H., Groot, M., Rood, B., Gilissen, K., Tulp, H., van Wensen,
E., et al. (2017). A Guideline for Parkinson’s disease nurse specialists, with
recommendations for clinical practice. J. Parkinsons Dis. 7, 749–754. doi: 10.3233/
jpd-171195

Litvan, I., Goldman, J. G., Tröster, A. I., Schmand, B. A., Weintraub, D.,
Petersen, R. C., et al. (2012). Diagnostic criteria for mild cognitive impairment in
Parkinson’s disease: Movement disorder society task force guidelines. Mov. Disord.
27, 349–356. doi: 10.1002/mds.24893

Ma, L. Y., Tian, Y., Pan, C. R., Chen, Z. L., Ling, Y., Ren, K., et al. (2020).
Motor progression in early-stage Parkinson’s disease: A clinical prediction model
and the role of cerebrospinal fluid biomarkers. Front. Aging Neurosci. 12:627199.
doi: 10.3389/fnagi.2020.627199

Majbour, N. K., Vaikath, N. N., Eusebi, P., Chiasserini, D., Ardah, M., Varghese,
S., et al. (2016). Longitudinal changes in CSF alpha-synuclein species reflect
Parkinson’s disease progression. Mov. Disord. 31, 1535–1542. doi: 10.1002/mds.
26754

Marek, K., Chowdhury, S., Siderowf, A., Lasch, S., Coffey, C. S., Caspell-
Garcia, C., et al. (2018). The Parkinson’s progression markers initiative (PPMI)
- establishing a PD biomarker cohort. Ann. Clin. Transl. Neurol. 5, 1460–1477.
doi: 10.1002/acn3.644

Marek, K., Seibyl, J., Eberly, S., Oakes, D., Shoulson, I., Lang, A. E., et al. (2014).
Longitudinal follow-up of SWEDD subjects in the PRECEPT Study. Neurology 82,
1791–1797. doi: 10.1212/wnl.0000000000000424

Marras, C., and Chaudhuri, K. R. (2016). Nonmotor features of Parkinson’s
disease subtypes. Mov. Disord. 31, 1095–1102. doi: 10.1002/mds.26510

Nalls, M. A., Keller, M. F., Hernandez, D. G., Chen, L., Stone, D. J.,
and Singleton, A. B. (2016). Baseline genetic associations in the Parkinson’s
Progression Markers Initiative (PPMI). Mov. Disord. 31, 79–85. doi: 10.1002/mds.
26374

Nalls, M. A., McLean, C. Y., Rick, J., Eberly, S., Hutten, S. J., Gwinn, K.,
et al. (2015). Diagnosis of Parkinson’s disease on the basis of clinical and genetic
classification: A population-based modelling study. Lancet Neurol. 14, 1002–1009.
doi: 10.1016/s1474-4422(15)00178-7

Olanow, C. W., Stern, M. B., and Sethi, K. (2009). The scientific and clinical
basis for the treatment of Parkinson disease (2009). Neurology 72, S1–S136. doi:
10.1212/WNL.0b013e3181a1d44c

Frontiers in Aging Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnagi.2022.977985
https://www.frontiersin.org/articles/10.3389/fnagi.2022.977985/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2022.977985/full#supplementary-material
https://doi.org/10.1002/mds.20527
https://doi.org/10.1002/mds.20527
https://doi.org/10.1016/s1474-4422(16)30230-7
https://doi.org/10.1016/s1474-4422(16)30230-7
https://doi.org/10.1212/01.wnl.0000306632.43729.24
https://doi.org/10.1212/01.wnl.0000306632.43729.24
https://doi.org/10.5498/wjp.v10.i10.234
https://doi.org/10.5498/wjp.v10.i10.234
https://doi.org/10.3390/healthcare8020121
https://doi.org/10.1016/s1474-4422(06)70373-8
https://doi.org/10.1002/mds.25664
https://doi.org/10.1002/mds.25664
https://doi.org/10.1001/jamaneurol.2015.0703
https://doi.org/10.1007/s12264-017-0170-x
https://doi.org/10.1007/s12264-017-0170-x
https://doi.org/10.1007/s00415-019-09197-0
https://doi.org/10.1007/s00415-010-5786-y
https://doi.org/10.1007/s00415-010-5786-y
https://doi.org/10.1016/j.jad.2020.02.046
https://doi.org/10.1002/mds.20324
https://doi.org/10.1001/jamaneurol.2013.3861
https://doi.org/10.1001/jamaneurol.2013.3861
https://doi.org/10.1002/ajmg.b.30758
https://doi.org/10.1016/j.parkreldis.2019.07.025
https://doi.org/10.3390/biom12020329
https://doi.org/10.3389/fneur.2019.00471
https://doi.org/10.1111/j.1468-1331.2008.02058.x
https://doi.org/10.3233/jpd-171195
https://doi.org/10.3233/jpd-171195
https://doi.org/10.1002/mds.24893
https://doi.org/10.3389/fnagi.2020.627199
https://doi.org/10.1002/mds.26754
https://doi.org/10.1002/mds.26754
https://doi.org/10.1002/acn3.644
https://doi.org/10.1212/wnl.0000000000000424
https://doi.org/10.1002/mds.26510
https://doi.org/10.1002/mds.26374
https://doi.org/10.1002/mds.26374
https://doi.org/10.1016/s1474-4422(15)00178-7
https://doi.org/10.1212/WNL.0b013e3181a1d44c
https://doi.org/10.1212/WNL.0b013e3181a1d44c
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-977985 August 22, 2022 Time: 16:40 # 12

Dou et al. 10.3389/fnagi.2022.977985

Oosterveld, L. P., Verberk, I. M. W., Majbour, N. K., El-Agnaf, O. M., Weinstein,
H. C., Berendse, H. W., et al. (2020). CSF or serum neurofilament light added
to α-Synuclein panel discriminates Parkinson’s from controls. Mov. Disord. 35,
288–295. doi: 10.1002/mds.27897

Parkinson Progression Marker Initiative (2011). The Parkinson Progression
Marker Initiative (PPMI). Prog. Neurobiol. 95, 629–635. doi: 10.1016/j.pneurobio.
2011.09.005

Parnetti, L., Castrioto, A., Chiasserini, D., Persichetti, E., Tambasco, N., El-
Agnaf, O., et al. (2013). Cerebrospinal fluid biomarkers in Parkinson disease. Nat.
Rev. Neurol. 9, 131–140. doi: 10.1038/nrneurol.2013.10

Parnetti, L., Gaetani, L., Eusebi, P., Paciotti, S., Hansson, O., El-Agnaf, O., et al.
(2019). CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 18,
573–586. doi: 10.1016/s1474-4422(19)30024-9

Ponsen, M. M., Stoffers, D., Booij, J., van Eck-Smit, B. L., Wolters, E., and
Berendse, H. W. (2004). Idiopathic hyposmia as a preclinical sign of Parkinson’s
disease. Ann. Neurol. 56, 173–181. doi: 10.1002/ana.20160

Postuma, R. B., Aarsland, D., Barone, P., Burn, D. J., Hawkes, C. H., Oertel, W.,
et al. (2012). Identifying prodromal Parkinson’s disease: Pre-motor disorders in
Parkinson’s disease. Mov. Disord. 27, 617–626. doi: 10.1002/mds.24996

Postuma, R. B., Berg, D., Stern, M., Poewe, W., Olanow, C. W., Oertel, W., et al.
(2015). MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30,
1591–1601. doi: 10.1002/mds.26424

Postuma, R. B., Gagnon, J. F., and Montplaisir, J. (2013). Rapid eye movement
sleep behavior disorder as a biomarker for neurodegeneration: The past 10 years.
Sleep Med. 14, 763–767. doi: 10.1016/j.sleep.2012.09.001

Reijnders, J. S., Ehrt, U., Weber, W. E., Aarsland, D., and Leentjens, A. F. (2008).
A systematic review of prevalence studies of depression in Parkinson’s disease.
Mov. Disord. 23, 183–189;quiz313. doi: 10.1002/mds.21803

Ren, X., Lin, J., Stebbins, G. T., Goetz, C. G., and Luo, S. (2021). Prognostic
modeling of Parkinson’s disease progression using early longitudinal patterns of
change. Mov. Disord. 36, 2853–2861. doi: 10.1002/mds.28730

Rosborough, K., Patel, N., and Kalia, L. V. (2017). α-Synuclein and
Parkinsonism: Updates and Future Perspectives. Curr. Neurol. Neurosci. Rep.
17:31. doi: 10.1007/s11910-017-0737-y

Santos García, D., de Deus Fonticoba, T., Cores, C., Muñoz, G., Paz González,
J. M., Martínez Miró, C., et al. (2021). Predictors of clinically significant quality
of life impairment in Parkinson’s disease. NPJ Parkinsons Dis. 7:118. doi: 10.1038/
s41531-021-00256-w

Schapira, A. H. V., Chaudhuri, K. R., and Jenner, P. (2017). Non-motor features
of Parkinson disease. Nat. Rev. Neurosci. 18, 435–450. doi: 10.1038/nrn.2017.62

Schrag, A., Anastasiou, Z., Ambler, G., Noyce, A., and Walters, K. (2019).
Predicting diagnosis of Parkinson’s disease: A risk algorithm based on primary
care presentations. Mov. Disord. 34, 480–486. doi: 10.1002/mds.27616

Schrag, A., Horsfall, L., Walters, K., Noyce, A., and Petersen, I. (2015).
Prediagnostic presentations of Parkinson’s disease in primary care: A case-control
study. Lancet Neurol. 14, 57–64. doi: 10.1016/s1474-4422(14)70287-x

Schrag, A., Jahanshahi, M., and Quinn, N. (2000). What contributes to quality
of life in patients with Parkinson’s disease? J Neurol. Neurosurg. Psychiatry 69,
308–312. doi: 10.1136/jnnp.69.3.308

Schrag, A., Siddiqui, U. F., Anastasiou, Z., Weintraub, D., and Schott, J. M.
(2017). Clinical variables and biomarkers in prediction of cognitive impairment in
patients with newly diagnosed Parkinson’s disease: A cohort study. Lancet Neurol.
16, 66–75. doi: 10.1016/s1474-4422(16)30328-3

Searles Nielsen, S., Warden, M. N., Camacho-Soto, A., Willis, A. W., Wright,
B. A., and Racette, B. A. (2017). A predictive model to identify Parkinson disease
from administrative claims data. Neurology 89, 1448–1456. doi: 10.1212/wnl.
0000000000004536

Smedinga, M., Darweesh, S. K. L., Bloem, B. R., Post, B., and Richard, E. (2021).
Towards early disease modification of Parkinson’s disease: A review of lessons
learned in the Alzheimer field. J. Neurol. 268, 724–733. doi: 10.1007/s00415-020-
10162-5

Wirdefeldt, K., Adami, H. O., Cole, P., Trichopoulos, D., and Mandel, J. (2011).
Epidemiology and etiology of Parkinson’s disease: A review of the evidence. Eur. J.
Epidemiol. 2, S1–S58. doi: 10.1007/s10654-011-9581-6

Zhang, X., Sun, X., Wang, J., Tang, L., and Xie, A. (2017). Prevalence of rapid
eye movement sleep behavior disorder (RBD) in Parkinson’s disease: A meta
and meta-regression analysis. Neurol. Sci. 38, 163–170. doi: 10.1007/s10072-016-2
744-1

Frontiers in Aging Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2022.977985
https://doi.org/10.1002/mds.27897
https://doi.org/10.1016/j.pneurobio.2011.09.005
https://doi.org/10.1016/j.pneurobio.2011.09.005
https://doi.org/10.1038/nrneurol.2013.10
https://doi.org/10.1016/s1474-4422(19)30024-9
https://doi.org/10.1002/ana.20160
https://doi.org/10.1002/mds.24996
https://doi.org/10.1002/mds.26424
https://doi.org/10.1016/j.sleep.2012.09.001
https://doi.org/10.1002/mds.21803
https://doi.org/10.1002/mds.28730
https://doi.org/10.1007/s11910-017-0737-y
https://doi.org/10.1038/s41531-021-00256-w
https://doi.org/10.1038/s41531-021-00256-w
https://doi.org/10.1038/nrn.2017.62
https://doi.org/10.1002/mds.27616
https://doi.org/10.1016/s1474-4422(14)70287-x
https://doi.org/10.1136/jnnp.69.3.308
https://doi.org/10.1016/s1474-4422(16)30328-3
https://doi.org/10.1212/wnl.0000000000004536
https://doi.org/10.1212/wnl.0000000000004536
https://doi.org/10.1007/s00415-020-10162-5
https://doi.org/10.1007/s00415-020-10162-5
https://doi.org/10.1007/s10654-011-9581-6
https://doi.org/10.1007/s10072-016-2744-1
https://doi.org/10.1007/s10072-016-2744-1
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Multi-predictor modeling for predicting early Parkinson's disease and non-motor symptoms progression
	Introduction
	Materials and methods
	Parkinson's Progression Markers Initiative database and participants
	Standard protocol approvals, registrations, and patient consent
	Cerebrospinal fluid and blood biomarker assessments
	Genetic assessments
	Predictor variables
	Longitudinal assessments
	Statistical analyses

	Results
	Demographic and clinical characteristics of included participants
	Predictive modeling for distinguishing between early Parkinson's disease and healthy normal
	Internal validation and calibration of the diagnostic model
	Prognostic modeling for predicting non-motor symptoms progression in de novo Parkinson's disease patients
	Internal validation and calibration of the prognostic models

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


