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Complement component 3 and
complement factor H protein
levels are altered in brain tissues
from people with human
immunodeficiency virus: A pilot
study
Jerel Adam Fields*, Mary Swinton, Erin E. Sundermann,
Nicholas Scrivens, Kaylie-Anna Juliette Vallee and
David J. Moore

Department of Psychiatry, University of California, San Diego, San Diego, CA, United States

People with HIV (PWH) continue to suffer from dysfunction of the central

nervous system, as evidenced by HIV-associated neurocognitive disorder

(HAND), despite antiretroviral therapy and suppressed viral loads. As PWH live

longer they may also be at risk of age-related neurodegenerative diseases

such Alzheimer’s disease (AD) and its precursor, amnestic mild cognitive

impairment (aMCI). The complement system is associated with deposition

of AD-related proteins such as beta amyloid (Aβ), neuroinflammation, and

neurological dysfunction in PWH. Complement component 3 (C3) is a key

protagonist in the complement cascade and complement factor H (CFH) is

an antagonist of C3 activity. We investigated the relationship between C3

and CFH levels in the brain and Aβ plaques and neurological dysfunction

in 22 PWH. We analyzed by immunoblot C3 and CFH protein levels in

frontal cortex (FC) and cerebellum (CB) brain specimens from PWH previously

characterized for Aβ plaque deposition. C3 and CFH protein levels were then

correlated with specific cognitive domains. C3 protein levels in the FC were

significantly increased in brains with Aβ plaques and in brains with HAND

compared to controls. In the CB, C3 levels trended higher in brains with Aβ

plaques. Overall C3 protein levels were significantly higher in the FC compared

to the CB, but the opposite was true for CFH, having significantly higher

levels of CFH protein in the CB compared to the FC. However, only CFH

in the FC showed significant correlations with specific domains, executive

function and motor performance. These findings corroborate previous results

showing that complement system proteins are associated with HAND and

AD neuropathogenesis.
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Introduction

Central nervous system dysfunction remains a major
problem for people with HIV (PWH) even in the presence
of antiretroviral therapy (ART) (Cysique et al., 2021). HIV-
associated neurocognitive disorders (HAND) persist in
approximately 43% of PWH (Heaton et al., 2011; Wang
et al., 2020). The developments in ART have led to increased
longevity among PWH so that the population of PWH
in the United States is now predominantly over the age
of 50. However, this translates to increased susceptibility
to age-related neuropathogenesis such as Alzheimer’s
disease (AD) and its precursor, amnestic mild cognitive
impairment (aMCI) (Althoff et al., 2022). Indeed, multiple
studies from independent labs have implicated age-related
proteinopathies in neuropathogenesis in PWH (Achim et al.,
2009; Gisslen et al., 2009, 2019; Chen et al., 2014; Fields
et al., 2018, 2020; Murray et al., 2022). Consequently, there
is a need to better understand mechanisms of age-related
neuropathogenesis in PWH.

Interest in the role of innate immune function in the
brain has mounted as multiple studies have implicated a
prolonged innate immune response as a potential etiology
of neurodegenerative diseases (Heneka et al., 2014, 2015;
Kim et al., 2021). The complement system is integral to
innate immunity and it can be activated early on during
immune responses (Merle et al., 2015a,b; Morgan, 2015). When
controlled, the complement system plays a protective and even
developmental role in the brain. However, there is ample
evidence that, when dysregulated, the complement system may
contribute to the pathogenesis of neurodegenerative diseases
(Liddelow et al., 2017) such as HAND (Bryant et al., 2016;
Nitkiewicz et al., 2017) and AD (Goetzl et al., 2018; Morgan,
2018).

Complement component 3 (C3) is a central player in
the activation of both the classical and alternative activation
pathways (Merle et al., 2015a,b). Complement factor H (CFH)
acts as a negative regulator of C3, blocking the activation of
the complement system on targeted cells that are meant to
be protected from complement activity (Merle et al., 2015a,b).
Recent studies have suggested that either the blocking of
C3 or the augmentation of CFH may serve as a therapeutic
strategy in neurodegenerative diseases (Li et al., 2012; Lukiw and
Alexandrov, 2012; Lukiw et al., 2012; Hoh Kam et al., 2013).
However, other studies show that C3 mediates clearance of Aβ

plaques (Wyss-Coray et al., 2002; Maier et al., 2008). Clinically,
low CSF C3 and CFH has been associated with worsening
cognitive decline in MCI (Toledo et al., 2014; Hu et al., 2016).
CFH genetic variants as well as expression of miRNA that target
expression of CFH have been associated with increased risk for
AD (Li et al., 2012; Lukiw and Alexandrov, 2012; Lukiw et al.,
2012; Zhang et al., 2016). Thus the interplay between C3 and
CFH may contribute to the neuropathogenesis of aging and
age-related diseases in PWH.

Researchers from our group previously examined
associations between plasma inflammatory biomarkers (e.g.,
C3, cystatin C, interleukin 6, soluble CD163, and soluble CD14)
and metabolic syndrome (MetS) in 79 virally suppressed, older
PWH compared to 47 human immunodeficiency virus (HIV)-
seronegative controls (Bryant et al., 2016). Among PWH, higher
C3 levels were significantly associated with MetS in addition
to the individual MetS components of obesity, type II diabetes,
dyslipidemia and hypertension. C3 levels were significantly
higher in PWH with MetS vs. PWH without MetS, whereas
no associations between C3 levels and MetS were observed
among HIV-seronegative controls. Other studies show that HIV
induces C3 expression in the brain (Nitkiewicz et al., 2017).
Furthermore, C3 expression is associated with mitochondrial
dysfunction in AD (Sekar et al., 2015), representing another link
to the neuropathogenesis of AD. These findings suggest that C3
may be a marker of inflammatory processes that contribute to
metabolic risk and, as examined in this proposal, brain function
and AD risk. This may be particularly important because
mitochondrial dysfunction is implicated in HAND and AD
neuropathogenesis.

Aβ deposition is altered in the brains of PWH and may
be associated with premature aging in this population. HIV
infection of the brain is associated with increased levels of
Aβ (Giometto et al., 1997; Esiri et al., 1998; Green et al.,
2005), including intraneuronal Aβ (Achim et al., 2009) and
other AD-related biomarkers including increased phospho-
tau (ptau) (Brew et al., 2005; Clifford et al., 2009), and
inflammatory cytokines, such as tumor necrosis factor (TNF)-α
and interleukin (IL)-1β (Ortega and Ances, 2014; Gelman, 2015;
Levine et al., 2016; Fields et al., 2018). In a study of frontal cortex
(FC) samples from PWH, Aβ plaques were detected in 29%
of 279 cases (Umlauf et al., 2019). To date, numerous studies
have provided evidence of AD-related neuropathogenesis in
HIV (Chen et al., 2014; Fields et al., 2018; Gisslen et al., 2019;
Chemparthy et al., 2021; Murray et al., 2022), and thus, there
is a need to better understand the common neuropathogenic
mechanisms in AD and HAND.

In this study we utilized the post-mortem tissue repository,
National NeuroAIDS Tissue Consortium (NNTC), to
investigate C3 and CFH levels in the FC and cerebellum in
older HIV + cases previously characterized for AD-associated
neuropathology. We next examined how C3 and CFH levels
relate to aMCI and HAND classification and performance on
specific cognitive domains based on an antemortem cognitive
evaluation within 18 months of death.

Materials and methods

Study population

For the present study, we evaluated brain tissues from
a total of 22 older (at-least 50 years of age at death)
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HIV + donors from the NNTC [Institutional Review Board
(IRB) #080323]. All studies adhered to the ethical guidelines
of the National Institutes of Health and the University of
California, San Diego. These cases had neuromedical and
neuropsychological examinations within a median of 12 months
before death. Subjects were excluded if they had a history of CNS
opportunistic infections or non-HIV-related developmental,
neurologic, psychiatric, or metabolic conditions that might
affect CNS functioning (e.g., loss of consciousness exceeding
30 min, psychosis, etc.).

Neuromedical and neuropsychological
testing

Participants underwent a comprehensive neuromedical
evaluation that included assessment of medical history,
structured medical and neurological examinations, and
the collection of blood, cerebrospinal fluid (CSF), and
urine samples, as previously described (Woods et al., 2004;
Heaton et al., 2010). Clinical data [plasma viral load (VL),
postmortem interval, CD4 count] were collected for the
donor cohorts. A neuropsychological battery assessed seven
cognitive domains commonly affected by HIV: verbal fluency,
working memory, processing speed, episodic memory for
verbal and visual stimuli, executive function, and complex
motor function. Specific tests are described elsewhere
(Cysique et al., 2011). Raw test scores were transformed
into demographically adjusted T-scores, including adjustments
for age, education, gender and race, based on normative
samples of HIV-participants (Norman et al., 2011). As part of
the neuropsychological battery, participants also completed
self-report questionnaires of everyday functioning (i.e.,
Lawton and Brody Activities of Daily Living questionnaire
(Lawton and Brody, 1969), and/or Patient’s Assessment
of Own Functioning; PAOFI (Chelune and Baer, 1986;
Chelune et al., 1986).

HIV-associated neurocognitive
disorder classification

Participant’s performance on the neuropsychological test
battery and their responses to the everyday functioning
questionnaires were utilized to assign HAND diagnoses
following Frascati criteria (Antinori et al., 2007). A HAND
diagnosis required impairment in at-least two cognitive
domains, defined by performance of at-least 1.0 standard
deviation (SD) below the demographically adjusted normative
mean on neuropsychological tests. HAND status was further
categorized as asymptomatic neurocognitive impairment (ANI;
no interference in everyday function), mild neurocognitive
disorder (MND; at-least mild interference in everyday function),

and HIV-associated dementia (HAD; marked interference in
everyday function).

Amnestic mild cognitive impairment
classification

aMCI was classified using a version of the established,
neuropsychological Jak/Bondi criteria (Bondi et al., 2014) that
was previously adapted for the use of detecting aMCI symptoms
amid a background of HAND in PWH (Sundermann et al.,
2021). The Jak/Bondi criteria for aMCI requires two impaired
tests (i.e., >1 SD below demographically corrected mean) within
the memory domain. In order to capitalize on the retention
deficit that is unique to aMCI/AD rather than the retrieval deficit
that is common to both aMCI/AD and HAND, the Jak/Bondi
MCI criteria was adapted to require at least one of the two
impaired memory tests be a recognition test. The memory
outcomes used in these criteria were the demographically
adjusted T-scores of the Hopkins Verbal Learning Test-Revised
(HVLT-R) and the Brief Visuospatial Memory Test-Revised
(BVMT-R) (Norman et al., 2011) delayed recall and recognition
subtests. Participants were classified as aMCI + if they showed
impaired performance (T-score < 40) on at-least two of
the four measures with at-least one of the impaired scores
being a recognition measure. Of important note, the HAND
classification criteria used in this study included BVMT-R and
HVLT-R learning and delayed recall, but not recognition, scores
to assess the learning and memory domain.

Immunoblot analysis of complement
proteins

Further assessment of the expression levels of C3 and
CFH in NNTC cases were performed by immunoblot analysis.
Cerebellum and FC was homogenized in buffer (1.0 mmol/L
HEPES (Gibco, cat. no. 15630–080), 5.0 mmol/L benzamidine,
2.0 mmol/L 2-mercaptoethanol (Gibco, cat. no. 21985), 3.0
mmol/L EDTA (Omni pur, cat. no. 4005), 0.5 mmol/L
magnesium sulfate, 0.05% sodium azide; final pH 8.8) as
described in a previous publication (Swinton et al., 2021).
In brief, as previously described (Fields et al., 2013), tissues
from brain samples (0.1 g) were homogenized in 0.7 ml
of fractionation buffer containing phosphatase and protease
inhibitor cocktails (Calbiochem, cat. nos. 524624 and 539131).
Samples were precleared by centrifugation at 5000 × g for
5 min at room temperature. Supernatants were retained as
the whole lysate and stored at –80 until use. As previously
described (Swinton et al., 2021), after determination of the
protein content of all samples by bicinchoninic acid assay
(Thermo Fisher Scientific, cat. no. 23225) and denaturing in
lamellae sample buffer (Bio Rad, cat. no. 1610747), whole lysates
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were loaded (15 µg total protein/lane) on 4–15% Criterion TGX
stain free gels (Bio Rad, cat. no. 5678085) and electrophoresed
in Tris/Glycine/SDS running buffer (Bio Rad, cat. no. 161–
0772) and transferred onto LF PVDF membrane with Bio Rad
transfer stacks and transfer buffer (Bio Rad, cat. no 1704275)
using Bio Rad Trans Blot Turbo transfer system. After the
transfer, total protein was imaged using Bio Rad ChemiDoc
imager under the stain free blot setting for normalization
purposes. Total protein transferred to the blot membrane,
rather than the traditional use of housekeeping genes such
as beta actin and glyceraldehyde phosphate dehydrogenase,
was used to normalize protein expression because studies
show that “housekeeping” genes are often altered in processes
associated with neurodegenerative diseases (Kish et al., 1998;
Mahmood et al., 2021). Therefore, our results are presented
as the expression levels of the target gene compared total
protein transferred to the blot membrane, a more accurate
representation of protein expression in any given lysate. The
membranes were then blocked in 1% casein in tris-buffered
saline (TBS) (Bio Rad, cat. no. 1610782) for 1 h. Membranes
were incubated overnight at 4◦C with primary antibodies
diluted in blocking buffer. All blots were then washed in PBST,
and then incubated with species-specific IgG conjugated to HRP
(American Qualex, cat. no. A102P5) diluted 1:5,000 in PBST and
visualized with SuperSignal West Femto Maximum Sensitivity
Substrate (ThermoFisher Scientific, cat. no. 34096). Images were
obtained, and semi-quantitative analysis was performed with the
ChemiDoc gel imaging system and Quantity One software (Bio-
Rad).

Statistical analysis

We first examined and removed outliers in C3 and
CFH protein levels as defined by levels greater than 3 SD

from the sample mean. Statistical analysis was conducted
using student t-test, one-way ANOVA, and effect size. Error
bars represent standard error of the mean. Significance was
set at a threshold of p < 0.05. We conducted a series
of one-way ANOVAs to test mean differences in C3 and
CFH protein expression levels in the FC and cerebellum
by HAND classification and by aMCI classification. If
there was a significant difference by HAND status, then
we probed this difference by comparing protein expression
levels among individual HAND types. We determined effect
size of mean differences using Cohen’s d. We conducted
a series of Spearman’s rank-order correlation, the non-
parametric version of the Pearson product-moment correlation,
to examine relationships between C3 and CFH expression
levels in the FC and cerebellum and cognitive domain
t-scores.

Results

One outlier for frontal and cerebellar CFH protein levels
was identified and removed from analyses resulting in a final
sample of N = 22 for C3 and N = 21 for CFH protein
levels in the FC and N = 14 for C3 and N = 13 for CFH
in the cerebellum. See Table 1 for sample characteristics
of the largest sample (N = 22) by HAND and aMCI
classification. Overall, age at death ranged from 50 to 66
(mean = 56.2, SD = 4.6) and the sample was 82% male
and 73% Caucasian. Fifteen (68%) of the participants were
classified as HAND with the following break-down: 7 (32%)
ANI, 3 (14%) MND and 5 HAD (23%). Ten participants
(45.5%) were classified as aMCI, with only one of these cases
classified as non-HAND, suggesting that this case only exhibited
memory impairment.

TABLE 1 Clinical characteristics of HIV + brain tissues.

Variables Cognitively normal (n = 7) HAND (n = 15)

ANI (n = 7) MND (n = 3) HAD (n = 5)

Demographics
Sex (f/m) 2/5 1/6 0/3 1/4

Years of age at death 55.9± 4.7 58.4± 5.6 52.7± 2.3 58.4± 5.6

Years of education 12.3± 2.7 14.1± 3.2 14± 3.5 11± 3

Race/ethnicity, N (%)

White 5 (71.4%) 6 (85.7%) 3 (100%) 2 (40%)

Black 2 (28.6%) 1 (14.3%) 0 (0%) 0 (0%)

Asian 0 (0%) 0 (0%) 0 (0%) 1 (20%)

Other 0 (0%) 0 (0%) 0 (0%) 2 (40%)

HIV disease characteristics
Duration of HIV diagnosis (years) 15.7± 6.8 14.1± 6.7 10.4± 0.2 13.6± 8.2

Antemortem plasma VL (log) 3.6± 3.9 5.2± 5.6 5.5± 5.6 5.1± 5.3

Antemortem CD4 count 272.9± 134.2 165.6± 150.3 87± 110.3 104± 125

Antemortem ART use, N (%) 6 (85.7%) 7 (100%) 3 (100%) 4 (80%)
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Complement component 3 protein is
significantly upregulated in the frontal
cortex of HIV brains with detectable
beta amyloid plaques and in the frontal
cortex from decedents with
HIV-associated neurocognitive
disorder

To determine the expression levels of C3 and CFH protein
in frontal cortices of HIV + donors with and without AD-
related pathology and HAND, we performed immunoblot of
lysates stratified by presence of Aβ plaques (Umlauf et al., 2019;
Figure 1A). Bands corresponding to C3 and CFH proteins
were detected at approximately 75 and 150 kDa, respectively
(Figure 1A). A second band at approximately 100 kDa is
apparent in the CFH blot; however, this is not consistent with
the predicted molecular weight of CFH and, to our knowledge
this band has not been reported in the literature. Future studies
may be necessary to determine the biological relevance of the
105 kDa band. When normalized to total protein transferred to
the membrane, the average intensity of the band corresponding
to C3 showed a significant (∼5-fold) increase in the Aβ+ group
compared to the Aβ- group (Figure 1B). Comparing C3 band
intensity in CN vs. HAND, C3 was significantly higher in the
HAND group as a whole compared to the CN group [F(1,

19) = 4.72, p = 0.04, Cohen’s d = 1.52; Figure 1C]. When
stratified by HAND subgroups, the average intensity of the band
corresponding to C3 was significantly higher (∼7-fold) in the
ANI group compared to the CN group [F(1, 12) = 9.76, p = 0.009;
Figure 1D]. There was no significant difference in C3 band
intensity in aMCI- vs. aMCI + groups [F(1, 19) = 0.91, Cohen’s
d = 0.43, p = 0.35; Figure 1E]. The average intensity of the band
corresponding to CFH was not significantly different between
the Aβ- and Aβ + groups (Figure 1F), the HAND and CN
groups [F(1, 18) = 0.54, p = 0.47; Figures 1G,H], or the aMCI-
and aMCI + groups [F(1, 18) = 0.69, Cohen’s d = 0.32, p = 0.42;
Figure 1I]. We found no significant relationship between C3 or
CFH levels in the FC and viral loads or CD4+ cell counts.

Complement component 3 protein
trends upward in the cerebellum of
human immunodeficiency virus brains
with detectable beta amyloid plaques

To determine the expression levels of C3 and CFH
protein in the cerebellum of HIV + donors with and
without AD-related pathology and HAND, we performed
immunoblot of lysates stratified by presence of Aβ plaques
(Umlauf et al., 2019; Figure 2A). Bands corresponding to
C3 and CFH proteins were detected at approximately 75

and 150 kDa, respectively (Figure 2A). When normalized
to total protein transferred to the membrane, the average
intensity of the band corresponding to C3 was ∼5-fold higher
in Aβ + group compared to the Aβ- group (Figure 2B),
though this difference did not reach significance. The average
intensity of the band corresponding to C3 did not significantly
differ in HAND compared to the CN group (Figure 2C)
nor when stratified by HAND subgroups (Figure 2D). There
was no significant difference in C3 band intensity in aMCI-
vs. aMCI + groups (Figure 2E). The average intensity
of the band corresponding to CFH was not significantly
different between the Aβ- and Aβ + groups (Figure 2F),
the HAND and CN groups (Figures 2G,H), or the aMCI-
and aMCI + groups (Figure 2I). We found no significant
relationship between C3 or CFH levels in the CB and viral loads
or CD4+ cell counts.

Complement component 3 protein
expression is higher in the frontal
cortex than the cerebellum and
complement factor H protein
expression is higher in the cerebellum
than in the frontal cortex

To determine differences in C3 and CFH expression in
the FC and cerebellum, densitometry analyses quantities for
each protein were compared between the two brain regions.
The mean densitometry levels for C3 were significantly higher
(∼4-fold) in the FC than in the cerebellum (Figure 3A). The
mean densitometry levels for CFH were significantly higher
(∼2.5-fold) in the cerebellum than in the FC (Figure 3B).

Complement factor H protein levels
relate to motor (frontal and cerebellar
complement factor H) and executive
function (frontal complement factor H
only) performance

In correlational analyses, frontal and cerebellar C3 levels
did not relate to any domain-specific T-scores (p> 0.05). There
were moderate-sized correlations between higher frontal CFH
protein levels and poorer motor domain scores (ρ = 0.54,
p = 0.02) and poorer executive domain performance (ρ = –
0.40, p = 0.08; Figures 4A,B), with the former a significant
relationship and the latter a statistical trend. Lower cerebellar
CFH protein levels significantly related to poorer motor domain
T-score (ρ = 0.66, p = 0.03; Figure 4C). Frontal or cerebellar
CFH levels did not relate to any other domain-specific T-score
(p > 0.05).
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FIGURE 1

C3 protein is significantly upregulated in the frontal cortex of HIV brains with detectable Aβ plaques and in the frontal cortex from decedents
with HAND. (A) Immunoblot for C3 and CFH and total protein transferred to the membrane using brain lysates from the frontal cortex from HIV
brains that were determined to be negative or positive for Aβ plaques. (B) Quantification of C3 band intensity normalized to total protein
transferred to the membrane stratified as negative or positive for Aβ plaques. (C) Quantification of C3 band intensity normalized to total protein
and stratified by cognitive normal vs. HAND. (D) Quantification of C3 band intensity normalized to total protein and stratified by HAND
sub-categories. (E) Quantification of C3 band intensity normalized to total protein and stratified by aMCI– vs. aMCI +. (F) Quantification of CFH
band intensity normalized to total protein transferred to the membrane stratified as negative or positive for Aβ plaques. (G) Quantification of
CFH band intensity normalized to total protein and stratified by cognitive normal vs. HAND. (H) Quantification of CFH band intensity normalized
to total protein and stratified by HAND sub-categories. (I) Quantification of CFH band intensity normalized to total protein and stratified by
aMCI– vs. aMCI +. Statistical significance was determined by an unpaired t-test (*p < 0.05, **p < 0.01).
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FIGURE 2

C3 protein trends upward in the cerebellum HIV brains with detectable Aβ plaques. (A) Immunoblot for C3 and CFH and total protein transferred
to the membrane using brain lysates from the cerebellum from HIV brains that were determined to be negative or positive for Aβ plaques.
(B) Quantification of C3 band intensity normalized to total protein transferred to the membrane stratified as negative or positive for Aβ plaques.
(C) Quantification of C3 band intensity normalized to total protein and stratified by cognitive normal vs. HAND. (D) Quantification of C3 band
intensity normalized to total protein and stratified by HAND sub-categories. (E) Quantification of C3 band intensity normalized to total protein
and stratified by aMCI– vs. aMCI+. (F) Quantification of CFH band intensity normalized to total protein transferred to the membrane stratified as
negative or positive for Aβ plaques. (G) Quantification of CFH band intensity normalized to total protein and stratified by cognitive normal vs.
HAND. (H) Quantification of CFH band intensity normalized to total protein and stratified by HAND sub-categories. (I) Quantification of CFH
band intensity normalized to total protein and stratified by aMCI– vs. aMCI+. Statistical significance was determined by an unpaired t-test.
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A

B

FIGURE 3

C3 protein expression is higher in the frontal cortex than the
cerebellum and CFH protein expression is higher in the
cerebellum than in the frontal cortex. (A) Quantification of C3
band intensity normalized to total protein and stratified by
frontal cortex vs. cerebellum. (B) Quantification of CFH band
intensity normalized to total protein transferred to the
membrane stratified by frontal cortex vs. cerebellum. Statistical
significance was determined by an unpaired t-test (*p < 0.05,
**p < 0.01).

Discussion

The results of this study provide further evidence for
the involvement of neuroinflammation and innate immune
activation, with a specific emphasis on the complement system
in the neuropathogenesis of HAND. This study also provides
evidence for a role of the complement system at the nexus of
HAND and AD neuropathogenesis. We identified increased C3
protein levels in FC tissues from decedents with HIV previously
shown to have Aβ plaques in the cortex and in those diagnosed
with HAND. Interestingly, and somewhat unexpectedly, C3
protein levels trended higher in the cerebellum of tissues with
Aβ plaques in the cortex, despite having had fewer specimens
available to analyze. Although there were no direct correlations
with overall HAND status, altered levels of CFH protein in
the FC were associated with deficiencies in executive and

A

B

C

FIGURE 4

Frontal and cerebellar CFH protein levels relate to antemortem
performance in specific cognitive domains. Quantification of
frontal cortex CFH band intensity relates to motor domain (A)
and executive function domain performance (B). Quantification
of cerebellum CFH band intensity relates to motor domain
performance (C). Statistical significance was determined by a
Spearman’s rank-order correlation (ρ = Spearman’s rank
correlation coefficient).
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motor function performance. These findings are consistent with
previous findings showing that alterations in the complement
system may play a role in the neurodegenerative process in
HAND and AD, highlighting the need to better understand the
therapeutic potential of targeting this system.

C3 has long been suspected of being involved in the
neurodegenerative process of HAND and AD. Our findings are
consistent with a finding that C3 is positively associated with
metabolic alterations in aged PWH (Bryant et al., 2016) and a
significant role for complement in AD (Morgan, 2018). Elevated
C3 levels in HAND and Aβ + brains are also consistent with
studies showing that reactive astrocytes produce C3 (Liddelow
et al., 2017; Nitkiewicz et al., 2017; Clarke et al., 2018; Vallee
and Fields, 2022) and may contribute to metabolic deficiencies
in neurons in HAND and AD (Jiang and Cadenas, 2014; Yin
et al., 2016; Fields et al., 2019; Swinton et al., 2019). However,
the relationship between C3 and AD neuropathogenesis is
not clear. C3 deficiency promotes Aβ-associated neurotoxicity
in animal models and enhanced levels of C3 in CSF are
associated with MCI and AD (Wyss-Coray et al., 2002; Maier
et al., 2008; Li et al., 2012; Lukiw and Alexandrov, 2012;
Lukiw et al., 2012; Hoh Kam et al., 2013; Toledo et al., 2014;
Hu et al., 2016; Zhang et al., 2016). C3 is also associated
with the synaptic pruning process required for development
and learning and memory formation (Schafer et al., 2012).
This murky picture, when considering all available evidence,
suggests that other factors are likely at play and interacting
with the complement system to determine disease outcomes.
Nevertheless, C3 consistently shows up in biomarker studies in
association with HAND and AD neuropathogenesis, suggesting
it may be useful as a therapeutic target or, when coupled with
other biomarkers, a readout to determine therapeutic strategies
and disease progression.

CFH plays a regulatory role in the complement pathway
by dotting cells to be protected from C3 activity (Merle et al.,
2015a,b). The elevated levels of CFH in the FC of PWH showing
deficiencies in executive and motor function may represent a
compensatory mechanism to reverse damage already done by
C3 overactivation. On the other hand, CFH mutations and
miRNA regulation have been shown to mute CFH function
and be associated with disease (Li et al., 2012; Lukiw and
Alexandrov, 2012; Lukiw et al., 2012; Zhang et al., 2016). In
this case, higher levels may be negated by CFH dysfunction.
However, further investigation into CFH sequences and miRNA
expression in these brain tissues would be required to test
this hypothesis. It is interesting that increases in CFH in
the FC are not commensurate with the increases in C3 in
the same brain tissues. This may indicate that more CFH in
these tissues may protect cells from aberrant C3 overactivation.
Moreover, the finding that C3 protein levels are higher in
the FC than cerebellum while CFH protein levels are higher
in the cerebellum than the FC adds a layer of complexity
to interpreting the involvement of the complement system

in HAND and AD. Triggering receptor on myeloid cells 2
(TREM2) is expressed on microglia and facilitates engulfment of
synapses, dying cells, and Aβ (Kiialainen et al., 2005; Guerreiro
et al., 2013). Increased levels of soluble TREM2 is associated with
worse inflammation and neurodegenerative disease (Kiialainen
et al., 2005; Benitez et al., 2013; Colonna and Wang, 2016;
Henjum et al., 2016; Kobayashi et al., 2016). In light of recent
reports of increased levels of soluble TREM2, by our group
and others, may suggest pathogenic levels of synaptic pruning
in PWH (Fields et al., 2018; Gisslen et al., 2019). It will be
interesting to see if these differences are reflected in synaptic
protein levels and synaptic health in the FC and cerebellum of
these brain specimens. These findings suggest that along with
C3, the role of CFH in neuropathogenesis of HIV in aging
people deserves more attention.

The role of the cerebellum in HAND and AD has garnered
little attention. However, recent studies suggest that the
cerebellum is susceptible to Aβ deposition and toxicity (Hoxha
et al., 2018). In brain specimens from humans and rodent
models, Aβ deposition occurs in the region and is associated
with synaptic damage (Sepulveda-Falla et al., 2011; Hoxha et al.,
2012). While little is known about the cerebellum in HAND,
our findings of C3 levels trending higher in the cerebellum in
Aβ + brains are consistent with a role for this region in aging
PWH. Similar to what we observed in the FC, the magnitude
of change in CFH protein levels was not commensurate with
C3 levels in the cerebellum. Moreover, the presence of motor
dysfunction in many PWH may implicate a role for the
cerebellum in neuropathogenesis of HIV. These findings in such
a small cohort suggest more investigations are needed into the
role of the cerebellum in PWH and neurological disorders.

In conclusion, our findings represent one of the first studies
to investigate the role of the complement system in the context
of AD-related neuropathogenesis in PWH. We also investigate
for the first time the complement system in the cerebellum of
HIV + brains in the context of AD-related neuropathogenesis.
The discovery of strong associations in a cohort of limited size
suggests more studies are necessary to determine the therapeutic
and biomarker potential of C3 and CFH in aging PWH.
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