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Background and objectives: The Movement Disorder Society’s Unified Parkinson’s 
Disease Rating Scale Part III (MDS-UPDRS III) is mostly common used for assessing 
the motor symptoms of Parkinson’s disease (PD). In remote circumstances, vision-
based techniques have many strengths over wearable sensors. However, rigidity 
(item 3.3) and postural stability (item 3.12) in the MDS-UPDRS III cannot be assessed 
remotely since participants need to be touched by a trained examiner during testing. 
We developed the four scoring models of rigidity of the neck, rigidity of the lower 
extremities, rigidity of the upper extremities, and postural stability based on features 
extracted from other available and touchless motions.

Methods: The red, green, and blue (RGB) computer vision algorithm and machine 
learning were combined with other available motions from the MDS-UPDRS III 
evaluation. A total of 104 patients with PD were split into a train set (89 individuals) 
and a test set (15 individuals). The light gradient boosting machine (LightGBM) 
multiclassification model was trained. Weighted kappa (k), absolute accuracy 
(ACC ± 0), and Spearman’s correlation coefficient (rho) were used to evaluate the 
performance of model.

Results: For model of rigidity of the upper extremities, k = 0.58 (moderate), 
ACC ± 0 = 0.73, and rho = 0.64 (moderate). For model of rigidity of the lower extremities, 
k = 0.66 (substantial), ACC ± 0 = 0.70, and rho = 0.76 (strong). For model of rigidity of 
the neck, k = 0.60 (moderate), ACC ± 0 = 0.73, and rho = 0.60 (moderate). For model of 
postural stability, k = 0.66 (substantial), ACC ± 0 = 0.73, and rho = 0.68 (moderate).

Conclusion: Our study can be meaningful for remote assessments, especially when 
people have to maintain social distance, e.g., in situations such as the coronavirus 
disease-2019 (COVID-19) pandemic.
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1. Introduction

Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder and is characterized by a broad spectrum of 
gradually developing motor and non-motor impairments (Selikhova 
et al., 2009). At present, in clinical practice, measurement of the various 
aspects of PD and their severity relies mostly on clinically based rating 
scales, as no specific biomarker or imaging index can evaluate PD 
symptoms as a whole thus far. The Movement Disorder Society’s Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS), comprising four 
sections, is the scale most commonly used to evaluate global severity of 
PD, among which Part III is applied to assess motor symptoms in detail 
(Goetz et al., 2007, 2008).

As PD is a chronic progressive disease, long-term follow-up is 
essential to evaluate severity and adjust drug regimens for patients. 
However, during the coronavirus disease-2019 (COVID-19) pandemic, 
follow-up on-site clinic visits have been a problem since clinical stability 
and infection prevention are difficult to simultaneously guarantee 
(Goetz et  al., 2020). Under circumstances such as COVID-19, 
telemedicine and digital visits have become more important for ensuring 
the quality of healthcare and safe distancing (Prasad et al., 2020). A 
review related to the application of artificial intelligence in PD 
mentioned that instrumentations from previous studies, including 
camera systems, inertial measurement unit sensors, and 
electromyography sensor tracking, were used to build machine learning 
models for obtaining MDS-UPDRS III scores (Belic et  al., 2019). 
Compared with other wearable sensors, the most available pattern 
during COVID-19 was using a vision algorithm remotely, since 
participants did not need to be  trained in wearing the sensors and 
ensuring the accuracy of the process. Moreover, vision-based remote 
assessment can be a time-saving, resource-saving, well-accepted tool for 
both patients and doctors (Xu et al., 2021). The red, green, and blue 
(RGB) color model is one of the most low-cost and widely available 
methods for online follow-ups since it can be applied through most 
smartphone cameras.

The MDS-UPDRS III evaluates multiple dimensions of motor 
dysfunction, including speech, facial expression, tremor, rigidity, 
bradykinesia, posture, and gait (Goetz et al., 2007). Several motions 
related to tremor, bradykinesia, and axial symptoms have been studied 
for scoring based on vision instrumentation. Kye Won Park et al. built 
two models for scoring resting tremor and finger tapping by using 
OpenPose and video clips, respectively (Park et  al., 2021). Lu et  al. 
(2020) proposed a vision-based deep learning model for assessing the 
severity of gait and posture. However, rigidity can be  impossible to 
achieve by vision, and posture stability can be unsafe without trained 
examiner remotely, because scoring rigidity requires an examiner to 
touch the patient, and scoring postural reflexes requires a trained health 
examiner to ensure safety during the whole process of pullback test 
(Goetz et  al., 2015). More importantly, if six values from the 
MDS-UPDRS III assessment, including rigidity of the neck (Rig-Neck), 
lower extremities (Rig-LE), and upper extremities (Rig-UE) and 
postural stability (PS), are lost, the total score will not be valid and 
would lie outside the permissible threshold (Goetz et al., 2015). Many 
previous studies have found that features extracted from other motions 
were correlated with rigidity. Rigidity in PD was found to be associated 
with the reduction in leg and arm swing during gait assessment (Kwon 
et al., 2014) and the speed of the release of the keyboard during the 
finger-tapping motion on an engineered keyboard (Trager et al., 2020). 
Regarding PS in PD, Claudia Ferraris et al. estimated PS by extracting 

features from a quiet stance (Ferraris et  al., 2019). Therefore, these 
motions can be potential predictors for evaluating rigidity and PS scores. 
We examined three types of features, including position signal features, 
angle features, and kinematic features, based on previous studies and 
their impact on MDS-UPDRS III rigidity scores.

Based on the mentioned hypothesis and methods, our study used a 
machine learning-based system with an RGB camera and features 
extracted from the available motions to estimate rigidity and PS in 
patients with PD. These motions are safe for the patient to complete 
independently or under the supervision of caregivers. This system could 
solve the problem of estimating rigidity and PS in a home-based 
environment, making it possible to determine the whole MDS-UPDRS 
III score together with other evaluations by vision, especially during 
situations such as the COVID-19 pandemic.

2. Materials and methods

2.1. Protocol

In this study, 104 patients with PD were enrolled at Beijing Tiantan 
Hospital, Capital Medical University, from 1 March 2020 to 31 
December 2021. All patients were diagnosed according to the 2015 MDS 
PD criteria (Postuma et  al., 2015). Written informed consent was 
obtained from all individuals. The study was approved by the ethics 
committees of Beijing Tiantan Hospital. Demographic information (e.g., 
age, gender, and disease duration) was collected. All patients were asked 
to complete all the motions of the MDS-UPDRS III in front of the 
camera. All MDS-UPDRS III scores were assessed by two specialists in 
movement disorders (LY M and HZ M), both of whom had passed the 
MDS-UPDRS training program, and kappa consistency test was 
performed. The kappa value (measured by kappa consistency test) 
between the raters was 0.93. Ture labels of PS and rigidity (neck, two 
upper extremities, and two lower extremities) were collected by them 
on-site.

Only patients with completed videos were selected. Because of the 
device, some videos had some problems of blur, which can cause the 
disidentification of joints. Therefore, originally the whole sample size 
was 108, but 104 patients had all of completed 11 motion videos.

Stratified sampling based on the total score of rigidity and postural 
stability was used to split train and test set randomly. For making sure 
they are balanced, Chi-square test, T-test, and Wilcoxon test were used 
to test the difference of sex, normally distributed data, and non-normally 
distributed data, between the two groups. Sex was described as number 
and percentage. Normally distributed data were described as mean and 
SD. Non-normally distributed data were described as median and 
interquartile range (25% quantile and 75% quantile).

2.2. Data acquisition

In this study, Microsoft Kinect V2 was used to film all the evaluation 
RGB videos. The data from the facial expression video were 1,080 p 
@20fps. Data from the other videos were 540p @20fps. Our study was 
from a project that decided to build up a system for evaluating every 
item of MDS-UPDRSIII completely by vision. Therefore, we selected 
motions in the MDS-UPDRSIII, these motions not only can be source 
for evaluating of their corresponding items, but also can be source for 
evaluating rigidity and PS indirectly. There were 11 motions, including 
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“facial expression” (FE), “finger tapping” (FT), “hand movements” 
(HM), “pronation-supination movements of hands” (PSOH), “toe 
tapping” (TT), “leg agility” (LA), “arising from chair” (AFC), “GAIT,” 
“posture” (POS), “postural tremor of hands” (PTOH), and “kinetic 
tremor of hands” (KTOH). Except for pullback test of PS, and rigidity, 
all these 11 motions were available in video-based circumstance (Goetz 
et al., 2020).

2.3. Evidence before this study

Before designing the feature engineering, we reviewed and studied 
some results from past studies about the relationships between particular 
motions and either rigidity or PS. In addition, we considered the specific 
muscle or joints that typically move during the evaluation of rigidity and 
PS for the MDS-UPDRS III. During the rigidity evaluation, the examiner 
tested the passive movements of the major joints and neck of the 
participant in conditions with or without an activation maneuver, 
including FT and TT (Goetz et al., 2008). These joints included the 
wrist, elbow, hip, and knee. The motions of these joints can also be found 
in other motions. Specifically, during the motion used to assess LA, the 
participant is asked to raise their foot and then stomp down on the 
ground. The knee of the participant is involved during the whole 
process. Information related to the ankle or joint could be  used to 
represent the severity of rigidity. Regarding the reviewed studies, 
we  found that three types of motions with different patterns could 
be extracted for this study. One type was based on the position signal 
during joint motion. Shan et al. (2001) found that reductions in rigidity 
were correlated with angular excursions of the ankle during the GAIT 
test when analyzing the effects of levodopa and tolcapone (Spearman’s 
correlation coefficient = −0.46, value of p < 0.001). The second type was 
based on evaluating the range of motion (ROM) in the ankles and trunk 
during different motions. Roberto Cano-de-la-Cuerda found that 
rigidity of the trunk extensor muscles was related to trunk flexion and 
extension ROM (Spearman’s correlation coefficient = −0.534, value of 
p = 0.042) based on their research analyzing functional mobility and 
quality of life (Cano-de-la-Cuerda et al., 2020). The third type was based 
on kinematic characteristics, including speed and amplitude. A study by 
Megan H Trager indicated that the speed of key release on a keyboard 
during a FT motion was related to rigidity in the upper extremity 
(Pearson’s correlation coefficient = −0.58; value of p  < 0.01; Trager 
et al., 2020).

2.4. Feature engineering algorithm

This study included 11 motions. Figure 1 shows the relation between 
the different motions and the techniques we used. Different methods 
were used for different motions based on the characteristics of these 
motions. OpenFace (Baltrušaitis et al., 2016) was used for extracting 
features of FE. The facial-action-coding system defines the 
correspondence between facial emotions and facial muscles and divides 
facial expressions into 46 action units (AU). OpenPose (Cao et al., 2021) 
was used for pose estimation, which can provide estimates of the 
position of 25 2D points of the human body and 21 2D points of the 
hand. OpenPose was used for motions including FT, HM, TT, LA, AFC, 
GAIT, and POS. Since some estimation of motions by OpenPose related 
to joints could cause inaccurate result when asking patients to straighten 
their arms (including PSOH, PTOH, and KTOH). For alleviating this 

impact, instead of OpenPose, we used HRNet (Wang et al., 2020) to 
increasing the accuracy during joint estimation.

In regard to the relationships between motions and dependent 
variables, features for the Rig-UE model were from seven motions 
related to the upper extremities, including FT, HM, PSOH, AFC, PTOH, 
KTOH, and GAIT. Features for the Rig-LE model were from four 
motions related to the lower extremities, including LA, AFC, and 
GAIT. In addition to the features used in the Rig-LE model, the PS 
model included one additional POS motion, i.e., the standing posture, 
which can represent the balance of the participant while remaining still. 
For the Rig-Neck model, we used all the motions.

Parkinson’s disease impacts the left and right limb of patients. 
Especially for PD of early stage, these patients can have significantly 
severe limb side, which means directly using feature of left or right can 
cause problem of inconsistency. To remove the impact of the severe limb 
side, we  calculated some parameters using the two sides of the 
extremities to represent the overall condition or calculated the difference 
between the two sides of the participant. For a specific feature related to 
the two sides, for example, the release speed during FT, we calculated 
the mean, maximum, and minimum values for both hands and the 
absolute difference between right hand and left hand.

2.5. Feature extraction

For each motion signal except for facial expression, there were three 
kinds of basics, including kinematic basics, position basics, and angle 
basics (shown in Figure  2A). Kinematic features reflected the 
performance of this motion, including speed, amplitude, hesitation, and 
decrement. The position feature and angle feature reflected the position 
of the joint or angle of range of motion during the test, respectively. The 

FIGURE 1

Relationships between movements, techniques and models. Rig, 
rigidity; UE, upper extremity; LE, lower extremity; PS, postural stability; 
AFC: arising from chair; FE, facial expression; FT, finger tapping; HM, 
hand movements; KTOH, kinetic tremor of the hands; LA, leg agility; 
POS, posture; PSOH, pronation/supination of the hands; PTOH, 
postural tremor of the hands; TT, toe tapping; AFC: arising from chair; 
and FE, facial expression.
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following details of feature calculation are described using the motion 
of LA as an example. The whole motion is presented in relation to the 
y-axis position of the toe tip. The original signal was then smoothed by 
smooth spline and detected to find the positions of peaks and valleys.

Kinematic features, including the maximum amplitude and 
minimum frequency, were extracted based on peaks and valleys (shown 
in Figure 2B). Both position basics and angle basics were performed by 
a signal extraction algorithm.

The position basics were based on both sides of the joint, and the 
figure shows the joint of the knee as an example. The angle basics were 
based on the angle between joints, and the figure shows the ROM of the 
knee as an example (Figure 2C). Some time-domain features, such as the 
maximum, were extracted directly from the original signal.

Other frequency-domain features were analyzed by the fast Fourier 
transform algorithm (FFT) and then extracted. Other features were the 
slope of the linear line based on peaks, quantile, standard deviation, root 
mean square, absolute mean, kurtosis coefficient, skewness coefficient, 
and so on.

2.6. Machine learning approach

Light gradient boosting machine (LightGBM; Ke et al., 2017) is a 
novel gradient-based decision tree model that can deal with a large 
number of features and output information gain for feature selection. 
Gains from the LightGBM were used to perform feature selection before 

A

B

C

FIGURE 2

Process of the feature calculation. (A) The process from original video to estimated video. (B) Example of a kinematic feature calculation. (C) Example of 
signal feature calculation. fft, fast Fourier transform algorithm.
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the validation process. Leave-one-out cross validation (LOOCV) was 
performed to evaluate the performance of each model with different 
numbers of features, and then the model with the highest accuracy and 
weighted kappa (k) values was selected as the final full model. Then, the 
model was performed with the data from the test set to evaluate the 
performance of our models. Highest predicted proportion of score class 
was selected as the predicted score.

Three kinds of parameters were used to estimate the performance 
of our models. To estimate the accuracy of our models, two parameters 
were used. Absolute accuracy (ACC ± 0) was the proportion of the 
number for which the difference between the predicted score and true 
label was equal to zero. Acceptable accuracy (ACC ± 1) was the 
proportion of the number for which the difference between the 
predicted score and true label was less than 1. To estimate the consistency 
of our models, k was used. Six discrete levels were used to interpret the 
performance: <0.00, Poor; 0.00–0.20, Slight; 0.21–0.40, Fair; 0.41–0.60, 
Moderate; 0.61–0.80, Substantial; and 0.81–1.00, Almost Perfect (Landis 
and Koch, 1977). To estimate the relationship between the true label and 
predicted score, Spearman’s correlation coefficient (rho) was used. Five 
discrete levels were used to interpret the performance: 0.00–0.10, 
Negligible; 0.10–0.39, Weak; 0.40–0.69, Moderate; 0.70–0.89, Strong; 
and 0.90–1.00 Very Strong (Schober et al., 2018).

2.7. Item minimization and feature 
interpretation

To reduce the stress of patients, our study included an item 
minimization process. Based on the previous final full model, features 

from each item were removed from the total full feature set. Then, each 
new feature set was trained by a previous machine learning approach to 
find the feature set with the best performance. This feature set was 
established as the initial feature set for the next round, and this process 
continued until the last item. This procedure results in a feature set with 
acceptable performance and fewer required motions.

3. Results

3.1. Dataset of this study

As shown in Table 1, there were 89 patients (63.29 ± 10.26 years old) 
in train set and 15 patients (60.66 ± 11.47 years old) in test set. The 
mean ± SD of disease duration of train set and test set were 6.17 ± 5.03 
and 5.84 ± 3.63 years. The demographic values including age, disease 
duration, and sex between train and test set were matched (value of 
p > 0.05). The other variables including total MDS-UPDRSIII score, 
rigidity total score, and postural stability were also matched.

3.2. Performance when using all motions

After feature selection and outputting the final model, the number 
of motions used in the three models, with the exception of Rig-Neck, 
was the same as in our initial design. The number of motions used for 
Rig-Neck decreased from 10 to 8. As shown in Table  2, values of 
ACC ± 0 of all four models were greater than 0.70. The absolute 
accuracies of the three models, including Rig-UE, Rig-Neck, and PS, 

TABLE 1 Demographic data of this study.

Train set (N = 89) Test set (N = 15) Value of p

Sex, female# 39(43.8%) 5(33.3%) 0.6326

Age, year& 63.29 ± 10.26 60.66 ± 11.47 0.4149

Disease duration, year& 6.17 ± 5.03 5.84 ± 3.63 0.7567

MDS-UPDRSIII total score& 35.40 ± 16.26 36.40 ± 14.63 0.8129

Rigidity total score& 8.36 ± 3.61 9.2 ± 3.76 0.4172

Postural stability† 1[0,2] 1[0,1] 0.1762

Categorical values are represented as number and percentage; Normally distributed values are represented as mean ± SD; Non-normally distributed values are represented as median (25% quantile, 
75% quantile). #Based on Chi-square test; &Based on T-test; †Based on Wilcoxon test. Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale Part III.

TABLE 2 Performance of four models considering all motions.

Rig-UE Rig-LE Rig-Neck PS

rho 0.64 0.76 0.60 0.68

rho, value of p <0.01 <0.01 0.02 0.01

Weighted kappa (CI) 0.58 (0.34–0.81) 0.66 (0.47–0.86) 0.60 (0.27–0.94) 0.66 (0.34–0.98)

ACC ± 0 0.73 0.70 0.73 0.73

ACC ± 1 0.97 0.97 0.87 0.93

Feature number 35 30 25 25

Motion list KTOH, AFC, GAIT, PTOH, FT, PSOH, HM AFC, GAIT, TT, LA TT, AFC, FT, FE, GAIT, PTOH, LA, PSOH AFC, POS, GAIT, TT, LA

Number of motions 7 4 8 5

CI, confidence interval; Rig, rigidity; UE, upper extremity; LE, lower extremity; PS, postural stability; AFC: arising from chair; FE, facial expression; FT, finger tapping; HM, hand movements; 
KTOH, kinetic tremor of the hands; LA, leg agility; POS, posture; PSOH, pronation/supination of the hands; PTOH, postural tremor of the hands; TT, toe tapping; AFC: arising from chair; and FE, 
facial expression.
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were 0.73, while the value of Rig-LE was 0.70. All values of ACC ± 1 
were greater than 0.85. The Rig-LE and Rig-UE models had the highest 
value (0.97), followed by PS (0.93). Rig-Neck (0.87) had a value lower 
than 0.90. The correlation coefficients between predicted scores and 
true labels were greater than 0.60, and all of these coefficients were 
significant with p values lower than 0.05. The model with the highest 
correlation coefficient (0.76, Strong) was Rig-LE. The three values for 
Rig-UE, Rig-Neck, and Rig-PS were 0.64 (Moderate), 0.60 (Moderate), 
and 0.68 (Moderate), respectively. All of the k coefficients were greater 
than 0.50, and the models with the k were Rig-LE (0.66, Substantial) 
and PS (0.66, Substantial), followed by Rig-Neck (0.60, Moderate) and 
Rig-UE (0.58, Moderate). To summarize, the Rig-LE model had the 
highest consistency and correlation, and the Rig-Neck model had a 
relatively lower correlation and consistency and ACC ± 1.

3.3. Performance after item minimizing

After minimizing indirect motions, we attempted to retain models 
with ACC ± 0 greater than 0.70. However, only the Rig-Neck and Rig-UE 
models achieved this goal. As shown in Table 3, the values of ACC ± 0 of 
the Rig-Neck and Rig-UE models were 0.73 and 0.70, respectively, while 
the highest values of Rig-LE and PS after item minimization were 0.63 
and 0.67, respectively. Therefore, we consider only the Rig-Neck and 
Rig-UE models as meaningful results. With regard to the consistency of 
performance, the k values of the Rig-Neck and Rig-UE models were 0.67 
(Substantial) and 0.54 (Moderate), respectively. The correlations were 
0.71 (Substantial) and 0.59 (Moderate). The final motions after the item 
minimization process for Rig-Neck were FT, PSOH, GAIT, and TT. For 
Rig-UE, the final motions were KTOH, GAIT, PTOH, FT, HM, 
and PSOH.

3.4. Feature analysis

The matrix of the sum of GAIN, based on motion and feature type, 
was used to interpret the contribution of each model (as shown in 
Figure 3).

For the Rig-UE model and the motions (Figure 3A), the highest 
contributing motion was PSOH (28.9%), followed by PTOH (18.9%), 
HM (16.0%), and GAIT (13.5%). In regard to the type of feature, 
position (42.8%) was the most important, followed by angle (36.5%), 
and the kinematics was the least important contributor.

For the Rig-LE model and the motions (Figure  3B), the two 
highest contributors were GAIT (37.7%) and LA (35.0%). TT (23.7%) 
also had a relatively high contribution compared to AFC (3.6%). In 
regard to the dimension of feature type, the values of angles (44.2%) 
and positions (41.7%) were close, while the kinematics (14.2%) was 
relatively low.

For the Rig-Neck model (Figure  3C), the four motions with a 
cumulative gain higher than 10% were TT (28.1%), GAIT (18.4%), FT 
(14.8%), and PTOH (13.3%). Regarding the dimension of feature type, 
position (47.2%) contributed the most, followed by angle (23.1%).

For the PS model (Figure  3D), the top three motions with the 
highest importance were LA (33.8%), GAIT (31.7%), and TT (23.4%), 
while AFC (2.1%) and POS (9.1%) contributed less. On the dimension 
of feature type, position (43.5%) and angle (41.5%) contributed at nearly 
the same level, while the kinematics (15.1%) type contributed less.

By comparing the results of four matrices on the dimension of 
motion, the importance of GAIT was always higher than 10%, while the 
value of the AFC was always at a relatively low level (<10%). In addition, 
TT had a high importance greater than 20.0% in the Rig-LE, Rig-Neck, 
and PS models. For the dimension of feature type, position and angle 
were the two primary types with a level of importance greater than 35%. 
Compared with other models, the Rig-UE model had the highest 
importance of the kinematic features.

4. Discussion

From the results of the feature analysis, we found that the features 
of angle and position were more important than the kinematics feature, 
which indicated that during the whole process of motion, the 
performance during muscle and joint stability can contribute more to 
our models than the kinematic features, including speed and amplitude. 
In addition, some motions remained important in both the whole model 
and the minimized model, and the GAIT motion was always present. 
During the analysis of features, we found that features from GAIT can 
contribute greatly (greater than 13%) in all four models. Gait impairment 
was regard as a significant characteristic of PD progression (Nutt et al., 
2011), and serval studies had found that information of walking was 
correlated with rigidity or PS. Wright et al. (2007) suggested that sum of 
rigidity scores in UPDRS was correlated with hip torque during walking 
(r  = 0.73, p  < 0.001). Schaafsma et  al. (2003) suggested that PS was 
correlated with the coefficient of variation of stride length during 
walking (r = 0.50, p = 0.003). These results and our findings indicated 

TABLE 3 The performance of four models after item minimization.

Rig-UE Rig-LE Rig-Neck PS

rho 0.59 0.49 0.72 0.69

rho, value of p 0.00 0.01 0.00 0.00

Weighted kappa (CI) 0.54 (0.28–0.79) 0.45 (0.18–0.72) 0.67 (0.38–0.96) 0.65 (0.34–0.95)

ACC ± 0 0.70 0.63 0.73 0.67

ACC ± 1 0.97 0.87 0.93 0.93

Feature number 20 30 45 45

Motion list KTOH, GAIT, PTOH, FT, HM, PSOH GAIT, TT, LA FT, PSOH, GAIT, TT POS, GAIT, LA

Number of motions 6 3 4 3

CI, confidence interval; Rig, rigidity; UE, upper extremity; LE, lower extremity; PS, postural stability; AFC, arising from chair; FE, facial expression; FT, finger tapping; HM, hand movements; 
KTOH, kinetic tremor of the hands; LA, leg agility; POS, posture; PSOH, pronation/supination of the hands; PTOH, postural tremor of the hands; TT, toe tapping; AFC: arising from chair; and FE, 
facial expression.
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features from walking can be representative not only for the overall 
motor condition of PD, but also for rigidity and PS.

Several studies related to remote vision assessment, removed 
rigidity, and postural stability since they were hard to achieve in the 
remote condition (Stillerova et al., 2016; Xu et al., 2021). Instead of 
directly touching and using pullback test, in our study, by using a 
machine learning system based on RGB camera and clinical features 
extracted from the MDS-UPDRS III, we developed four models for 
estimating rigidity and PS in relation to PD, achieving an accuracy 
greater than 70%. The pattern (without touching and vision-based) of 
assessment in our study can be workable in remote circumstance.

For assessing rigidity, previous studies used objective quantitative 
methods, such as servomotors, inertial sensors, and biomechanical and 
neurophysiological studies of muscles, rigidity can be quantitatively 

assessed with good validity and reliability (Cano-de-la-Cuerda et al., 
2011). However, these assessment need examiners touching and placing 
sensors on the muscle of PD patients, which can be  relatively less 
appropriate compare with vision-based methods. Some studies tried to 
connect rigidity to motion completed on smartphone or electronic 
device. The study of Trager et.al found that finger tapping speed captured 
by an engineered keyboard was correlated with upper extremity 
(r = 0.58, p < 0.0001; Trager et al., 2020). Team of Wilkins et al. (2022) 
found that release slope during finger tapping in a portable quantitative 
digitography device was correlated with rigidity sub-score (r = −0.43, 
p < 0.0001). These studies proved rigidity can be  correlated with 
performance of other motions, but they did not apply them to build 
evaluation model for clinical score. We managed to evaluated rigidity by 
other motions by simple vision algorithm.

A

B

C

D

FIGURE 3

Matrix of contributions of different sources in the four models. (A) Rig-UE. (B) Rig-LE; (C) Rig-Neck. (D) PS. Rig, rigidity; UE, upper extremity; LE, lower 
extremity; PS, postural stability; AFC: arising from chair; FE, facial expression; FT, finger tapping; HM, hand movements; KTOH, kinetic tremor of the hands; 
LA, leg agility; POS, posture; PSOH, pronation/supination of the hands; PTOH, postural tremor of the hands; TT, toe tapping; AFC: arising from chair; and 
FE, facial expression.
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For assessing PS, the original rule of MDS-UPDRSIII is 
performing pullback testing on the participant by a trained examiner 
for ensuring the safety. Yang et al. (2022) used vision-based method 
and deep learning to build the model for assessing PS during the 
pullback test and achieved excellent precision. However, this test 
cannot be  unsafe to be  done in remote circumstance since it is 
unlikely that all caregivers are qualified. Serval studies also tried to 
use sensors of smartphone and find features associated with PS, or 
assess PS remotely by other motions such as turning, walking and 
quiet stance. The study of Borzì et  al. extracted features from a 
smartphone placed on the waist of participant during 180° turning, 
and found the probability from a binary model based on these 
features for discriminating mild PS condition and severe PS condition, 
was correlated with PS score (r = 0.73, p < 0.0001; Borzì et al., 2020b). 
The other study of Borzì et.al extracted features from a waist-mounted 
smartphone during quiet stance of 30 s and built binary model for 
differentiating mild and severe postural instability (Borzì et  al., 
2020a). By analyzing other motions, these studies found that PS can 
be correlated and evaluated by other motions based on sensors of 
smartphones. We  tried the other way of using vision, which can 
be  relatively easier for rechecking the history about the detailed 
during the motion for making sure the quality of motions.

Although several previous studies have indicated that rigidity or PS 
is related to other motions or using sensors of smartphone to evaluate 
PS, to our knowledge, our study is the first to develop a system for 
evaluating rigidity and PS scores indirectly by other motions and the 
RGB algorithm. Compared with correlation analysis, model building 
can perform and be  applied in real-world conditions. Since the 
evaluation of rigidity or PS has been a problem for remote follow-up, 
our study can be an alternative program for completing all the items of 
the MDS-UPDRS III so that the total score can be summed to represent 
the clinical situation of patients with PD. In addition, in conditions such 
as the COVID-19 environment, social distancing between patients and 
neurologists is maintained to reduce the infection rate. This system can 
be more meaningful under such circumstances.

Another meaningful aspect of this study is the clinical interpretation 
between indirect motions and rigidity or PS. Our study summarized this 
relationship by using the matrix of feature types and motions. This could 
provide a foundation for subsequent studies to choose specific motions 
that would be the most worthwhile to represent the severity of rigidity 
or PS. To capture the importance of this, we performed item minimizing, 
which allowed us to show how the lowest number of motions can result 
in an acceptable model.

There are serval limitations in our study. Our study was single-
centered, and the group that obtained scores of four were merged into 
the group that scored three because of the lack of samples having a score 
of four, and the sample size was relatively limited. We are now preparing 
for a multicenter study to provide a more solid validation of this system. 
During this work, more patients with scores of four will be considered. 
Our system now has completed the model with the five items in the 
MDS-UPDRS III. Models for the remaining items will be completed in 
the future. Since the basic frame of our study is RGB, which can 
be workable in many smartphones, it is possible to consider that the 
whole MDS-UPDRS III evaluation system can be  applied on 
smartphones so that patients with PD can complete the evaluation at 
home independently or with the help of their caregivers. If this system 
for evaluating the whole MDS-UPDRS III is accomplished, neurologists 
can better and more efficiently track the condition of their patients using 
these remote artificial intelligence patterns.
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