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Objective: Alzheimer’s disease (AD) as the most frequent neurodegenerative 
disease is featured by gradual decline of cognition and social function in the elderly. 
However, there have been few studies focusing on AD heterogeneity which exists 
both genetically and clinically, leading to the difficulties of AD researches. As one 
major kind of clinical heterogeneity, the lifespan of AD patients varies significantly. 
Aiming to investigate the potential driving factors, the current research identified 
the differentially expressed genes (DEGs) between longer-lived AD patients and 
shorter-lived ones via bioinformatics analyses.

Methods: Qualified datasets of gene expression profiles were identified in National 
Center of Biotechnology Information Gene Expression Omnibus (NCBI-GEO). 
The data of the temporal lobes of patients above 60 years old were used. Two 
groups were divided according to the lifespan: the group ≥85 years old and the 
group <85 years old. Then GEO2R online software and R package of Robust Rank 
Aggregation (RRA) were used to screen DEGs. Bioinformatic tools were adopted 
to identify possible pathways and construct protein–protein interaction network.

Result: Sixty-seven AD cases from four qualified datasets (GSE28146, GSE5281, 
GSE48350, and GSE36980) were included in this study. 740 DEGs were identified 
with 361 upregulated and 379 downregulated when compared longer-lived 
AD patients with shorter-lived ones. These DEGs were primarily involved in the 
pathways directly or indirectly associated with the regulation of neuroinflammation 
and cancer pathogenesis, as shown by pathway enrichment analysis. Among 
the DEGs, the top 15 hub genes were identified from the PPI network. Notably, 
the same bioinformatic procedures were conducted in 62 non-AD individuals 
(serving as controls of AD patients in the four included studies) with distinctly 
different findings from AD patients, indicating different regulatory mechanisms 
of lifespan between non-AD controls and AD, reconfirming the necessity of the 
present study.

Conclusion: These results shed some lights on lifespan-related regulatory 
mechanisms in AD patients, which also indicated that AD heterogeneity should 
be more taken into account in future investigations.
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1. Introduction

Alzheimer’s disease (AD), featured by progressive decline of 
cognition and individual social functioning, is the most prevalent 
neurodegenerative disease in older people (Scheltens et al., 2016). AD 
accounts for more than half of all dementia cases, leading to serious 
burdens on the patients, the families and the society as a whole (Jia 
et  al., 2018). The typical pathological characteristics of AD were 
recognized to be  hyper-phosphorylated tau aggregations and 
amyloid-β (Aβ) plaques in the brain (Bakota and Brandt, 2016). 
However, it has been well aware that Aβ pathology and tau pathology 
could not represent the whole picture of the pathogenesis of AD. Thus, 
researchers have developed more hypotheses hoping to clarify its 
pathogenesis, such as neuroinflammation, oxidative stress and 
mitochondrial dysfunction, protein oxidation, lipid peroxidation, etc. 
(Serrano-Pozo et al., 2011). However, the exact mechanisms leading 
to the beginning and development of AD still need to be 
further clarified.

One major reason might be the huge heterogeneity of AD, both 
genetically and clinically (Devi and Scheltens, 2018). It has long been 
acknowledged that the clinical manifestations of AD patients vary 
significantly in many aspects including but not limited to the onset 
age, progressive rate, the lifespan, the affected cognitive domains, 
and so on(Lam et al., 2013). Thanks to the uncovering of many AD 
risk genes using high-throughput biochips in recent decades, AD has 
been recognized to be the dysregulation of a substantial number of 
genes resulting in the alteration of their complex interactions, which 
finally leads to the varieties of disease manifestations (Zhu et al., 
2017). Some previous studies have focused on the link between its 
genetic and clinical heterogeneity with results suggesting that using 
more genetically or clinically homogeneous patients may be helpful 
to identify additional risk genes. Lo et al.’s (2019) study performed 
stratified gene-based genome-wide association studies (GWAS) and 
polygenic variation analyses in the younger and older age-at-onset 
groups in order to explore genetic heterogeneity of AD related to age 
and locate risk genes showing different effects across age. Belloy et al. 
(2020) probe the link between longevity gene KLOTHO and the 
APOE4-AD risk and found that KL-VS (a functional variant of 
KLOTHO) heterozygosity was significantly associated with 
decreased risk for AD and conversion to AD, and also reduced Aβ 
biomarkers in individuals who carry APOE4 but not in those who 
do not carry APOE4. These results suggest that there might 
be  different regulatory mechanisms in different AD subgroups, 
which are of great significance to be further investigated. However, 
AD was studied as a monolithic disease in most studies and 
compared with non-AD controls, which might cause considerable 
confounding when exploring its pathogenesis.

Notably, the lifespan of AD patients also exhibits considerable 
heterogeneity. Some AD patients present with later onset and/or 
slower progression leading to longer lifespan, while some others might 
have significantly shorter lifespan. Although one of the major targets 
of AD intervention is to prolong patients’ lifespan, the heterogeneity 
in AD lifespan has not been much explored. Aoyagi et al.’s (2019) 
study quantically measures the intracellular self-propagating 
conformers in postmortem brain samples from AD patients and 
shows that the longevity-dependent reduction in self-propagating tau 
conformers were identified in spite of increasing levels of total 
insoluble tau, demonstrating an inverse correlation between longevity 

and the amounts of pathological tau conformers in AD patients. The 
underlying mechanisms have not been clarified so far. In this case, 
analyzing lifespan-related gene expression profiles in AD patients 
might be  a promising strategy to provide information about the 
genetic regulatory mechanisms underlying the phenotype of different 
lifespans. To date, there has been no such study published before.

This study acquired qualified gene profiles of AD patients from 
GEO database and the differentially expressed genes (DEGs) between 
AD patients with longer lifespan and shorter lifespan were meta-
analyzed using the R package of Robust Rank Aggregation (RRA). 
Then, the functional pathway annotations and protein–protein 
interaction (PPI) networks of DEGs were performed via 
bioinformatics approaches. We  investigate the lifespan-related 
regulatory mechanisms in AD patients at a molecular level and help 
uncovering potential candidate genes for AD intervention.

2. Methods

2.1. Dataset selection and data 
preprocessing

The Gene Expression Omnibus (GEO)1 is a public repository for 
researchers worldwide to submit high-throughput microarray and 
next-generation sequence functional genomic datasets. All data are 
available for download without charge (Barrett et  al., 2013). The 
datasets of gene expression profiles used in the present study were 
obtained from GEO with the search strategy as follows: (((Expression 
profiling by high throughput sequencing [DataSet Type]) OR 
Expression profiling by array [DataSet Type]) AND homo 
sapiens[Organism]) AND Alzheimer’s disease[Title] (Figure 1). The 
inclusion criteria of qualified datasets were as follows: investigating 
the expression profiles by arrays or high throughput sequencing in 
GEO; using brain samples of AD cases and non-AD controls; 
containing complete information of age at death. Since the brain 
samples were donated by volunteers and collected postmortem, the 
ages displayed in these studies were in fact the ages at death, serving 
as a qualified indicator of lifespan.

Through literature reviewing, it was found that several datasets 
(for example GSE48350, GSE5281, GSE36980) are designed to obtain 
samples from multiple brain regions of one donor. However, one 
previous study(Moradifard et  al., 2018) has proved that the gene 
expression profiles vary across different brain regions. Thus, it might 
cause substantial confounding if all the samples were included in the 
meta-analysis. Thus, only the samples of temporal lobe were chosen 
for the analysis in order to minimize the heterogenicity of samples. If 
one dataset included samples of different regions in the temporal lobe, 
the region with the largest sample size was chosen. With regard to the 
cut-off age, it was firstly set to be above 80 years old which has been 
reported to be the average life expectancy of Chinese elderly (Huang 
et al., 2021). After several grouping attempts, the cut-off age of 85 years 
old was selected which would include more datasets and make the 
grouping more balanced. Then, according to the lifespan: the group 
with longer lifespan (> = 85 years old) and the group with shorter 

1 http://www.ncbi.nlm.nih.gov/geo/
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lifespan (<85 years old), the samples of each dataset were divided into 
two groups. In addition, the samples with age over 60 years old were 
chosen to lower the possible influences of unnatural deaths.

2.2. DEGs identification

The R tools GEOquery and limma from the Bioconductor project 
were used to export and analyze the gene expression data of the 
comparisons between AD patients (AD patients with longer lifespan 
vs. those with shorter lifespan). Bioconductor, an open-source 
software project built on the R programming language, offers tools for 
the study of high-throughput genetic data. The R package GEOquery 
transforms GEO data into R data structures for usage by other R tools 
(Davis and Meltzer, 2007). Differentially expressed genes (DEGs) 
between the two groups of each dataset with p values <0.05 were 
selected to be further analyzed. Then the values of fold changes (FC) 
were log2 transformed and represented as log FC in short. Log FCs 
which were below zero indicated the DEGs were down regulated, and 
vice versa. The meta p values of the DEGs were calculated using the R 
package of Robust Rank Aggregation (RRA) and the results were 
represented as meta-analysis scores (Kolde et al., 2012). The RRA 
technique, which can manage fluctuating gene content from various 
microarray platforms in the presence of noise or with partial rankings, 
is based on a comparison of real data with a null model that assumes 
random order of input lists. Besides, the mean values of log FCs were 
also calculated. Genes with meta p values less than 0.05 and average 
|log FC| ≥ 1 were considered as final DEGs. Data processing was 
performed using Python Jupyter Notebook (Edition 5.0.0).

Notably, data of non-AD controls were also analyzed using the 
same methodology to serve as comparisons. The non-AD data came 
from the included datasets and were used to be controls of AD patients 
in the original studies.

2.3. Gene functional enrichment analysis

The DEGs were uploaded to Metascape2 (Zhou et al., 2019). 
Pathway and process enrichment analyses were carried out with 
ontology sources of KEGG pathway, GO Biological Processes, 
Reactome Gene Sets, Canonical Pathways, and WikiPathways. 
Genes of the whole genome were adopted as the enrichment 
background. Terms with p value <0.01, count of genes ≥3, and an 
enrichment factor > 1.5 were collected and grouped into clusters 
based on their membership similarities. The top 20 clusters were 
collected using the most statistically significant term in each cluster 
as the representative.

Protein–protein interaction (PPI) enrichment analysis was 
conducted based on the following databases: STRING, BioGrid, 
OmniPath, InWeb_IM. If the network contains 3 to 500 proteins, the 
Molecular Complex Detection (MCODE) algorithm would 
be  applied to identify densely connected network components. 
Pathway and process enrichment analysis was applied to each 
MCODE component independently, and the three best-scoring 
terms by value of p were retained as the functional description of the 
corresponding components.

2.4. Hub genes identification and 
association enrichment analysis

To screen hub genes, CytoHubba plug-in of Cytoscape was 
utilized to analyze PPI networks exported from the corresponding 
Metascape results in the present study (Jeong et al., 2001). The top 15 

2 http://metascape.org

FIGURE 1

Data set selection flowchart.

https://doi.org/10.3389/fnagi.2023.1072184
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://metascape.org


Zhang et al. 10.3389/fnagi.2023.1072184

Frontiers in Aging Neuroscience 04 frontiersin.org

hub genes ranked by the method of Maximal Clique Centrality (MCC) 
were calculated. Enrichment analysis were also performed in ontology 
categories of DisGeNET via Metascape (Piñero et  al., 2017). 
DisGeNET integrates data from expert curated repositories, GWAS 
catalogs, animal models and the scientific literature to provide 
information about the genetic basis of human diseases. Genes of the 
whole genome were adopted as the enrichment background. Terms 
with p value <0.01, count of genes ≥3, and an enrichment factor > 1.5 
were collected and grouped into clusters based on their 
membership similarities.

2.5. Analysis of immune infiltration and hub 
genes

The gene sets of 28 immune cells and four classes of immune 
factors were downloaded from TISIDB database.3 The following 
28 types of immune cells were obtained: central memory CD4+ T 
cells (CD4+ Tcm), central memory CD8+ T cells (CD8+ Tcm), 
type-2 T helper cells (Th2), CD56dim natural killer cells (CD56− 
NK), activated CD8+ T cells (CD8+ Ta), activated CD4+ T cells 
(CD4+ Ta), activated B cells (Ba), effector memory CD8+ T cells 
(CD8+ Tem), effector memory CD4+ T cells (CD4+ Tem), 
macrophages, eosinophils, memory B cells (Bm), immature 
dendritic cells (DCi), gamma delta T cells (γδT), CD56bright 
natural killer cells (CD56+ NK), monocytes, mast cells, natural 
killer cells (NK), immature B cells (Bi), type-1 T helper cells 
(Th1), neutrophils, plasmacytoid dendritic cells (DCp), natural 
killer T cells (NK T), type-17 T helper cells (Th17), follicular 
helper T cells (Tfh), regulatory T cells (Tregs), myeloid-derived 
suppressor cells (MDSC), and activated dendritic cells (DCa). The 
four classes of immune factors include 41 chemokines, 24 
immunosuppressive factors, 46 immunostimulatory factors, and 
18 immune receptors.

The ssGSEA algorithm, which classifies gene sets with common 
biological functions, physiological regulation, and chromosomal 
localization, was employed via R packages (GSVA 1.42.0) to 
comprehensively assess the immunologic characteristics of each 
sample included in the analyses (Hänzelmann et al., 2013). Normalized 
data of gene expression profiles were compared with the gene sets to 
demonstrate the enrichment of immune cells in each AD brain 
samples. Then, ANOVA was adopted to identify immune cell types 
with significant differences between the groups with longer lifespan 
and shorter lifespan. Pearson correlations between the gene expression 
level of each hub gene and the concentrations of immune cells were 
carried out using cor.test in R software (version: 4.0.3). The hub genes 
were identified in 2.4.

The correlations between the gene expression levels of each hub 
gene and the gene sets of immune factors were also calculated, 
respectively. Then, the pairs of hub genes and immune-related 
molecules with |cor| > 0.6 & p value<0.05 were selected to generate a 
circos plot via Cytoscape.

3 http://cis.hku.hk/TISIDB/download.php

3. Result

3.1. Identification of DEGs

The flowchart of dataset selection was shown in Figure 1. Four 
qualified microarray datasets (GSE48350, GSE5281, GSE28146, 
GSE36980) and one dataset of high throughput sequencing 
(GSE173955) were identified according to the inclusion and grouping 
criteria. Thereinto, the samples used in GSE173955 were also used in 
GSE36980 as stated in the abstract of the article (Mizuno et al., 2021). 
In order to include more samples and reduce batch effect and other 
confounding, GSE36980 were included in the analysis rather than 
including both or GSE173955 alone.

In total, 129 samples (62 non-AD controls and 67 AD cases) were 
analyzed in this study; the grouping and baseline information were 
shown in Table 1. After comparing longer-lived AD patients with 
shorter-lived ones in each dataset, genes with p < 0.05 were selected 
and formed a list, respectively. The Venn diagram showing the 
overlap of the four gene lists was displayed as Figure 2A. After meta-
analysis, a list of 740 DEGs with 361 upregulated and 379 
downregulated was identified in the AD group with longer lifespan 
compared to that with shorter lifespan. The top 15 most significantly 
upregulated and downregulated genes when comparing longer-lived 
individuals with shorter-lived ones in AD patients were shown  
in Table 2.

In addition, the data of non-AD controls were also analyzed using 
the same methodology to serve as comparison and 888 DEGs were 
identified with 459 up-regulated and 429 down-regulated. Volcano 
plots showing DEGs from both comparisons (the groups of AD and 
non-AD controls) were as Figure 2B. The Venn diagrams showing the 
overlap of AD and non-AD DEGs were exhibited in Figure 2C.

3.2. Gene functional enrichment analysis of 
DEGs and hub genes identification

The top 20 clusters with their representative enriched terms (one 
per cluster) of the up-and downregulated DEGs in the AD and 
non-AD comparisons were displayed in Figure 3. More details of the 
top five clusters were shown in Tables 3, 4. The PPI networks and 
MCODE components identified in the DEGs of the AD comparison 
were shown in Figures 4A,B. The top clusters (one term per cluster) of 
enrichment analysis in DisGeNET were shown in Figure 4C.

When comparing AD patients with longer lifespan to those with 
shorter lifespan, the three best-scoring terms identified via pathway 
and process enrichment analysis to each MCODE component were as 
follows: cellular response to nitrogen compound (GO: 1901699, 
Log10(P) = −7.9), cellular response to organonitrogen compound (GO: 
0071417, Log10(P) = −7.9) and regulation of intracellular transport 
(GO:0032386, Log10(P) = −7.3) in the upregulated DEGs; Interferon 
Signaling (R-HSA-913531, Log10(P) = −7.6), regulation of viral process 
(GO:0050792, Log10(P) = −7.6), Interferon alpha/beta signaling 
(R-HSA-909733, Log10(P) = −7.3) in the downregulated DEGs.

The top  15 hub genes identified in the PPI network of the 
up-regulated DEGs were SRC (MCC score = 44), RPL24 (MCC 
score = 33), BRD4 (MCC score = 32), RPL10L (MCC score = 30), CSK 
(MCC score = 22), JAK2 (MCC score = 20), MRPL4 (MCC score = 20), 
UBD (MCC score = 19), EIF5A (MCC score = 18), WDR61 (MCC 
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score = 16), CLUH (MCC score = 16), EZH2 (MCC score = 15), 
CAPN1 (MCC score = 13), ACTN2 (MCC score = 13), CLIC2 (MCC 
score = 12), in order of ranks. The top 15 hub genes identified in the 
PPI network of the downregulated DEGs were STAT1 (MCC 
score = 5,079), MX1 (MCC score = 5,066), IFIT3 (MCC score = 5,064), 
IFIT1 (MCC score = 5,064), OAS3 (MCC score = 5,043), IRF4 (MCC 
score = 5,043), XAF1 (MCC score = 5,043), IFI6 (MCC score = 5,040), 
DDX58 (MCC score = 65), HDAC6 (MCC score = 25), RSL1D1 (MCC 
score = 24), BIRC3 (MCC score = 22), RPS6 (MCC score = 21), BRD7 
(MCC score = 14), RRP12 (MCC score = 14), in order of ranks.

3.3. Analysis of immune infiltration and hub 
genes

The gene expression profiles of GSE48350 samples (Table 1) were 
used to perform immune infiltration analysis. As shown in 
Figures 5A,B, the fractions for activated B cell, effector memory CD8 
T cell, plasmacytoid dendritic cell and type 1 T helper cell in the 
longer-lived AD group were remarkably higher than in those of 
shorter-lived ones.

Since most pathways identified in the downregulated DEGs were 
inflammation related, the top  10 hub genes identified in the 
downregulated DEGs and the top  3 hub genes identified in the 
upregulated DEGs were selected for the association analysis with 
immune cells and immune factors. As shown in Figure 5C, STAT1 was 
positively correlated with gamma delta T cell, activated CD4 T cell, 
immature dendritic cell and activated CD8 T cell. MX1 was positively 
correlated with immature dendritic cell and gamma delta T cell. IFIT3 
was negatively correlated with immature B cell, activated B cell and 
mast cell. IFIT1 was positively correlated with effector memory CD4 
T cell and negatively correlated with neutrophil, type 17 T helper cell, 
effector memory CD8 T cell, natural killer cell, type 1 T helper cell and 
central memory CD8 T cell. IRF4 was positively correlated with 
activated CD4 T cell, eosinophil and type 2 T helper cell. DDX58 was 
positively correlated with gamma delta T cell. HDAC6 was positively 
correlated with monocyte. SRC was positively correlated with CD56 
bright natural killer cell and negatively correlated with effector 
memory CD4 T cell. RPL24 was negatively correlated with T follicular 
helper cell, immature dendritic cell, mast cell and activated CD4 T cell. 
BRD4 was positively correlated with CD56 bright natural killer cell 
and negatively correlated with effector memory CD4 T cell, gamma 
delta T cell and central memory CD8 T cell. There were no significant 
findings when analyzing the associations between immune cells and 
the remaining hub genes (OAS3, XAF1, and IFI6). Protein–protein 
interaction plot of hub genes and immune-related molecules was 
shown as Figure 5D.

4. Discussion

In the present study, 740 DEGs with 361 upregulated and 379 
downregulated were identified comparing AD patients with longer 
lifespan to those with shorter lifespan. Bioinformatic analyses were 
performed based on these DEGs, and the significant findings would 
be discussed as below. Notably, the same bioinformatic procedures 
and analyses were conducted basing on the data of non-AD controls 
(Table 1), with distinctly different findings from those identified in the T
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AD comparison (Figures  2C, 3). These results indicated that the 
underlying regulatory mechanisms of AD lifespan might be quite 
different from those of non-AD controls, reconfirming the necessity 
of the present study. Investigating lifespan-related gene expression 
profiles in AD patients would help to understand the genetic 
background possibly impacting its clinical course, which has not been 
published before.

In the lifespan-related pathways identified in the present study, 
multiple clusters of pathways were directly or indirectly associated to 
neuroinflammation. The directly associated clusters included those 
represented by the pathways of interferon Signaling (R-HSA-913531) 
and regulation of response to cytokine stimulus (GO:0060759) in the 
downregulated DEGs. The indirectly associated clusters included 
those about antiviral responses represented by the pathway of 
regulation of viral process in the downregulated DEGs; those about 
metabolism processes represented by the pathways of Adipogenesis, 
glucose metabolic process in the downregulated DEGs; Diseases of 
metabolism in the upregulated DEGs; and those about autophagy 
represented by the pathways of apoptotic cell clearance, Phagosome 
in the upregulated DEGs. These results indicated that 
neuroinflammation might be  closely related to the regulation of 
AD lifespan.

Amounts of evidence, involving increasing numbers of activated 
microglial and astroglia in the brains of AD patients, elevated 
pro-inflammatory cytokine in AD brains, and epidemiological proof 
that chronic non-steroidal anti-inflammatory drug used before AD 
associates to a lower incidence, have suggested that neuroinflammation, 
an early-emerging and continuously existing feature of AD, plays a 
significant part in the pathogenesis of the disorder (Calsolaro and 
Edison, 2016). Interferons (IFNs) are a superfamily of cytokine 
proteins that play a significant part in host immune response to 
pathogens, infections, and various diseases (de Weerd and Nguyen, 
2012). It has been proved that they are critical in the exacerbation of 
neuroinflammation and actively contribute to AD progression (Taylor 
et al., 2018). Also, studies have shown that active virus infections in 
brain may not only accelerate amyloid deposition and the progression 
of AD (Eimer et al., 2018; Mangold and Szpara, 2019), but also, by 
inhibiting autophagy, disrupt clearance of the aberrant proteins, 
resulting in their accumulation and deposition, and finally to AD 
onset and progression (Itzhaki, 2017). dysregulation of metabolism 
processes would lead to metabolic changes, induction of obesity and 
adipose tissue inflammation, resulting in the acceleration of systemic 
low-grade inflammation and then accumulation of toxic amyloid, 
eventually the onset of AD (Więckowska-Gacek et  al., 2021). 

A C

B

FIGURE 2

Venn diagrams of Four datasets and Volcano plots of DEGs in the groups of AD and non-AD controls. (A) Venn diagram of the overlap of genes lists 
from the Four included datasets. (B) Volcano plots of DEGs in the groups of AD (left) and non-AD controls (right). (C) Venn diagram of the overlap of 
DEGs between the groups of AD and non-AD controls. AD, Alzheimer’s disease; DEG, differentially expressed genes.
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Regulation of these pathways might result in the mitigation of 
excessive neuroinflammation in AD brains and thus leading to longer 
lifespan. In addition, the results of immune infiltration analysis also 
supported this conclusion, which showed that four kinds of immune 
cells increased significantly in longer-lifespan AD patients and the hub 
genes corelated with multiple immune cells and immune factors, 
indicating that the regulation of AD lifespan might be intertwined 
with the complex networks of neuroinflammation.

Thus, identifying key mediators regulating the 
neuroinflammation process might be  helpful to develop anti-
inflammatory therapies for AD (Taylor et al., 2018). Among the 
identified hub genes, STAT1, which ranked the first in the hub gene 
list identified in the downregulated DEGs and corelated with 
multiple immune cells and immune factors, has already come into 
notice of researchers. The protein encoded by STAT1 is activated by 
varieties of ligands including IFN-α, EGF, IFN-γ, PDGF, and IL6. 

TABLE 2 Top 15 differentially expressed genes (DEGs) identified in the meta-analysis comparing the longer-lived AD group with the shorter-lived one.

Up-regulated Down-regulated

Gene symbols Average Log (FC) Meta-analysis 
score

Gene symbols Average Log (FC) Meta-analysis 
score

RNMT 1.388641 8.63E-06 ACAN −1.14943 9.83E-06

ZBED3-AS1 2.246284 1.28E-05 TNRC6C −1.03933 1.22E-05

POMZP3 1.242601 2.79E-05 ST3GAL4-AS1 −1.02212 1.98E-05

L3MBTL1 1.175608 3.18E-05 FBXL17 −1.1674 4.05E-05

FBLIM1 1.659288 9.69E-05 KLK8 −1.70629 0.0001

DRICH1 1.021555 0.0002 SUCLG2-AS1 −1.3024 0.0001

SLC44A5 1.429692 0.0002 GAS2L3 −1.11936 0.0002

EZH2 2.459765 0.0002 PKNOX1 −1.39156 0.0003

PLN 3.948696 0.0002 GNRH1 −1.45433 0.0003

PVALB 2.440934 0.0003 NR0B1 −1.8225 0.0003

DYNC1H1 1.146785 0.0004 ZNF366 −1.25511 0.0003

LRRC28 1.081166 0.0005 IL17RB −1.1153 0.0003

EBP 1.045227 0.0005 RBM33 −1.98674 0.0004

UHRF1BP1L 1.254153 0.0005 PACSIN2 −1.3685 0.0004

ZNF81 1.057144 0.0005 AREG −1.26 0.0005

Ave log (FC), average log2 fold-change.

A B

C D

FIGURE 3

Top 20 clusters with their representative enriched terms (one per cluster) in up-and downregulated DEGs of AD and non-AD comparisons, respectively. 
(A) Enriched clusters in downregulated DEGs of the AD comparison. (B) Enriched clusters in upregulated DEGs of the AD comparison. (C) Enriched 
clusters in downregulated DEGs of the non-AD comparison. (D) Enriched clusters in upregulated DEGs of the non-AD comparison. AD, Alzheimer’s 
disease; DEG, differentially expressed genes.
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Zhang et al.’s (2021) study shows that STAT1 knockout suppresses 
AD typical pathologies. Another study identifies that STAT1 
activation abolishes expression of N-methyl-D-aspartate receptors 
(NMDARs), while the downregulation of STAT1 efficiently 
mitigates Tau-induced suppression of NMDAR expression and 
improves the function of synapses and performances in memory 
tests (Li et  al., 2019). He et  al.’s (2021) study shows that the 

overexpression of STAT1 inhibitor represses several AD markers 
expressions and accelerate the proliferation of mouse hippocampal 
neuronal cells. These findings might offer some explanations why 
the downregulated expression of STAT1 is associated with longer 
lifespan of AD patients in the present study. In addition, the recent 
study of Zhang et al. (2022) shows that pharmacological degradation 
and inhibition of BRD4, which affects transcriptional regulation of 

TABLE 3 The top 5 clusters with their representative enriched terms (one per cluster) of the upregulated DEGs in AD group with longer lifespan.

GO Category Description Count Log10(P) Gene Hits

GO:0032386 GO Biological 

Processes

Regulation of 

intracellular transport

17 −6.55 ACTN2|CD36|DYNC1H1|STOM|GAS1|JAK2|

NF1|PLN|SRC|ITGB

1BP1|CAPN10|DNAJC13|NRDE2|RIOK2|MA

VS|SH3TC2|HPS4

GO:0010812 GO Biological 

Processes

Negative regulation of 

cell-substrate adhesion

8 −6.15 ANGPT2|BCL6|COL1A1|EFNA5|NF1|SRC|TH

BS1|ITGB1BP1

GO:0060348 GO Biological 

Processes

Bone development 12 −5.29 BGN|COL1A1|RARA|SHOX2|SRC|FGF18|EB

P|FOXP1|PDGFC|

TMEM107|NOTUM|FREM1

GO:0071417 GO Biological 

Processes

Cellular response to 

organonitrogen 

compound

20 −4.93 ACTN2|CD36|CHRM4|COL1A1|COL4A1|CS

K|EZH2|HTR2C|JAK

2|P2RY2|PDE3A|SRC|SOCS1|SOCS2|BCL2L11

|RRAGB|CAPN10|

R-HSA-5668914 Reactome Gene Sets Diseases of metabolism 12 −4.59 BGN|CSF2RA|SLC37A4|HLCS|MGAT2|MUC

7|THBS1|CUBN|

ADAMTS1|ADAMTS9|ALG13|SBSPON

GO, gene ontology; BP, biological process. Count is the number of genes in the user-provided lists with membership in the given ontology term. “Log10(P)” is the p-value in log base 10.

TABLE 4 The top 5 clusters with their representative enriched terms (one per cluster) of the downregulated DEGs in AD group with longer lifespan.

GO Category Description Count Log10(P) Gene Hits

R-HSA-913531 Reactome Gene Sets Interferon Signaling 13 −5.98 CD44|IFI6|HLA-DRB4|IFIT1|IFIT3|IRF4|

KPNA4|MX1|

OAS3|STAT1|NUP210|RIGI|XAF1

GO:0050792 GO Biological 

Processes

Regulation of viral 

process

11 −5.33 NR5A2|GSN|IFIT1|MX1|OAS3|PPARA|SL

PI|

STAT1|CXCR4|HMGA2|CNOT7

GO:0051098 GO Biological 

Processes

Regulation of binding 16 −4.87 BDNF|HFE|IFIT1|IRF4|PPARA|SLPI|STK

4|HMGA2|SYMPK|

ADAM15|MBD2|HIPK2|TRIB3|ARHGAP

28|PARP9|SPPL3

GO:0001934 GO Biological 

Processes

Positive regulation of 

protein phosphorylation

24 −4.80 AREG|BDNF|BMP3|CD44|CKS2|HFE|IL6

|ITGB3|LTK|PTGS2|

STK4|HMGA2|FZD1|TNFRSF10B|GPRC5

A|MAP3K13|

TCL1B|HDAC6|HIPK2|ALS2|CLSPN|PAR

P9|PROM2|CD24

GO:0061448 GO Biological 

Processes

Connective tissue 

development

12 −4.79 BMP1|BMP3|CD44|EVC|HOXA5|LTBP3|

MGP|

HMGA2|TRIP11|RASAL2|CREB3L2|TBL

1XR1

GO, gene ontology; BP, biological process. Count is the number of genes in the user-provided lists with membership in the given ontology term. “Log10(P)” is the p-value in log base 10.
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autophagy and lysosome genes, significantly increase Aβ levels that 
are related to AD neuropathology in cell models, indicating that the 
upregulation of BRD4 might be beneficial for AD, consistent with 

the findings of the present study that BRD4 was upregulated in 
longer-lived AD patients and corelated with multiple immune cells 
and factors (Figure 5).

A

B

C

D

FIGURE 4

PPI networks and top 20 clusters enriched in DisGeNET in up-and downregulated DEGs of AD comparison. (A) PPI networks identified in the DEGs of 
AD comparison (Left: upregulated; right: downregulated). (B) MCODE components identified in the DEGs of AD comparison (Left: upregulated; right: 
downregulated). (C) Top 20 clusters enriched in DisGeNET in upregulated DEGs of AD comparison. (D) Top 20 clusters enriched in DisGeNET in 
downregulated DEGs of AD comparison. AD, Alzheimer’s disease; DEG, differentially expressed genes.
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Interestingly, the enrichment analysis via DisGeNET 
(Figures 4C,D) revealed noteworthy overlaps with neoplastic diseases 
in both up-and downregulated DEGs of AD comparison. Several 
AD-lifespan-related pathways identified in the present study were also 
related to cancer, such as positive regulation of cell death, Malignant 
pleural mesothelioma, Hippo signaling pathway in the downregulated 
DEGs and apoptotic cell clearance, Signaling by Receptor Tyrosine 
Kinases in the upregulated DEGs. These results indicated that the 
regulation of AD Lifespan and cancer might share common pathways. 
Nudelman et  al. have reviewed about ten hallmark biological 
alterations which overlap in the pathogenesis of cancer and AD 
(Nudelman et  al., 2019), and proposed that pathways related to 
inflammation might exhibit similar roles and parallel directions of 
regulation in the pathogenesis of cancer and AD (Nudelman et al., 
2019). It has been assumed that inflammation might accelerate the 
earliest development of neoplastic progression, especially a chronic 
state of systemic inflammation. To survive, tumors need to shift the 
subclasses of immune cells attacking the tumor toward those 
promoting inflammation and tumor growth (Singh and Singh, 2015; 
Goswami et  al., 2017). As for AD, increasing pro-inflammatory 
cytokine burden has been proved in AD patients’ brains. 
Epidemiological studies have also shown that long-term use of chronic 
non-steroidal anti-inflammatory drugs prior to AD onset relates to a 
lower incidence (Taylor et al., 2018). Thus, regulating the overlapping 
pathways or genes related to inflammation might be beneficial for the 
interventions of both cancer and LOAD.

Recent studies have shown that HDAC6 might be  of dual 
function in the regulation of both AD and cancer. Ruzic et al.’s (2022) 

study discovered two HDAC6 inhibitors with anti-breast cancer 
activity. As for AD, HDAC6, has shown elevated levels in AD with 
direct interaction with the tau protein (Qureshi and Chinnathambi, 
2022) while Sreenivasmurthy et  al.’s (2022) study shows that 
inhibiting HDAC6 leads to activation of chaperone-mediated 
autophagy and alleviation of tau pathology in AD models. In the 
present study, HDAC6 was among the top 10 hub genes identified in 
the downregulated DEGs of longer-lived AD and corelated with 
multiple immune cells and factors, indicating that HDAC6 was 
closely associated with neuroinflammation and its downregulation 
might be  helpful to prolong AD lifespan, concurring with 
previous studies.

Also, IL6 (meta p = 0.002, log FC = −1.01) and CD36 (meta 
p = 0.012, log FC = 1.96) might be potential therapeutic targets, both 
of which were involved in the pathway related to neuroinflammation 
in the present study. Escrig et al. study shows that the inhibition of 
IL-6 trans-signaling partially rescues the AD-induced mortality and 
reverses AD-induced cognitive and emotional changes in AD animal 
models, presenting strong potentials as a powerful therapeutic target 
in AD (Escrig et al., 2019). Interestingly, blocking IL-6 or inhibiting 
its associated signaling has been proposed to be a potential therapeutic 
strategy for the treatment of cancers with IL-6-dominated signaling 
(Kumari et al., 2016). As for CD36, Wang et al.’s study found that 
upregulating CD36 expression ameliorated hypoxia-induced 
neuroinflammation, diminished Aβ deposition, and improved spatial 
memory defects in APP/PS1 mice (Wang et al., 2014). Meanwhile, 
Fang et al. (2019) report about the tumor-suppressive effects of CD36 
and that CD36 inhibits growth and metastasis of colorectal cancer 

A

C D

B

FIGURE 5

Immune infiltration analysis between longer-lived AD and shorter-lived ones. (A) The column diagram displaying the relative percentage of the 28 
immune cells between in AD samples. (B) The difference of immune infiltration between longer-live AD (orange) and shorter-lived ones (gray; 
* indicates p-values < 0.05). (C) Correlations between hub genes and the infiltration levels of the 28 immune cells. (D) Circos plot of the interactions 
between the hub genes and immune-related molecules.
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cells in vivo. These findings indicate that IL6 and CD36 might exert 
parallel function in the regulation of both AD and cancer, serving as 
promising targets for the two.

To sum up, neuroinflammation might take the center stage in the 
regulation of AD lifespan and it might be of particular importance to 
uncover the pathways or genes related to inflammation, especially 
those exhibiting parallel directions of regulation in the pathogenesis 
of cancer and AD, which might be promising targets for both diseases.

5. Limitations

The findings of the present study must be interpreted in the light of 
certain limitations. Firstly, the data used in the present study were 
obtained from multiple studies, increasing the risk of confounding 
effects, such as sample size, sample sources and processing, quality and 
amount of RNA, microarray platform and so on. However, we tried to 
minimize these effects by selecting samples from the temporal lobe only 
and including datasets using similar techniques; we also adopted RRA 
for gene list integration and meta-analysis to reduce batch effects. 
Secondly, due to the limited number of genes exported from GEO2R 
when using the standard of adjust value of p < 0.05, p value < 0.05 was 
adopted for the first screening of DEGs, which might cause false positive 
results. However, after the first screening, we used RRA for value of p 
meta-analysis, which is designed to integratively select DEGs appearing 
in multiple datasets with high ranking. RRA has been reported to 
be robust and accurate in detecting DEGs across datasets. Then the 
results were screened for the second time using the standards of meta p 
values less than 0.05 and average |log FC|s ≥ 1 in order to further reduce 
false positive rate. Thirdly, since RNA-Seq technique is more powerful 
than microarray in evaluating gene expression profiles, thorough search 
and data digging were performed to locate suitable RNA-seq datasets 
for the present study. One such dataset was located but not included as 
previously mentioned. Continuous attention will be paid to newly-
published studies or datasets in order to incorporate more data timely.

6. Conclusion

The results of the present study showed that neuroinflammation 
might take the center stage in the regulation of AD lifespan and it 
might be of particular importance to uncover the pathways or genes 
related to inflammation, especially those exhibiting parallel directions 
of regulation in the pathogenesis of cancer and AD, which might 
be promising targets for both diseases. The involved pathways and 
genes identified in the present study might provide information about 
lifespan-related genetic mechanisms in AD patients and help 
developing promising strategies in further investigation.
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