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Background: Despite tremendous progress in diagnosis and prediction of Alzheimer’s 
disease (AD), the absence of treatments implies the need for further research. In 
this study, we screened AD biomarkers by comparing expression profiles of AD and 
control tissue samples and used various models to identify potential biomarkers. 
We further explored immune cells associated with these biomarkers that are involved 
in the brain microenvironment.

Methods: By differential expression analysis, we  identified differentially expressed 
genes (DEGs) of four datasets (GSE125583, GSE118553, GSE5281, GSE122063), 
and common expression direction of genes of four datasets were considered as 
intersecting DEGs, which were used to perform enrichment analysis. We  then 
screened the intersecting pathways between the pathways identified by enrichment 
analysis. DEGs in intersecting pathways that had an area under the curve (AUC) > 0.7 
constructed random forest, least absolute shrinkage and selection operator (LASSO), 
logistic regression, and gradient boosting machine models. Subsequently, using 
receiver operating characteristic curve (ROC) and decision curve analysis (DCA) to 
select an optimal diagnostic model, we obtained the feature genes. Feature genes 
that were regulated by differentially expressed miRNAs (AUC > 0.85) were explored 
further. Furthermore, using single-sample GSEA to calculate infiltration of immune 
cells in AD patients.

Results: Screened 1855 intersecting DEGs that were involved in RAS and AMPK 
signaling. The LASSO model performed best among the four models. Thus, it was 
used as the optimal diagnostic model for ROC and DCA analyses. This obtained 
eight feature genes, including ATP2B3, BDNF, DVL2, ITGA10, SLC6A12, SMAD4, SST, 
and TPI1. SLC6A12 is regulated by miR-3176. Finally, the results of ssGSEA indicated 
dendritic cells and plasmacytoid dendritic cells were highly infiltrated in AD patients.

Conclusion: The LASSO model is the optimal diagnostic model for identifying feature 
genes as potential AD biomarkers, which can supply new strategies for the treatment 
of patients with AD.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disorder, characterized by cognitive impairment and memory loss, 
which ultimately leads to dementia (Querfurth and LaFerla, 2010). It is 
mainly due to the presence of intraneuronal tau tangles or the deposition 
of β-amyloid (Aβ) plaques, which cause neuroinflammation, 
vascularization, and ultimately neuronal death (Guo et al., 2020). The 
risk factors for AD include age, familial inheritance, and traumatic brain 
injury. AD can result in vascular complications and infections 
(Armstrong, 2019). Up to now, a few drugs approved for the treatment 
of AD, which including cholinesterase inhibitors and N-methyl-d-
aspartate antagonists. However, these only treat AD symptoms (Breijyeh 
and Karaman, 2020), and no available treatment can slow or stop the 
diseases, despite continuous progress in this field.

Patients with AD are usually not diagnosed in advanced stages. This 
implies that AD patients can be treated if it is recognized before brain 
injury develops. Therefore, identifying biomarkers of AD can facilitate 
early onset treatment or diagnosis (Auso et al., 2020). To date, 20 genetic 
risk loci were identified in AD, these include APP, PSEN1, and PSEN2, 
which involved the progress of early onset AD (Cuyvers and Sleegers, 
2016). Homozygous loss-of-function in TREM2, which was previously 
related with autosomal recessive early onset dementia, and found to raise 
the risk of developing AD (Guerreiro et al., 2013). Moreover, RBM8A 
(Zou et al., 2019), noncoding miRNA-34a (miR-34a) (Jian et al., 2017), 
SIRT1 (Zou et al., 2022) and REPS1 (Luo et al., 2022) are biomarkers for 
early diagnosis in patients with AD. Potential pathogenic gene modules 
have been identified in AD (Zou et al., 2019). Furthermore, a hub gene-
based signature index has been established, which may be useful for 
diagnosing AD (Zhou et al., 2021), but requires further exploration. 
Although marked progress has been made in improving the diagnosis 
and prediction of AD, and still a stringent need to screen new biomarkers 
to yield further insight into the pathogenic mechanisms underlying this 
disease, as well as to suggest treatment targets.

In this study, we screened AD biomarkers to lay the foundation for 
clinical research. We downloaded the expression profiles associated with 
AD and control tissue samples from the Gene Expression Omnibus 
(GEO) database built four models by which to identify novel biomarkers. 
These included random forest (RF), least absolute shrinkage and 
selection operator (LASSO), logistic regression, and gradient boosting 
machine (GBM) models. We also explored the immune cells involved 
associated with these biomarkers in the brain microenvironment.

2. Materials and methods

2.1. Data collection and preprocessing

Using 833 brain tissue samples in the GEO database were analyzed, 
including 537 AD brain tissue samples and 296 control samples. The 
expression profiles of the GSE125583, GSE118553, GSE5281, 

GSE122063, and GSE157239 were download from the GEO database 
(http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2013). GSE125583 
included 219 AD and 70 controls of fusiform gyrus tissue samples, 
which were obtained based on the GPL16791 platform (Srinivasan et al., 
2020). GSE118553 included 167 AD and 100 controls of the cerebellum, 
entorhinal cortex, frontal cortex, and temporal cortex tissue samples, 
which were obtained based on the GPL10558 platform (Patel et al., 
2019). Of these, 134 asymptomatic AD patients were excluded. GSE5281 
obtained 87 AD and 74 control brain tissue samples of the following 
brain regions: the entorhinal cortex, hippocampus, medial temporal 
gyrus, superior frontal gyrus, posterior cingulate cortex, primary visual 
cortex, and middle temporal gyrus, based on the GPL570 platform 
(Liang et al., 2007; Readhead et al., 2018). GSE122063 was obtained 
using the GPL16699 platform and included the frontal and temporal 
cortices from 56 AD and 44 healthy brain tissue samples, while 36 
vascular dementia samples were excluded (McKay et al., 2019). The 
temporal cortex of eight AD patients and eight controls were obtained 
from GSE157239, based on the GPL21572 platform.

The expression profile of GSE125583 was normalized using the 
“Variance Stabilizing Transformation” function of the DESeq2 package. 
The expression profile of GSE118553 was normalized by “lumiExpresso” 
function of the Lumi package. The expression profiles of GSE5281 and 
GSE157239 were normalized using the “RMA” function of Affy package. 
Moreover, expression profile of GSE122063 was normalized using the 
limma package.

2.2. Differential expression analysis

We performed differential expression analysis screened differentially 
expressed genes (DEGs) of GSE118553, GSE5281, and GSE122063, and 
differentially expressed microRNAs (DEmiRs) of GSE157239 between 
AD and control brain tissue samples by limma package (Ritchie et al., 
2015).1 Upregulated and downregulated DEGs were identified in 
GSE125583 using the DESeq2 package. Adjusted p values < 0.05 indicate 
notable association with AD.

2.3. Enrichment analyses

We obtained genes showing the same expression direction in all four 
datasets (GSE125583, GSE118553, GSE5281, and GSE122063) to use as 
intersecting genes for gene ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis, using “enrichKEGG” function of 
the clusterProfiler package.2 Furthermore, gene get enrichment analysis 
(GSEA) was performed by expression profile of the GSE125583 dataset 
using the “gseKEGG” function in the clusterProfiler package. p < 0.05 for 
GO and pathway analyses were considered statistically significant.

2.4. Construction of four diagnostic models

We extracted the intersecting pathways of GSE125583 by GSEA and 
KEGG pathway analysis, and used the pROC package to calculate the 

1 https://www.r-project.org/

2 https://www.r-project.org/

Abbreviations: AD, Alzheimer’s disease; AUC, Area under the curve; DCA, Decision 

curve analysis; GBM, Gradient boosting machine; GEO, Gene Expression Omnibus; 

GO, Gene ontology; GSEA, Gene set enrichment analysis; KEGG, Kyoto Encyclopedia 

of Genes and Genomes; LASSO, Least absolute shrinkage and selection operator; 

NK, Natural killer; NMDA, N-methyl-d-aspartate; PD, Parkinson’s disease; RF, Random 

forest; ROC, Receiver operating characteristic.
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area under the curve (AUC) of genes of intersecting pathways. For 
further selection of feature genes for inclusion in an optimal diagnostic 
model, AUC > 0.7 of genes in the intersecting pathways were established 
four diagnostic models, including the RF model, LASSO regression 
model, logistic regression model, and GBM model.

Random forest is a class of integrated classifiers used to construct 
decision-tree forests (Rigatti, 2017). Random forest has a strong 
predictive power and can prevent overfitting (Byeon, 2021). Therefore, 
we screened key genes using the RF model and obtained feature genes, 
by using the “randomForest” function in the randomForest package 
(Liaw and Wiener, 2001).

The LASSO regression model is a commonly used method of 
penalty regression that effectively selects feature genes from high-
dimensional data and could allow effective classification in diseases 
(Lopez-Sanz et al., 2019; Nghiem and Potgieter, 2019). And the 
penalized term was selected using the 10-fold cross-validation 
method and the binomial bias using λ was calculated as important 
indicators to predict the ability of the diagnostic model (McEligot 
et  al., 2020). Here, selecting the optimal genes from those with 
AUC > 0.7. Genes of the intersecting pathways were used to fit the 
LASSO regression model to screen for feature genes using the 
cv.glmnet function of the glmnet package (Friedman et al., 2010). 
Among there, the penalty function is compressed to zero, and the 
non-zero coefficient variable was used as the characteristic variable 
using the relevant formula:

 
( ) ( )( ) 1
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= =
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where“||βk||1” refers to the L1 penalty of βk, is the sum of absolute 
values in βk(eliminate the intercept). The LASSO evaluates of “β” is the 
minimizer of the LASSO-penalized negative log likelihood function 
LLASSO(β). Additionally, the tuning parameter are set to the default in 
LASSO model.

Furthermore, logistic regression is a powerful discriminative 
method that clearly explains statistics and can also derive relevant 
classification probabilities (Zhou et  al., 2021). Some studies have 
reported that logistic regression can assess the strongest association with 
outcome among various factors, which can be  “adjust” for other 
predictor variables and factors related to outcome, without being 
affected by confounding factors (Tolles and Meurer, 2016). The glm 
function of R software was established a logistic regression model and 
obtained feature genes. Gene expression levels were considered as 
continuous predictor variables.

GBM is an iterative and correlation-based algorithm that 
continuously enhances the classifier through the number of user-
specified iterations (Cha et al., 2021). Therefore, GBM was constructed 
as an AD diagnostic model, using the gbm package, to screen for feature 
genes of AD.

2.5. Receiver operating characteristic curve 
and decision curve analyses

To explore more powerful predictive diagnostic models, 
we  performed our evaluations using two methods: receiver 
operating characteristic (ROC) curve and decision curve analyses 
(DCA). Using ROC analysis, the diagnostic capability of the four 

models were evaluated in GSE125583 and GSE118553. The more 
closely the AUC approximated 1, the better diagnostic efficacy was 
achieved. The DCA curve evaluated the diagnostic capability of 
models in GSE118553 and GSE125583 datasets. In this way, 
we obtained an optimal diagnostic model.

2.6. Regulation of miRNAs and feature genes 
in AD

We selected the feature genes that regulated the intersecting DEmiRs 
of GSE157239 for the TargetScan database3 and the miRwalk database.4 
Subsequently, the binding sites between regulated intersecting DEmiRs 
with AUC values > 0.85, and feature genes were identified.

2.7. Expression of feature genes

We demonstrated expression level of feature genes between the 
AD and control groups using a heatmap and violin plot. The 
estimate the diagnostic capacity of feature genes in the GSE125583 
dataset by AUC analysis, feature genes with AUC values exceeding 
0.6 were considered to have a good predictive capacity. Finally, 
we determined highly expressed feature genes with the largest AUC 
values as hub genes.

2.8. Immune cell infiltration of AD patients

To compare proportion of immune cell types between AD and 
control samples in GSE125583, GSE118553, GSE5281, and GSE122063 
datasets using single-sample GSEA (ssGSEA). By radar chart to reveal 
relativity between the feature genes and these immune cell types. 
Furthermore, positive and negative correlations of hub genes with 
immune cells were investigated. Besides, CIBERSORT method evaluated 
the abundance of infiltration of 21 immune cell types in AD patients in 
the GSE125583 dataset.

2.9. Association of hub genes with 
immunotherapy response

Hub genes and immunotherapy of immune genes were used to 
explore their relativity, immune genes of immunotherapy were grouped 
into the high/low expressed hub gene.

2.10. Statistics analysis

The Bioinforcloud platform5 was used to analyze all methods in this 
study. The adjusted p-values (< 0.05) for DEGs and DEmiRs were 
deemed to be statistically significant.

3 https://www.targetscan.org/vert_80/

4 http://mirwalk.umm.uni-heidelberg.de/

5 http://www.bioinforcloud.com
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3. Results

3.1. Functional enrichment of genes in AD

A flowchart of the study is shown in Figure 1. Identified the DEGs 
between AD and control tissue samples in four datasets (Figure 2A). 
Identified 12,555 DEGs in GSE125583, including 6,584 upregulated and 
5,971 downregulated DEGs. Screened 20,061 DEGs in GSE118553, obtain 
11,037 upregulated and 9,024 downregulated DEGs. In GSE5281, 
we  identified 10,997 DEGs, including 4,695 upregulated and 6,302 
downregulated DEGs. In GSE122063, 11,573 DEGs were identified, 
comprising 4,992 upregulated and 6,581 downregulated DEGs. As shown 
in Figure 2B 1,855 intersecting DEGs were found in the four datasets 
overall. Intersecting DEGs were enriched in RAS, neurotrophin and 
AMPK signaling pathways, and in the cell cycle (Figure 2C). These genes 

were enriched in 1,883 biological processes, including memory and 
learning (Figure 2D). Furthermore, the results of GSEA found that the 
genes identified in GSE125583 and enriched in 130 KEGG pathways. 
These genes were distributed in the head of pathways related to NF-kappa 
B signaling, P13K–Akt signaling, and focal adhesion, while they were 
distributed in the head in pathways related to Alzheimer’s disease, multiple 
neurodegeneration diseases, and GABAergic synapses (Figure 2E).

3.2. Feature genes of the optimal diagnostic 
model

As shown in Figure  3A, we  used ROC analysis to verify the 
diagnostic performance of four models. The results indicated that RF 
(AUC = 0.81), LASSO (AUC = 0.87), logistic regression (AUC = 0.95), 

FIGURE 1

Flow chart of study. AUC, area under the curve; DEGs, differentially expressed genes; DEmiRs, differentially expressed microRNAs; GBM, gradient boosting 
machine; LASSO, least absolute shrinkage and selection operator; ssGSEA, single-sample gene set enrichment analysis; ROC, receiver operating 
characteristic curve.
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and GBM (AUC = 0.96) all performed well in GSE125583. Furthermore, 
the diagnostic performance of RF (AUC = 0.78), LASSO (AUC = 0.91), 
logistic regression (AUC = 0.55), and GBM (AUC = 0.67) were also 

calculated in GSE118553. Compared with the other models, the LASSO 
model performed best in both the GSE125583 and GSE118553 datasets. 
When we used DCA to estimate the diagnostic capability of the models, 

A B

C

E

D

FIGURE 2

Biological function of intersected differentially expressed genes (DEGs) in Alzheimer’s disease (AD) patients and controls. (A) Up-/down-regulated DEGs of 
four datasets (GSE125583, GSE118553, GSE5281, and GSE122063), red indicates upregulated DEGs, blue indicates down-regulate DEGs. (B) Intersected 
DEGs of four datasets were obtained by Venn diagram. (C) The Kyoto Encyclopedia of Genes and Genomes pathways of intersecting DEGs. (D) Gene 
Ontology of intersecting DEGs were obtained using enrichment analysis. (E) Using gene set enrichment analysis to analysis the expressed profile of 
GSE125583. GO, gene ontology; NES, normalized enrichment score.
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we found that the logistic regression and the GBM model performed 
poorly in GSE125583, while the LASSO model showed optimal 
performance (Figure 3B). Therefore, the LASSO model was considered 
the optimal model for further screening of feature genes. Using this 
model, we obtained eight feature genes, ATP2B3, BDNF, DVL2, ITGA10, 
SLC6A12, SMAD4, SST, and TPI1 (Figure 3C).

3.3. Hub genes regulated by DEmiRs in AD

The 35 upregulated and 45 downregulated DEmiRs were identified 
using differential expression analysis in GSE157239 (Figure  3D). 
We  then explored which feature genes were regulated by DEmiRs. 
We found that ATP2B3, TPI1, SLC6A12, and SMAD4 were regulated by 

A

B

D

F

E

C

FIGURE 3

Optimal diagnostic model and feature genes obtained in Alzheimer’s disease (AD). (A) ROC curves showing the diagnostic performance of four models in 
GSE125583 and GSE118553, including random forest, LASSO, logistic regression, and GBM models. (B) Decision curve analysis of four models in GSE125583 
and GSE118553. (C) The feature genes were identified by the LASSO model. (D) Up/downregulated DEmiRs in GSE157239. Red indicates upregulated 
DEmiRs, blue indicates downregulated DEmiRs. (E) Feature genes regulated by DEmiRs were involved in pathways. (F) Binding sites of the DEmiR to the hub 
gene. Blue font shows the position of the combination. GBM, gradient boosting machine; LASSO, least absolute shrinkage and selection operator; ROC, 
receiver operating characteristic curve; AUC, area under the curve; DEmiRs, differentially expressed microRNAs.
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six DEmiRs involved in the development of AD (Figure 3E). Among 
these, we obtained three binding sites for hsa-miR-3176 to SLC6A12, at 
positions 142–149, 888–894, and 926–932 (Figure 3F).

Compared with the control samples, ITGA10, SLC6A12, SMAD4, 
and DVL2 were highly expressed in the AD tissue samples (Figure 4A). 

The AUC values of the eight feature genes exceeded 0.7, with that of 
SLC6A12 being the most significant (Figure  4B). In GSE125583, 
we found that ITGA10, SLC6A12, SMAD4, and DVL2 were upregulated 
in the AD tissues, whereas ATP2B3, BDNF, SST, and TPI1 were highly 
expressed in the control tissues (Figure 4C).

A

C

B

FIGURE 4

Expression of feature genes between Alzheimer’s disease (AD) and control groups. (A) The heatmap represents the expression of eight feature genes in AD 
and control groups. Red indicates high expression, blue indicates low expression. (B) Area under the curve of the eight feature genes. (C) Box diagram of 
the eight feature genes differentially expressed in AD and control groups. The thick black bar in the middle indicates the interquartile range, the black line 
extending indicates the 95% confidence interval. AD, Alzheimer’s disease; AUC, area under the curve.
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Taken together, SLC6A12 was considered a hub gene with high 
expression in patients with AD, and is regulated by hsa-miR-3,176, 
which plays a vital role in AD.

3.4. Correlation of hub gene and immune 
cells in AD

Using ssGSEA, we evaluated the proportion of immune cells in the 
brain tissues. We found that dendritic cells (DCs) and plasmacytoid 
dendritic cells (pDCs) were highly infiltrated in AD tissues in the three 
datasets (Figure 5A). We also searched the relativity between the risk 
scores of feature genes and 24 immune cells and found that effector 
memory T cells (Tem) were positively correlated with the risk scores of 
feature genes, yet negative correlation of follicular helper T cells (TFH) 
and risk score of feature genes (Figure 5B). To identify a novel immune-
related gene for AD, we found that Tem, cytotoxic cells, T helper 17 
(Th17) cells, natural killer (NK) cells were significantly positively 
correlated with SLC6A12 expression; however, TFH and Th2 cells were 
significantly negatively correlated with SLC6A12 (Figure 5C). Moreover, 
CIBERSORT method evaluated the abundance of immune cell 
infiltration. Naive B cells and macrophages M2 showed a high degree of 
infiltration in the brain tissues of AD patients in GSE125583 dataset 
(Figure 5D). These immune cells may promote the development or 
progression of the immune microenvironment for AD.

To explore the significantly positive and negative regulation between 
high or low expression of SLC6A12 and immunotherapy of immune 
genes, a violin plot was constructed (Figure 6). ADORA2A, CD40, CSF1, 
HSPA12B, IRF5, KLF2, NOS3, TAP1, TGFB1, and VSIR were positively 
related to the high expression of SLC6A12.

4. Discussion

Alzheimer’s disease (AD) is a neurodegenerative disease related with 
aging, is one of the leading causes of dementia worldwide (Zhang et al., 
2021). To date, the methods used to detect AD in clinical studies have 
been invasive and expensive and have been unacceptable to some older 
individuals (Ralbovsky et al., 2019). In this study, we constructed four 
diagnostic models based on DEGs from AD patients, of which the 
LASSO model was found to be  the best model for obtaining eight 
reliable feature genes, by both ROC and DCA. Subsequently, the binding 
sites between the feature genes and regulatory DEmiRs were explored, 
and SLC6A12 was revealed as a key hub gene. We used ssGSEA and 
CIBERSORT methods to calculate the infiltrated immune cells in brain 
tissues of AD patients. We found a positive correlation of Tem, cytotoxic 
cells, Th17 cells, and NK cells with SLC6A12 expression; however, a 
negative correlation of TFH and Th2 cells with SLC6A12. Therefore, 
SLC6A12 was screened as a hub gene, showing high expression in 
AD patients.

A total of 1,855 intersecting DEGs were screened between AD and 
control brain samples in four datasets. These genes are enriched in the 
RAS signaling pathway, AMPK signaling pathway, and cell cycle. RAS 
family members were found and participated in cell growth control and 
metabolism, and they work with the RHO family to regulate cell cycle, 
expressed genes, cell transformation (Goitre et al., 2014; Song et al., 
2019). The RAS/PI3K/AKT pathway may promote neuronal survival, 
while the PI3K/AKT/mTOR pathway shows changes in AD, Parkinson’s 
disease, Huntington disease (Arrazola Sastre et al., 2020). Importantly, 

studies found that cellular senescence acts as a major driver of 
age-related pathologies, such as AD, and leads to permanent cell cycle 
arrest (Limbad et al., 2020). However, AMPK activation can delay or 
prevent cellular senescence, which is important in aging (Ge et  al., 
2022). AMPK signaling is participated in the development of AD (Jian 
et al., 2021; Lin et al., 2022; Ma et al., 2022). Furthermore, cognitive 
functions, such as memory and learning are involved in AD (Du et al., 
2018). The GSEA results indicated that the NF-κB signaling, P13K–Akt 
signaling, and focal adhesion were significantly upregulated in 
AD. NF-κB is activated in the transcription of genes participated in the 
inflammatory response (Vallabhapurapu and Karin, 2009). NF-κB 
signaling in the microglia is activated and mediates tau diffusion and tau 
lesion toxicity in AD (Wang et al., 2022). Furthermore, the P13K/Akt/
Nrf2 pathway is considered a potential pathway for AD treatment (Meng 
et al., 2021). During the course of AD, focal adhesion signaling may 
influence neuronal viability and synaptic loss (Caltagarone et al., 2007). 
However, further studies on novel therapeutic targets in AD are needed. 
The intersecting DEGs identified in this study correlated strongly with 
the progress and development of AD.

Based on ROC and DCA, we found that the LASSO model was our 
optimal diagnostic model including eight AD-related feature genes. 
ATP2B3 is a causal gene in benign aldosterone-producing adrenal 
lesions (Pitsava and Stratakis, 2022) and adrenocortical adenomas (Ono 
et al., 2020). BDNF encodes a neurotrophin that has been extensively 
studied in AD. It is also involved in the pathogenesis of brain 
glioblastoma (Colucci-D'Amato et al., 2020). DVL2 may be participated 
in the early stages of astrocytomas (Kafka et al., 2019). The expression 
levels of ITGA10, a biomarker of type II diabetes mellitus (Wang et al., 
2021), are associated with metastasis in skin cutaneous melanoma 
(Nurzat et al., 2021). SLC6A12 is a key gene that promotes aggressive 
metastasis during ovarian cancer progression (Sung et  al., 2017). 
SMAD4 loss is a biomarker of squamous cell carcinoma and is used for 
its prognosis and prediction of treatment response (Hernandez et al., 
2019). A previous study demonstrated that dysregulated ZIP7 modulates 
TPI1 expression in skeletal muscle cells and is involved in cardiovascular 
diseases, AD, and diabetes (Myers et al., 2013). In particular, haven 
studies reported that BDNF, TPI1 were expressed in AD, while the other 
five genes were rarely reported in AD; therefore, the function of feature 
genes in the progress of AD needs to be validated further.

According ROC analysis, we obtained the AUC values of SLC6A12 
being the most significant comparing with the other feature genes, 
indicated that SLC6A12 as a key gene and play a vital role in AD. A key 
regulatory relationship between low expression of hsa-miR-3176 and 
high expression of SLC6A12 was found in terms of GABAergic synapses 
and the synaptic vesicle cycle, indicating that hsa-miR-3176 and 
SLC6A12 may play a vital role in AD. To date, rarely previous study has 
implicated hsa-miR-3176 in cancer or in any other field (Zhang et al., 
2021). GABAergic neurotransmission and modulation of GABAergic 
function play primary roles in AD therapy (Li et al., 2016). The synaptic 
vesicle cycle and GABAergic synapses involved in the mechanism of AD 
(Zhou et al., 2021). Thus, we considered that hsa-miR-3176 regulates 
high expression of SLC6A12, which is involved in the GABAergic 
synapse and synaptic vesicle cycle in the process of AD pathogenesis. 
Furthermore, we found that ATP2B3, TPI1 and SMAD4 were regulated 
with DEmiRs to play the vital role that involved in some signaling 
pathways for AD. Among there, low expression of ATP2B3 regulated 
high expression of hsa-miR-3135a, hsa-miR-4663, and hsa-miR-7150 to 
promote the occurrence for cAMP and calcium signaling pathways of 
AD. High expressed hsa-miR-7150 was regulated the low expressed 
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TPI1 that involved in carbon metabolism from AD patients. High 
expressed SMAD4 regulated hsa-miR-500b-3p and hsa-miR-4502 that 
participated in cell cycle and FOXO signaling pathway, which may 

be promote the development of AD. Above all, the eight feature genes 
may mediate the development and progression of AD, however, the 
specific role still needs our subsequent study.

A B

C

D

FIGURE 5

Infiltration of immune cells in Alzheimer’s disease (AD). (A) Infiltration of 24 immune cells in AD tissue based on expressed profiles in four datasets 
(GSE125583, GSE118553, GSE5281, and GSE122063). Red represents a high degree of infiltration, blue represents a low degree of infiltration. (B) Correlation 
between the feature genes and 24 immune cell types. (C) Correlation scatter plot displaying the hub gene and significantly positive and negative 
correlations. (D) CIBERSORT evaluation of the abundance of infiltration in GSE125583.
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In the present study, using ssGSEA, DCs and pDCs were found to 
be highly infiltrated in AD brain tissues. DCs play specific roles in the 
immune microenvironment during processes such as aging and in AD 

(Mrdjen et al., 2018). pDCs showed markedly extensive infiltration in 
AD (Liang et al., 2022). Furthermore, naive B cells and M2 macrophages 
found a high infiltrated degree in patients with AD when we used the 

FIGURE 6

Exploring the positive and negative regulation between high or low expression of the hub gene and immune-related genes by violin plot. The thick black 
bar in the middle indicates the interquartile range, the black line extending indicates the 95% confidence interval.
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CIBERSORT method. However, the roles of immune cells have rarely 
been reported in AD. Our findings suggest that immune cells infiltrate 
and play a key role in the immunological background of AD. Low 
expression of SLC6A12, was significantly correlated with ADORA2A, 
CD40, CSF1, HSPA12B, IRF5, KLF2, NOS3, TAP1, TGFB1, and 
VSIR. High ADORA2A expression may be a serum biomarker of and 
may take effect in AD development (Meng et al., 2020). Additionally, 
CD40 immunotherapy has been proposed as a new therapeutic approach 
for AD (Ots et al., 2022). CSF1 (Wollmer et al., 2006), IRF5 (Zou et al., 
2012), KLF2 (Liu et al., 2018), NOS3 (Liu et al., 2015), and TGFB1 (Li 
et al., 2018) have been associated with AD risk. Therefore, low expression 
of SLC6A12 was significantly correlated with immunotherapy of 
immune genes that may be  provided new therapeutic strategies for 
diagnosis with AD.

However, our study had some limitations. Although we identified 
eight feature genes as biomarkers of AD based on bioinformatics 
analysis, cell or animal experiments are still needed for verification of 
these findings.

5. Conclusion

In this study, using the optimal diagnostic LASSO model, 
we identified eight feature genes as biomarkers of AD: ATP2B3, BDNF, 
DVL2, ITGA10, SLC6A12, SMAD4, SST, and TPI1. We further identified 
high infiltration of DCs and pDCs as playing a vital role in the 
immunology of AD. These findings lay the foundation for developing 
new strategies for the treatment of AD patients.
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