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Introduction: Effective connectivity (EC), the causal influence that functional 
activity in a source brain location exerts over functional activity in a target brain 
location, has the potential to provide different information about brain network 
dynamics than functional connectivity (FC), which quantifies activity synchrony 
between locations. However, head-to-head comparisons between EC and 
FC from either task-based or resting-state functional MRI (fMRI) data are rare, 
especially in terms of how they associate with salient aspects of brain health.

Methods: In this study, 100 cognitively-healthy participants in the Bogalusa Heart 
Study aged 54.2 ± 4.3years completed Stroop task-based fMRI, resting-state fMRI. 
EC and FC among 24 regions of interest (ROIs) previously identified as involved in 
Stroop task execution (EC-task and FC-task) and among 33 default mode network 
ROIs (EC-rest and FC-rest) were calculated from task-based and resting-state fMRI 
using deep stacking networks and Pearson correlation. The EC and FC measures 
were thresholded to generate directed and undirected graphs, from which standard 
graph metrics were calculated. Linear regression models related graph metrics to 
demographic, cardiometabolic risk factors, and cognitive function measures.

Results: Women and whites (compared to men and African Americans) had 
better EC-task metrics, and better EC-task metrics associated with lower blood 
pressure, white matter hyperintensity volume, and higher vocabulary score 
(maximum value of p = 0.043). Women had better FC-task metrics, and better FC-
task metrics associated with APOE-ε4 3–3 genotype and better hemoglobin-A1c, 
white matter hyperintensity volume and digit span backwards score (maximum 
value of p = 0.047). Better EC rest metrics associated with lower age, non-drinker 
status, and better BMI, white matter hyperintensity volume, logical memory II 
total score, and word reading score (maximum value of p = 0.044). Women and 
non-drinkers had better FC-rest metrics (value of p = 0.004).

Discussion: In a diverse, cognitively healthy, middle-aged community sample, EC 
and FC based graph metrics from task-based fMRI data, and EC based graph metrics 
from resting-state fMRI data, were associated with recognized indicators of brain 
health in differing ways. Future studies of brain health should consider taking both 
task-based and resting-state fMRI scans and measuring both EC and FC analyses to 
get a more complete picture of functional networks relevant to brain health.
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1. Introduction

Functional relationships between distinct brain regions in 
distributed networks have become essential to our understanding of 
the neural substrates of cognitive function and how they change over 
the course of development, maturation, aging, and disease 
progression (Kregel and Zhang, 2007; Eyler et al., 2011; Friston et al., 
2013; Dennis and Thompson, 2014). These inter-regional functional 
relationships, including those derived from functional magnetic 
resonance imaging (fMRI) data, attempt to go beyond traditional task 
activation analyses by capturing the dynamics of information flow 
within the distributed networks (Fellows et al., 2005; Stevens, 2009; 
Friston, 2011). Most fMRI studies to date have formulated inter-
regional functional relationships in terms of signal synchrony 
(functional connectivity, FC). FC makes no attempt to identify 
asymmetric relationships between regions, for example relationships 
wherein the fMRI signal in one region influences the fMRI signal 
occurring later on in another region. Because FC relationships are 
symmetric in this way, they are naturally represented using 
undirected graphs where nodes represent brain regions and edges are 
drawn between regions with high levels of FC. These graphs have led 
to new observations about how the brain changes over the course of 
child development (Bitan et al., 2007; Fair et al., 2010; Jolles et al., 
2011; Morken et  al., 2017), various brain diseases (Achard and 
Bullmore, 2007; Fox and Greicius, 2010; Lynall et al., 2010; Van Den 
Heuvel and Pol, 2010; Gao and Wu, 2016; Geng et al., 2018; Cao et al., 
2020), and drug treatment (Wong and Stevens, 2012; Hutcheson 
et al., 2015; Sarpal et al., 2016; Vai et al., 2016; Cao et al., 2020), as well 
as how brain functioning relates to cognitive functioning (Supekar 
et al., 2008; Brier et al., 2014; Archer et al., 2016; Contreras et al., 
2020; Sun et al., 2020; Zheng et al., 2021). Several studies have used 
these graph metrics to suggest that there are aberrant FC patterns in 
aging (Achard and Bullmore, 2007; Andrews-Hanna et  al., 2007; 
Damoiseaux et al., 2008; Meunier et al., 2009; Mayer et al., 2011; Wu 
et al., 2011), cognitive impairment (Wang et al., 2006; Allen et al., 
2007; Zhang et  al., 2009; Sheline and Raichle, 2013), and 
cardiometabolic disease (Friston et al., 1993; Carnevale et al., 2020). 
Therefore, methods for quantifying network-level brain functional 
relationships are currently of intense research interest (Goebel et al., 
2003; Sporns, 2007; Deshpande et al., 2009; Liao et al., 2009; Zhou 
et al., 2011; Nauta et al., 2019; Li et al., 2020; Ambrosi et al., 2021).

A much smaller number of fMRI studies have assessed effective 
connectivity (EC) between brain regions–the causal influence that 
functional activity in a source region exerts over functional activity 
in a target region (Friston, 2011; Friston et  al., 2013). EC 
fundamentally differs from FC as it focuses on more complex and 
asymmetric relationships between brain regions (Horwitz et al., 2005; 
Stevens, 2009; Friston, 2011; Gürcan, 2014). These relationships may 
be either excitatory or inhibitory in nature (Wilson and Cowan, 1972; 
Tagamets and Horwitz, 1998; Horwitz et al., 2005). Because there is 
an inherent asymmetry between source and target regions, source-
target relationships are naturally represented via directed graphs. EC 
characteristics have been calculated in clinical conditions of interest 
such as aging (Hinault et al., 2019), cognitive impairment (Luo et al., 

2019; Sun et  al., 2020), and cardiometabolic disease (Chand 
et al., 2017).

To our knowledge there have been no head-to-head comparisons 
of EC and FC in terms of how they associate with factors relevant to 
various aspects of brain health in a healthy middle-aged cohort. 
Previous studies including both FC and EC analysis have suggested 
that EC may be superior to FC for discriminating between brain 
disease groups, such as stroke patients with differing prognoses 
(Geng et al., 2018; Adhikari et al., 2021). Others have compared EC 
and FC patterns that emerge during execution of certain cognitive 
tasks (Parhizi et al., 2018; Silva et al., 2019). Additional studies have 
identified different patterns of age-related differences between EC 
and FC as well as differences among young adults of differing APOE 
genotypes (Archer et al., 2016; Zheng et al., 2021) To our knowledge, 
none of these prior studies have compared EC and FC in terms of 
how they relate to a multi-faceted array of prominent risk factors for 
late-life cognitive decline among cognitively healthy middle aged 
adults. In addition, none of these prior methods utilized an EC 
method that was both nonlinear (modeling nonlinear relationships 
between signals in source and target regions) and conditional 
(accounting for the effects of other regions on the target when 
modeling source-target relationships). Nonlinear source-target 
relationships are important to capture because they are believed to 
represent common cases in neuroscience (Aertsen et  al., 1989; 
Buxton et al., 2004; Grosmark and Buzsáki, 2016), while conditional 
modeling is important because it reduces the potential for identifying 
spurious source-target relationships driven by a separate, common 
source (Chen et al., 2004; Zhou et al., 2009a,b). To address these 
limitations, we used a novel machine learning based method (Chuang 
et al., 2021, 2022) to assess nonlinear and conditional EC.

An additional limitation in the literature is that the vast majority 
of FC and EC analyses have been applied to resting-state rather than 
task-based fMRI data. Exceptions to this rule have been analyses of 
differences in FC during task performance between clinically-defined 
groups (Dennis et al., 2010), age-related changes in task-based fMRI 
EC (Archer et  al., 2016; Hinault et  al., 2019), and associations 
between task-based FC and cognitive function (Koshino et al., 2005; 
Barch et  al., 2013; Monti et  al., 2014; Jiang et  al., 2020). To our 
knowledge, only two papers to date have directly compared task-
based to resting-state EC, with suggestions that EC information 
derived from task-based fMRI is richer than corresponding data 
derived from resting-state fMRI (Archer et al., 2016; Voigt et al., 
2021). For this reason, we compared EC and FC measures between 
resting-state and task-based data.

In this study, we conducted a head-to-head comparison between 
EC and FC graph metrics derived from task-based and resting-state 
fMRI in terms of how they correlated with known risk factors for late-
life brain health as well as measures of cognitive function in a healthy 
middle-aged cohort. We used a standard FC method and a state-of-
the-art EC method to generate undirected and directed graph 
representations of individual interregional functional relationships. 
Metrics derived from these graphs were then evaluated in terms of 
their associations with demographic, cardiometabolic, and cognitive 
measures from a middle-aged epidemiological sample.
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2. Materials and methods

2.1. Study participants

The Bogalusa Heart Study began in 1973 as a community-based 
cohort study of atherosclerosis and risk factors for cardiovascular 
disease in a Black and White population of children in a rural town in 
southeastern Louisiana (Berenson, 2001). Participants with a history 
of stroke or TIA were excluded from the analysis in this study. At the 
end, 100 participants completed a 3 T brain MRI at Pennington 
Biomedical Research Center, as well as cardiometabolic measurements 
and cognitive tests at the Bogalusa Heart Study clinic in Bogalusa, 
Louisiana (Table  1). Participants in this study provided informed 
consent. The study was overseen by the Institutional Review Board of 
Pennington Biomedical Research Center. All Bogalusa Heart Study 
data may be made available following an approval process through the 
Bogalusa Heart Study Steering Committee.

2.2. Clinical measurements

Validated questionnaires were used to obtain demographic and 
lifestyle variables, specifically, age, race, sex, cigarette smoking, and 
alcohol consumption. Adiposity was characterized by the calculation of 
Body Mass Index, BMI (kg/m2) from the height and weight collected by 
a stadiometer. Duplicate measures of height and weight for each study 
participant were used to calculate BMI. Similarly, the calculated arithmetic 
average of blood pressure triplicate measures obtained on the right arm 
of the participants in a relaxed, sitting position using sphygmomanometers 
was used to calculate systolic and diastolic blood pressure (SBP and DBP). 
APOE genotyping was performed directly in the collected serum sample 
from venipuncture using a method based on isoelectric focusing of 
delipidated serum followed by immunoblotting using rabbit antihuman 
APOE antiserum (Srinivasan et al., 2001) Fasting measures of hemoglobin 
A1c, fasting glucose, HOMA-IR, and fasting insulin were collected using 
standardized methods (Foster and Berenson, 1987).

2.3. Cognitive measurements

Cognitive tests included logical memory I (narrative memory free 
recall), logical memory II (long term narrative memory free recall), 
and logical memory II R (long term memory recognition) from the 
Wechsler Memory Scale III; digit span forward and backward from 
the Wechsler Adult Intelligence Scale III as well as Trail Making Tests 
A and B. A global cognition composite score was calculated by 
averaging the z-scores of each of the domain tests (Lynall et al., 2010; 
Mayer et al., 2011). Lesser scores on all cognitive measures except the 
Trails Making Tests are indicators of poorer cognitive health.

2.4. Structural MRI acquisition and processing

Brain MRI scans were performed on a GE Discovery 3 T scanner 
at Pennington Biomedical Research Center. T1-weighted structural 
MPRAGE (voxel size, 1 × 1 × 1 mm3; voxel array, 256 × 256 × 176; flip 
angle, 8 degrees; NEX, 1) and 2D FLAIR (voxel size, 0.9 × 0.9 × 3 mm3; 
voxel array, 256 × 256 × 50; flip angle, 111 degrees; NEX, 1) images 
were acquired and analyzed using in-house software, which has been 

described elsewhere (Yoshita et  al., 2006; DeCarli et  al., 2008; 
Carmichael et al., 2012, 2019). Key FLAIR processing steps include 
manual removal of non-brain elements from the FLAIR image by 
operator guided tracing of the dura mater within the cranial vault, 
resulting in delineation of a total cranial volume (TCV) region; MRI 
non-uniformity correction of the TCV (DeCarli et  al., 1996); 
thresholding of TCV into brain and non-brain tissues (DeCarli et al., 
1992); fitting a single Gaussian distribution to the brain tissue intensity 
distribution and labeling of all voxels with intensity >3.5 standard 
deviations above the mean as white matter hyperintensities (WMH; 
DeCarli et al., 2005). Key T1-weighted image processing steps include 
MRI non-uniformity correction (Fletcher et  al., 2012a); and 
segmentation of gray matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF) by a Bayesian maximum-likelihood 
expectation–maximization algorithm (Fletcher et  al., 2012b). The 
primary measures of interest in subsequent analysis were volumes of 
WMH, GM, and WM, each expressed as a percentage of TCV.

TABLE 1 Participant characteristics.

N 100

Sex (% male) 33

Race (% African American) 21

Age at MRI (years) 54.2 ± 4.3

Education (%)
1.5 middle, 24.6 high, 29.2 vocational, 

33.8 college, 10.9 post graduate

Smoking (% smoker) 20

Drinking (% drinker) 5

BMI (kg/m2) 31.2 ± 6.4

SBP (mm Hg) 119.7 ± 14.5

DBP (mm Hg) 76.0 ± 8.6

Hemoglobin A1c (%) 5.7 ± 1.1

Fasting glucose level (mg/dL) 96.0 ± 21.6

HOMA-IR score 3.5 ± 2.9

Fasting insulin level (mIU/mL) 13.6 ± 9.7

APOE-ε4 (% APOE-ε4/ε4 or ε4/ε3 carriers) 26

Gray matter volume on MRI (% of TCV) 43.3 ± 1.62

White matter volume on MRI (% of TCV) 36.4 ± 1.49

WMH volume on MRI (% of TCV) 0.04 ± 0.05

Z-standardized mean score for all 

cognitive measures
1.9 ± 3.7

Digit span forwards score 11.8 ± 2.3

Digit span backwards score 7.9 ± 2.0

Logical memory I total score 22.7 ± 6.3

Logical memory II total score 17.4 ± 6.2

Logical memory II recognition total score 24.6 ± 2.4

Trail Making Test A (seconds) 24.9 ± 7.7

Trail Making Test B (seconds) 56.5 ± 23.7

Digit coding score 64.9 ± 14.9

Vocabulary score 31.0 ± 9.0

Word reading score 43.1 ± 7.8

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; WMH, 
white matter hyperintensities; TCV, total cranial volume.
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2.5. Functional MRI acquisition and 
preprocessing

Axial 2D gradient echo EPI BOLD were acquired for both task-
based and resting-state fMRI (voxel size, 3.5 × 3.5 × 3.5 mm3; voxel 
array, 64 × 64 × 44; flip angle, 90 degrees; TE, 30 ms; TR, 3000 ms; NEX, 
1). Two hundred and 160 volumes were acquired over the course of 
task execution and rest, respectively. Preprocessing of fMRI included 
slice timing correction, head motion correction (head rotation was 
required to be <1.5 degree and translation was required to be <1.5 mm 
at every fMRI time point. All fMRI data sets in this study met that 
criterion.), smoothing, co-registration to the T1-weighted image, and 
warping of T1-weighted data to a standard coordinate frame (using 
Statistical Parametric Mapping 12). Cardiac and respiratory time 
series were regressed out of the data using RETROICOR and REST 
Toolkit (Glover et al., 2000; Song et al., 2011). Twenty four regions of 
interest (ROIs) identified in previous fMRI studies as involved in 
execution of the Stroop task (Sheu et al., 2012) and 33 ROIs previously 
identified as default mode network (DMN) regions in resting-state 
fMRI studies (Buckner et al., 2008; Andrews-Hanna et al., 2010; Alves 
et al., 2019) were identified, and a single summary fMRI time series 
was extracted from each ROI using a 3 × 3 × 3 block of voxels in each 
scan by in-house MATLAB script for EC and FC analysis.

2.6. Stroop task

The Stroop task tested inhibitory control in the context of negative 
feedback and time-pressured responses (Sheu et al., 2012). In each 
trial, for 400–5,000 ms participants saw one probe word and four 
target words that were names of colors. The task was to identify the 
target word whose color matched that of the probe. In the congruent 
(incongruent) condition, word meaning matched (did not match) the 
color it was printed in. Correct (incorrect) responses on 3 consecutive 
incongruent trials prompted a 300 ms reduction (increase) in stimulus 
duration. Four 52–60 s incongruent trial blocks were interleaved with 
4 congruent trial blocks, each of which had the same number of trials 
as the previous incongruent block. The inter-block interval was 
10–17 s.

2.7. Resting-state fMRI

Resting-state fMRI was collected for 8 min using the same pulse 
sequence parameters as the task-based fMRI data. Participants were 
instructed to keep their eyes open and to stare at a white crosshair on 
a black background throughout acquisition.

2.8. Connectivity analysis

2.8.1. Effective connectivity
The deep stacking network method used to estimate nonlinear 

Granger causality from the fMRI time series at a source region to that 
of a target region conditioned on the time series at other source 
regions has been described previously (Chuang et al., 2021, 2022). The 
code that supported the findings of this study are available from the 
corresponding author upon reasonable request. Briefly, the Granger 

causality of source ROI1  to target ROI2 , conditioned on other 
sources ROIs  ( ROI ROI ROIs1 2→ | ), is defined in terms of the 
reduction in prediction error when ROI1 , ROI2 , and other sources 
ROIs  are used to reconstruct ROI2 , compared to prediction error 

when only ROI2  and other sources ROIs  are used to reconstruct 
ROI2 . If incorporating ROI1  improves the reconstruction of ROI2  

after accounting for effects of ROI2  and other sources ROIs , the 
Granger causality index GCindexROI ROI ROIs1 2→ |  will be  a larger 
positive number. Complex causal relationships among several time 
series can be disentangled by calculating conditional Granger causality 
with differing assignments of time series to the roles of ROI1 , ROI2
, and other sources ROIs . To reconstruct target time series from 
source time series, we used deep stacking networks, which consist of 
a set of convolutional neural network modules, each trained to 
reconstruct one time series based on another. Given time series from 
source and target regions collected from all participant fMRI scans, 
we used K-fold cross validation to train the deep stacking network K 
times, each time quantifying GCindexROI ROI ROIs1 2→ | within the test 
data. We consider the evidence for a particular conditional Granger 
causal relationship strong at the group level when the mean of these 
GCindexROI ROI ROIs1 2→ |  estimates is statistically significantly >0 in a 
one-tailed student’s t-test (value of p < 0.05). Each such causal 
relationship resulted in an edge originating at the ROI1 node, 
terminating at the ROI2 node, in the group level graph. The group 
level graph was constructed for the purpose of visualizing overall 
trends in causal relationships across the entire set of scans. We also 
calculated individual-level graphs that allowed us to quantify graph 
metrics from each scan. To construct an individual-level graph 
we started by omitting the individual’s scan from the overall data set 
and randomly partitioning the remainder into K disjoint sets. The 
deep stacking network was trained on each of the K disjoint sets, and 
GCindexROI ROI ROIs1 2→ | was quantified from just the omitted 
individual’s scan. We consider the evidence for a particular conditional 
Granger causal relationship strong when the mean of the K 
GCindexROI ROI ROIs1 2→ |  estimates is statistically significantly >0 in a 
one-tailed student’s t-test (value of p < 0.05). Each such significant 
GCindexROI ROI ROIs1 2→ |  resulted in a directed edge originating from 
the graph node corresponding to ROI1 , terminating at the graph 
node corresponding to ROI2 , in the individual directed graph 
representing EC relationships.

Inspired by Jia et al. (2016) and Zamora Esquivel et al. (2019), 
we  used CNN-ACKs in our DSNs architecture to estimate causal 
relationships. An CNN-ACK is trained to transform the source (s) 
time series into the target time series. An ACK is defined by a dynamic 
filter that changes its weights automatically depending on the data in 
the source time series. The ACK is generated by convolving filters with 
source time series and using an activation function to transform the 
result into target time series. The first step is that at each timestep ( t
), the (1 × 6) hidden layer output is calculated as the dot product of six 
1 × 2 filter with the source time series. Then, the Parametric Rectified 
Linear Unit (PReLU) activation function is applied to each element of 
hidden layer output to generate the ACK. The estimate of the target 
time series is the dot product of ACK with the source time series. In 
each CNN-ACK, the six convolving filters (2 weights and 1 bias terms 
for each filter) and the parameters of PReLU (6 weights for each 
timestep) are the learnable parameters. The outputs of each CNN-ACK 
are provided as inputs to an element-wise weighted sum to produce 
the final estimate of the target time series. We used the TensorFlow 
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and Keras software packages to build our network architecture and 
optimized it with the Adam optimizer (β1 = 0.9, β2 = 0.999) with a 
learning rate of 0.001 to minimize the loss function of mean squared 
error between the predicted target time series and the actual target 
time series (Chollet, 2015; Abadi et al., 2016).

2.8.2. Functional connectivity
We used the Brain Connectivity Toolbox (Rubinov and Sporns, 

2010) to calculate conditional FC between a pair of regions, ROI1 and 
ROI2, while accounting for the effects of all other regions ROIs (ROI1 
↔ ROI2|ROIs). Following common practice, the matrix of partial 
Pearson correlations (Pearson’s r) among all possible ROI1 and ROI2 
was calculated, and after statistically significant correlation values 
(value of p < 0.05) were retained to construct the individual-level graph 
(Brier et al., 2014; Meng et al., 2018; Carnevale et al., 2020; Contreras 
et al., 2020; Zhang et al., 2021). Each such significant conditional FC 
ROI1 ↔ ROI2|ROIs resulted in an undirected link between ROI1 and 
ROI2 in the graph representing FC relationships. Group consensus 
graph was calculated as the mean of all individual-level graphs.

2.9. Graph metrics

The common global measures graph metrics representing the 
different aspects of a brain network (Figure 1) were calculated from 
directed graphs resulting from EC as well as undirected graphs 
resulting from FC, using the Brain Connectivity Toolbox (Rubinov 
and Sporns, 2010). The definition of each graph metric can be found 
in Appendix Table A1. Each graph metric had analogs for both 
directed and undirected graphs. In previous brain networks studies 
(Achard and Bullmore, 2007; Meunier et al., 2009; Sanz-Arigita et al., 
2010; Petti et al., 2013; Brier et al., 2014; Parhizi et al., 2018; Sun et al., 
2020), greater degree, clustering coefficient, transitivity, modularity, 
global efficiency, assortativity in-out, and small-worldness; as well as 
lower strength, characteristic path length, and flow coefficient; have 
been associated with better brain health.

2.10. Statistical analysis

Statistical analysis focused on relating demographic, lifestyle, 
cardiometabolic and cognitive measures as predictors to EC and FC 
based graph metrics as outcomes. The associations between 
predictors and outcomes were evaluated in multivariable linear 
regression models, and statistically significant associations at the 
value of p < 0.05 level are reported in the results. Each model included 
gender, race, and age at the time of MRI as nuisance covariates, along 
with one cardiometabolic or cognitive predictor. The set of 
cardiometabolic and cognitive predictors included BMI, SBP, DBP, 
APOE-ε4, hemoglobin A1c, fasting glucose, HOMA-IR, fasting 
insulin, volumes of WMH, GM, and WM, z-standardized mean score 
for all cognitive measures, digit span forwards/backwards score, 
logical memory I/II/II recognition total score, digit coding score, 
vocabulary score, word reading score. We  evaluated differences 
between analogous EC and FC metrics qualitatively, in terms of 
differences in how they related to the demographic, cardiometabolic 
and cognitive predictors.

3. Results

The group-consensus EC and FC graphs for Stroop task are shown 
in Figure 2. Figure 3 shows the group-consensus EC and FC graphs 
for resting-state fMRI. For both Stroop task and resting-state fMRI, 
almost all of the edges in the group-consensus EC graph were 
significant; however, few of the edges in the group-consensus FC 
graph were significant. A specific pattern of several ROIs appearing to 
be a source for specific target ROIs, including left and right caudate, 
cerebellar hemisphere, and cerebellar tonsil, has been identified in 
group-consensus EC for resting-state fMRI. No specific pattern has 
been found for the rest of the group-consensus graphs. The means and 
standard deviations of graph metric over all participants have been 
shown in Table  2. The associations between demographic, 
cardiometabolic, and cognitive measures and EC/FC based metrics 

FIGURE 1

Graph metrics calculated from EC and FC graphs. Categories of graph metrics are shown in bold. Individual graph metrics within each category are 
listed.
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A B

FIGURE 3

Identified group-consensus (A) EC (directed graph) and (B) FC (undirected graph) among 33 DMN ROIs for resting-state fMRI. The connectivity is 
shown in black if it is not statistically significant. VMPFC, ventro-median prefrontal cortex; AMPFC, antero-median prefrontal cortex; DPFC, dorsal 
prefrontal cortex; PCC, posterior cingulate cortex; Rsp, retrosplenial cortex; PH, parahippocampal region; Amy, amygdala; VLPFC, ventrolateral 
prefrontal cortex; TP, temporal pole; MTG, middle temporal gyrus; PPC, posterior parietal cortex; T, thalamus; BF, basal forebrain; C, caudate; CbH, 
cerebellar hemisphere; CbT, cerebellar tonsil; MidB, midbrain.

for Stroop task fMRI are shown in Table 3. The associations between 
demographic, cardiometabolic, and cognitive measures and EC/FC 
based metrics for resting-state fMRI are shown in Table 4. Figure A1 
and Table A2 show the associations between demographic, 
cardiometabolic, and cognitive measures and EC/FC based metrics 
among 24 task-related ROIs for Stroop task fMRI and eight core DMN 
ROIs for Stroop task fMRI.

3.1. Associations with demographic 
measures

3.1.1. Stroop task fMRI
Age at MRI was not associated with either EC based metric 

(minimum value of p = 0.059), or FC based metric (minimum value of 
p = 0.065). Better EC based assortativity in-out (value of p = 0.043) and 

A B

FIGURE 2

Identified group-consensus (A) EC (directed graph) and (B) FC (undirected graph) among 24 task-related ROIs for Stroop task fMRI. The connectivity is 
shown in black if it is not statistically significant. AG, angular gyrus; AI, anterior insula; Cb, cerebellum; CG, cingulate gyrus; FG, fusiform gyrus; IFG, 
inferior frontal gyrus; MTG, middle frontal gyrus; OG, occipital gyrus; P, precuneus; TG, temporal gyrus; T, thalamus; ACC, anterior cingulate cortex; FG, 
frontal gyrus; LN, lentiform nucleus; MTG, middle temporal gyrus; PI, posterior insula; SFG, superior frontal gyrus.
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better FC based flow coefficient (value of p = 0.047) were found for 
females compared to males. Better EC based assortativity in-out and 
strength (value of p = 0.022 and 0.042, respectively) were found for 
white Americans compared to African Americans.

3.1.2. Resting-state fMRI
Age at MRI was associated with EC based metrics but not with 

any FC based metric. Greater age was associated with worse EC 
based degree, clustering coefficient, transitivity, global efficiency, and 
characteristic path length (maximum value of p = 0.038). Gender was 
associated with both EC and FC based metrics. Better EC based 
assortativity in-out (value of p = 0.017) was found for males, but 
better FC based strength (value of p = 0.004) was found for females. 
Self-reported history of drinking was associated with both EC and 
FC based metrics. Better EC based small-worldness (value of 
p = 0.015) and better FC based strength (value of p = 0.009) was found 
for non-drinkers. Better EC based assortativity in-out 
(p-value = 0.017) was found for males, but better FC based strength 
(p-value = 0.004) was found for females. Race, education, and 
smoking history were not associated with any EC based metric 
(minimum p-value = 0.068), nor any FC based metric (minimum 
p-value = 0.077).

3.2. Associations with cardiometabolic 
measures

3.2.1. Stroop task fMRI
Systolic and diastolic blood pressure were associated with EC 

based metrics but not with any FC based metric. Greater SBP was 
associated with worse EC based characteristic path length (p-
value = 0.038), but with better EC based modularity and small-
worldness (maximum p-value = 0.018). Greater DBP was associated 
with worse EC based degree, clustering coefficient, transitivity, global 
efficiency, and characteristic path length (maximum p-value = 0.008). 
Instead, APOE-ε4 was not associated with any EC based metric, but 
with FC based metrics. Worse FC based small-worldness and strength 
were found in ε4 allele carriers (p-value = 0.026 and 0.032, 
respectively). Greater hemoglobin A1c were associated with worse FC 
based strength (maximum p-value = 0.029). Moreover, white matter 
hyperintensities volume was associated with both EC and FC based 
metrics. Greater WMH was associated with worse EC based strength 
(p-value = 0.021), FC based modularity and characteristic path length 
(p-value = 0.001 and 0.017, respectively). BMI, glycemic measures, and 
gray/white matter volume were not associated with any EC based 
metric (minimum p-value = 0.100), nor any FC based metric 
(minimum p-value = 0.115).

3.2.2. Resting-state fMRI
BMI and WMH were associated with EC based metrics but not 

with any FC based metric. Greater BMI was associated with worse EC 
based strength (p-value = 0.015). Greater fasting glucose, HOMA-IR, 
and fasting insulin were associated with worse EC based strength 
(maximum p-value = 0.035). Greater WMH was associated with worse 
EC based strength (p-value = 0.025). Systolic and diastolic blood 
pressure, APOE-ε4, and gray/white matter volume were not associated 
with any EC based metric (minimum p-value = 0.052), nor any FC 
based metric (minimum p-value = 0.137).T
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TABLE 3 Linear relationships between demographic, cardiometabolic, and cognitive measures and graph metrics derived from EC and FC for Stroop task fMRI.

Degree Clustering 
coefficient

Modularity Transitivity Global 
efficiency

Assortativity 
in-out

Small-
worldness

Strength Characteristic 
path length

Flow 
coefficient

Gender 

(M = 0, F = 1)

EC (β = 0.016, 

p = 0.043)

FC (β = −0.014, 

p = 0.047)

Race 

(WA = 0, 

AA = 1)

EC (β = −0.022, 

p = 0.022)

EC (β = 2.768, 

p = 0.042)

SBP
EC (β = 0.001, 

p = 0.015)

EC (β = 0.001, 

p = 0.018)

EC (β = 0.001,  

p = 0.038)

DBP
EC (β = −0.877, 

p = 0.001)

EC (β = −0.001, 

p = 0.005)

EC (β = 0.001, 

p = 0.008)

EC (β = −0.001, 

p = 0.003)

EC (β = −0.001, 

p = 0.002)

EC (β = 0.002,  

p = 0.001)

APOE-ε4
FC (β = −0.046, 

p = 0.026)

FC (β = 0.600, 

p = 0.032)

Hemoglobin 

A1c

FC (β = −0.223, 

p = 0.029)

WMH 

volume

FC (β = −26.3, 

p = 0.001)

EC (β = 2,172, 

p = 0.021)

FC (β = −31.6, 

p = 0.017)

Digit span 

backwards

FC (β = −0.009, 

p = 0.041)

FC (β = 0.003, 

p = 0.043)

Vocabulary
EC (β = −0.001, 

p = 0.017)

EC (β = −0.001, 

p = 0.025)

EC, effective connectivity; FC, functional connectivity; M, male; F, female; WA, white American; AA, African American; SBP, systolic blood pressure; DBP, diastolic blood pressure; WHM, white matter hyperintensities.
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TABLE 4 Linear relationships between demographic, cardiometabolic, and cognitive measures and graph metrics derived from EC and FC for resting-state fMRI.

Degree Clustering 
coefficient

Modularity Transitivity Global 
efficiency

Assortativity 
in-out

Small-
worldness

Strength Characteristic 
path length

Age
EC (β = −2.556, 

p = 0.012)

EC (β = −0.002, 

p = 0.016)

EC (β = 0.001, 

p = 0.038)

EC (β = −0.002, 

p = 0.013)

EC (β = −0.001, 

p = 0.011)

EC (β = 0.002,  

p = 0.010)

Gender (M = 0, 

F = 1)

EC (β = −0.017, 

p = 0.017)

FC (β = −1.145, 

p = 0.004)

Alcohol (non-

drinker = 0, 

drinker = 1)

EC (β = −0.036, 

p = 0.015)

FC (β = 2.522, 

p = 0.009)

BMI
EC (β = 4.167, 

p = 0.015)

Fasting glucose
EC (β = 3.475, 

p = 0.035)

HOMA-IR
EC (β = 7.011, 

p = 0.003)

Fasting insulin
EC (β = 7.033, 

p = 0.004)

WMHs volume
EC (β = 3.125, 

p = 0.025)

Logical memory 

II total score

EC (β = 3.416, 

p = 0.044)

Word reading
EC (β = 3.446, 

p = 0.038)

EC, effective connectivity; FC, functional connectivity; M: male; F, female; WHM, white matter hyperintensities. Neither EC or FC based small-worldness and flow coefficient associated with demographic, cardiometabolic and cognitive risk factors.
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3.3. Associations with cognitive measures

3.3.1. Stroop task fMRI
Vocabulary score was associated with EC based metrics but not 

with any FC based metric. Greater vocabulary score was associated 
with worse EC based clustering coefficient and transitivity (p-
value = 0.017 and 0.025, respectively). Instead, digit span backwards 
score was not associated with any EC based metric, but with FC based 
metrics. Greater digit span backwards score was associated with worse 
FC based small-worldness and flow coefficient (p-value = 0.041 and 
0.043, respectively). None the rest of the cognitive measures were 
associated with any EC based metric (minimum p-value = 0.068), nor 
any FC based metric (minimum p-value = 0.097).

3.3.2. Resting-state fMRI
Logical memory II total score and word reading score were 

associated with EC based metrics but not with any FC based metric. 
Greater logical memory II total score and word reading score were 
associated with worse EC based strength (p-value = 0.044 and 0.038, 
respectively). None the rest of the cognitive measures were associated 
with any EC based metric (minimum p-value = 0.250), nor any FC 
based metric (minimum p-value = 0.228).

4. Discussion

In a cohort of nominally healthy middle aged individuals, almost 
all of the edges in the group-consensus EC graph were significant; 
however, few of the edges in the group-consensus FC graph were 
significant. We believe this difference is because EC can identify a 
wider range of significant relationships than FC can: EC can identify 
causal relationship across a wide range of time lags between the source 
region and the target region; FC, on the other hand, only accounts for 
synchrony (i.e., zero time lag) relationships between the regions. Also, 
EC and FC had differential associations with demographic, 
cardiometabolic, and cognitive measurements in both task-based and 
resting-state fMRI. The task-based results suggested that certain 
health-related measures associated specifically with EC metrics, and 
others associated specifically with FC metrics. The resting-state results 
similarly suggested differential associations between EC and FC, and 
that EC metrics had more associations with health-related measures 
than FC metrics did. There are several ways in which the imposition 
of task conditions could affect EC and FC values. First, EC and FC 
may have a different temporal structure in task fMRI data due to the 
time-varying nature of task conditions, which lead to time-varying 
cognitive loads on various brain regions. EC and FC may have 
different spatial structures as well when applied to task fMRI data, as 
the task demands may force the brain to recruit different brain regions 
for execution. Finally, the imposition of task conditions could cause 
greater fluctuations in the BOLD signal than are seen during rest, and 
this amplitude difference may by itself cause differences between task 
and rest connectivity measures. Therefore, the first implication of 
these findings is that future studies of midlife brain health should 
consider both EC and FC analyses to get a more complete picture of 
functional network related aspects of brain health. The second 
implication is that future studies of midlife brain health should 
consider collecting both task-based and resting-state fMRI scans, 
again to get a more complete picture of relevant aspects of brain health.

Our results shows that either EC or FC showed a significant 
correlation with the network metric but not both ─ there was no 
case where both FC and EC showing a significant correlation. 
Differential associations for EC compared to FC are plausible, 
given that they are quantifying distinct properties of the underlying 
fMRI signals. A key difference between EC and FC analysis is that 
EC analysis can assess a specific form of causal relationships, while 
FC analysis captures correlation (Stigler, 2005; Altman and 
Krzywinski, 2015; Moreau and Dumas, 2021). Altman et al. has 
pointed out that a causal relationship (EC) can arise between 
variables in the presence or absence of a correlation (FC), and 
therefore we  cannot equate causality with correlation in either 
direction (Altman and Krzywinski, 2015). This key difference, in 
theory, could account for more statistically significant edges and 
differential associations for EC compared to FC. Our results 
suggest that this difference between what EC and FC calculates is 
actually relevant to real-world data sets containing fMRI and 
health information. Thus, we  suggest calculating EC as 
complementary to FC analyses. Calculating both types of metrics 
adds nothing to acquisition time but does add to the computational 
burden of post-processing.

Our findings of relationships between demographic measures 
(age and gender) and EC or FC aligned well with previous literature. 
In general, greater degree, clustering coefficient, transitivity, 
modularity, global efficiency, assortativity in-out, and small-
worldness; as well as lower strength, characteristic path length, and 
flow coefficient; have been associated with better brain health 
(Achard and Bullmore, 2007; Meunier et al., 2009; Sanz-Arigita et al., 
2010; Petti et al., 2013; Brier et al., 2014; Parhizi et al., 2018; Sun et al., 
2020). Greater degree suggests a larger number of functional 
connections between the current region and other regions. Greater 
clustering coefficient, transitivity, modularity, and lower flow 
coefficient suggest greater inter-regional connectivity among a set of 
regions. Greater modularity, global efficiency, and small-worldness, 
as well as lower characteristic path length, suggest greater efficiency 
of functional network organization from the perspective of 
information transfer across the network. Greater assortativity in-out 
coefficient suggests that the brain regions tend to connect to other 
brain regions that have similar degree. Lower strength suggests that 
a region has several weak functional connections with a large set of 
other regions, rather than a few strong connections. Prior studies 
demonstrated lower FC based degree and modularity, and lower EC 
based small-worldness, in middle-aged or old research participants 
compared to young participants, based on resting-state fMRI 
(Meunier et al., 2009; Petti et al., 2013; Song et al., 2014; Archer et al., 
2016). Our results similarly suggested that EC based metrics were 
intuitively associated with age within this cohort of middle aged 
individuals, based on resting-state scans. Young age is usually 
correlated with better brain health in healthy populations. Also, 
resting-state FC studies have reported that women may have greater 
graph node degree within the default mode network, compared to 
men (Bluhm et  al., 2008; Allen et  al., 2011; Zhang et  al., 2018); 
we similarly found better EC and FC based metrics among women, 
compared to men, in both task-based and resting-state scans. To our 
knowledge, there have been no reported observations of race 
differences in EC or FC to date in middle aged individuals; we report 
what may be the first finding of poorer task-based EC among African 
Americans compared to corresponding whites.
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Many of our results for cardiometabolic measures (blood 
pressure, BMI, WMH, APOE-ε4) aligned well with previous 
literature. We report a lack of association between FC and blood 
pressure measures, similar to prior studies showing no association to 
blood pressure (Song et al., 2011; Zhou et al., 2011; Hinault et al., 
2019) as well as others showing no differences between hypertensive 
and normotensive groups (Carnevale et al., 2020). We also report 
significant associations between blood pressure and EC, as in prior 
studies (Chand et  al., 2017; Bu et  al., 2018). Our finding of an 
association between worse resting-state EC and greater BMI is 
reminiscent of an earlier finding of worse resting-state EC among 
obese young adults compared to normal-weight young adults (Duan 
et al., 2020), although we did not replicate earlier findings of reduced 
resting-state FC among obese young adults (Baek et al., 2017; Meng 
et al., 2018; Ottino-González et al., 2021). We report that greater 
WMH burden is associated with poorer EC during task and rest 
along with poorer FC during rest. We believe that methodological 
differences between studies may account for many of these 
discrepancies. For example, some prior studies (Chen et al., 2019, 
2021) focused solely on FC between the thalamus and the whole 
brain, while other studies explored FC solely within the default mode 
network. Standardizing fMRI post-processing pipelines to minimize 
such methodological differences has been notoriously difficult. 
We are providing what may be one of the first reports of significant 
associations between APOE-ε4 carrier status and task-based 
FC. APOE carrier status has previously been shown to be associated 
with a variety of different indicators of poorer neurobiological health, 
including degradation of synaptic and neuronal function (Contreras 
et al., 2020; Turney et al., 2020). Worse FC-task based graph metrics 
were found in ε4 allele carriers, suggesting that such APOE-related 
decrements in neuronal and synaptic health may culminate in 
connectivity deficits. Overall, our results align well with the intuitive 
notion that better graph metrics should associate with indicators of 
better brain health. These results have substantial agreement with 
prior literature, thus lending some plausibility to the current findings. 
Discrepancies between our findings and previous reports could 
be accounted for by numerous methodological and study population 
differences. Moreover, several prior studies reported the associations 
between race and APOE-e4 (Beydoun et al., 2021; Weiss et al., 2021). 
However, there was no statistically significant correlation between 
the graph metrics and the interaction terms of race and APOE-e4. 
Prior studies that suggest such interactions generally assessed 
cognitive outcome measures while our outcomes are brain 
connectivity variables; we  speculate that interactive effects on 
cognition may be  exerted through other mechanisms besides 
brain connectivity.

Our finding of a significant association between one type of 
cognitive measures (digit span backwards/forwards scores) and task-
based FC aligns well with prior reports with task-based fMRI data 
(Ginestet and Simmons, 2011; Stanley et al., 2015). We are unaware 
of any prior reports on associations between EC and cognitive 
function, and provide what may be one of the first reports of such 
associations here. The closest we can get to this finding in the current 
literature is the literature on FC in disease populations, including 
mild cognitive impairment and Alzheimer’s disease (Grady et al., 
2003; Wang et al., 2006; Zhang et al., 2017). Several of these studies 
reported that FC is actually greater in those with worse disease status, 
suggesting that elevating FC may be a compensatory mechanism 

triggered by the disease state. Similarly, we found that better cognitive 
function scores were associated with worse EC-based graph metrics. 
While there have been numerous reports of associations between 
resting-state FC and cognitive functioning or differences in resting-
state FC between cognitively healthy and unhealthy groups (Van Den 
Heuvel and Pol, 2010; Liang et al., 2011; Zhou et al., 2013; Zhang 
et al., 2017), these prior studies largely did not take place entirely 
within a cognitively healthy middle-aged population. This difference 
from prior literature may account for our lack of finding of such 
associations in our data.

A key strength of the study is its comprehensive nature, with 
comparisons among multiple forms of brain connectivity (EC and 
FC), both task-based and resting-state fMRI, and multi-faceted 
assessment of individuals in terms of demographics, cardiometabolic 
risks, and cognition. The use of an established, deeply characterized 
population-based cohort is another key strength. Future studies 
should consider longitudinal measurement of cardiovascular and 
cognitive measures from as young an age as possible. One limitation 
to this study is the relatively small sample size of the dataset (100 
participants). It would be  helpful to verify the robustness of the 
results with a public dataset with larger sample size. Another 
limitation is our ROI-based approach to calculating EC and FC, i.e., 
we only calculated connectivity among regions previously identified 
as activated by the Stroop task, or among those previously identified 
as being in the default mode network. This approach may miss 
certain interesting functional connections outside of the known task-
related regions, but unlike whole-brain analyses it offers a lower risk 
of the false positives that have contributed to the replication crisis 
currently roiling the fMRI field (Bennett and Miller, 2010; Sheu et al., 
2012). The other possible limitation is that we did not adjust for 
inter-individual or inter-regional differences in the hemodynamic 
response function to stimuli. Some studies have suggested that such 
adjustments are important (Smith et al., 2012; Rangaprakash et al., 
2017), while others suggest they are irrelevant (Seth et al., 2013; Wen 
et al., 2013).

5. Conclusion

In a diverse, cognitively healthy, middle-aged community sample, 
graph metrics derived from EC based directed graphs and FC based 
undirected graphs in both task-based and resting-state scans 
associated differentially with recognized demographic, 
cardiometabolic and cognitive indicators of brain health.
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