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Introduction: Alzheimer’s disease (AD) and Type 2 diabetes (T2D) are both age-
associated diseases. Identification of shared genes could help develop early 
diagnosis and preventive strategies. Although genetic background plays a crucial 
role in these diseases, we  noticed an underrepresentation tendency of North 
African populations in omics studies.

Materials and methods: First, we conducted a comprehensive review of genes 
and pathways shared between T2D and AD through PubMed. Then, the function 
of the identified genes and variants was investigated using annotation tools 
including PolyPhen2, RegulomeDB, and miRdSNP. Pathways enrichment analyses 
were performed with g:Profiler and EnrichmentMap. Next, we analyzed variant 
distributions in 16 worldwide populations using PLINK2, R, and STRUCTURE 
software. Finally, we performed an inter-ethnic comparison based on the minor 
allele frequency of T2D-AD common variants.

Results: A total of 59 eligible papers were included in our study. We  found 231 
variants and 363 genes shared between T2D and AD. Variant annotation revealed 
six single nucleotide polymorphisms (SNP) with a high pathogenic score, three 
SNPs with regulatory effects on the brain, and six SNPs with potential effects on 
miRNA-binding sites. The miRNAs affected were implicated in T2D, insulin signaling 
pathways, and AD. Moreover, replicated genes were significantly enriched in 
pathways related to plasma protein binding, positive regulation of amyloid fibril 
deposition, microglia activation, and cholesterol metabolism. Multidimensional 
screening performed based on the 363 shared genes showed that main North 
African populations are clustered together and are divergent from other worldwide 
populations. Interestingly, our results showed that 49 SNP associated with T2D and 
AD were present in North African populations. Among them, 11 variants located in 
DNM3, CFH, PPARG, ROHA, AGER, CLU, BDNF1, CST9, and PLCG1 genes display 
significant differences in risk allele frequencies between North African and other 
populations.

Conclusion: Our study highlighted the complexity and the unique molecular 
architecture of North African populations regarding T2D-AD shared genes. 
In conclusion, we  emphasize the importance of T2D-AD shared genes and 
ethnicity-specific investigation studies for a better understanding of the link 
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behind these diseases and to develop accurate diagnoses using personalized 
genetic biomarkers.

KEYWORDS

pathogenic variants, pathways, ethnicity, PRISMA, admixure, multidimensional scaling 
plot, miRNA

Introduction

The world is experiencing the oldest living population (United 
Nations Department of Economic and Social Affairs, Population 
Division, 2020). The increase in lifespan and unhealthy habits 
coincides with an increase in age-related diseases, such as dementia 
and type 2 diabetes (T2D) (Hayden, 2019). Globally, more than 57.4 
million adults live with dementia, and this number is estimated to 
increase to 152.8 million by 2050 (Nichols et al., 2022). Similarly, 537 
million T2D patients, and this figure is expected to increase to 780 
million (Magliano et al., 2021).

Alzheimer’s disease (AD) is the most common form of dementia 
worldwide, accounting for more than 70% of all cases (2022 
Alzheimer’s Disease Facts and Figures, n.d.). Currently, more than 6.2 
million adults above the age of 65 years live with AD in the 
United States alone (2022 Alzheimer’s Disease Facts and Figures, n.d.). 
The increasing prevalence of AD imposes a heavy socioeconomic 
burden on families and societies (Shu et al., 2022). AD is a complex 
disease, and the absence of modifying treatments adds another 
constraint. Therefore, a shift from a curative to a preventive approach 
is essential (Silva-Spínola et al., 2022). One approach is to work on the 
causes and risk factors of disease. For example, genetic investigation 
of AD risk factors could help shape our understanding of the disease 
and provide a promising tool for identifying presymptomatic AD (de 
Rojas et al., 2021). Furthermore, T2D is a major risk factor for AD 
development (Thomassen et  al., 2020), and compelling evidence 
supports the interaction between these diseases (Barbagallo and 
Dominguez, 2014). T2D and AD share several molecular mechanisms 
including insulin resistance, oxidative stress (De Sousa et al., 2020), 
inflammation, and mitochondrial dysfunction (Silzer and Phillips, 
2018). Thus, well-established genetic variants and pathways that are 
common between T2D and AD are of great significance for AD 
prevention and early diagnosis.

Advances in omics technologies, such as Genomics and 
Transcriptomics, have greatly enhanced our knowledge of the 
pathophysiology of T2D and AD at a detailed molecular level 
(Karczewski and Snyder, 2018). Several omics results have paved the 
way for new findings regarding the interactions between these diseases.

Although omics technologies represent great promise for science 
revolution and precision medicine implementation, a vast number of 
omics research cohorts are of European ancestry (Popejoy and 
Fullerton, 2016). This could lead to a serious research gap since 
European ancestry findings do not necessarily replicate across other 
populations (Martin et al., 2019). Genetic background is an important 
element when studying common diseases, such as AD and T2D 
(Huang et al., 2017). Consequently, there is an urgent need to integrate 
more underrepresented populations to maximize the potential of 
discovering genes and pathways that are common between T2D and 
AD (Popejoy and Fullerton, 2016) and to fulfill the promise of 
precision medicine.

North African populations have highly diverse and complex 
genetic structures. It is characterized by a rich genetic background 
due to the admixture between Berber (early settlers in North 
Africa) and Eurasiatic and Sub-Saharan components (Kefi et al., 
2015). Like a mosaic, the North African genetic background 
represents a valuable and unique source for genetic investigations 
(Ben Halima et al., 2017; Jmel et al., 2018; Arauna et al., 2019; 
Romdhane et al., 2021; Dallali et al., 2022) and the implementation 
of precision medicine.

Abbreviations: ABC transporter, ATP Binding Cassette transporter; AD, Alzheimer’s 

disease; ADORA2A, Adenosine A2a receptor; AGER, Advanced glycosylation 

end-product specific; AGPAT1, 1-acylglycerol-3-phosphate O-acyltransferase 1; 

AGT, Angiotensinogen; AMR, American; ANK1, Ankyrin 1; ApoB, Apolipoprotein 

B; APOE, Apolipoprotein E; ASW, African ancestry in the South Western USA; Aβ, 

Amyloid-beta; BBB, Blood–brain barrier; BDNF1, Brain derived neurotrophic factor; 

BMI, Body mass index; CEU, Northwestern and Western European ancestry 

populations of Utah from the CEPH collection; CFH, Complement factor H; CHB, 

Han Chinese in Beijing, China; CHD, Chinese population of metropolitan Denver, 

Colorado, USA; CLU, Clusterin; CNS, Central nervous system; CST3, Cystatin C; 

CST9, Cystatin C9; DMRT3, Doublesex and mab-3 related transcription factor 3; 

DNM3, Dynamin 3; EAS, East Asian; EFCAB5, EF-hand calcium binding domain 5; 

EIF2S2P3, Eukaryotic translation initiation factor 2 subunit 2 beta pseudogene 3; 

EPHX2, Epoxide hydrolase 2; EUR, European; GLUT4, Solute carrier family 2; 

H3K27ac, Histone 3 lysine 27 acetylation; H3K4me1, Monomethylation of lysine 

4 on histone H3 protein subunit; HbA1c, Glycated hemoglobin; HHEX, 

Hematopoietically expressed homeobox; hIAPP, Human islet amyloid polypeptide; 

HWE, Hardy–Weinberg equilibrium; ICAM1, Intercellular adhesion molecule 1; 

JPT, Japanese in Tokyo, Japan; LD, Linkage disequilibrium; LDL, Low-density 

lipoprotein; LOAD, Late-onset Alzheimer’s disease; LPL, Lipoprotein lipase; MADD, 

MAP kinase activating death domain; MAF, Minor allele frequency; MDS, 

Multidimensional scaling plot; MEX, Mexican ancestry living in Los Angeles, 

California, USA; miRNA, Micro ribonucleic acid; Morocco_N, North Morocco; 

Morocco_S, South Morocco; Myc, MYC proto-oncogene, bhlh transcription 

factor; NAF, North African populations; NECTIN2, Nectin cell adhesion molecule 

2; NR2C2, Nuclear receptor subfamily 2 group C member 2; PLCG1, Phospholipase 

C gamma 1; PPARG, Peroxisome proliferator activated receptor gamma; ROHA, 

Ras homolog family member A; SNP, Single nucleotide polymorphism; Spain_BASC, 

Spain Basic populations; Spain_N, North Spain; Spain_NW, North West of Spain; 

Spain_S, South Spain; T2D, Type 2 diabetes; TC, Total cholesterol; TCF3, 

Transcription factor 3; TFB, Transcription factor binding motif; TN_Ber, Tunisia 

Douiret; TP53, Tumor protein p53; TSI, Toscani people of Italy; USF1, Upstream 

transcription factor 1; USF2, Upstream transcription factor 2, c-fos interacting; 

VEP, Variant effect predictor.
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In this study, we aimed to identify the most common variants and 
pathways shared between T2D and AD and to explore their genetic 
variability in North African populations compared to other 
populations worldwide.

Materials and methods

To attend our objectives, (1) we developed the present workflow 
(Figure 1), in which we conducted in the first step a general review of 
the literature to collect genes and variants previously identified in 
common between T2D and AD, (2) Then, in the second step, 
we performed in silico functional analysis and pathway enrichment 
analysis of the collected variants and genes shared betweenT2D and 
AD, and (3) In the third step, we  conducted a multidimensional 
scaling plot (MDS) and Structure analysis of these variants on 
genotyping data available publicly in order to explore the genetic 
landscape of T2D-AD shared genes in North African populations and 
in comparison, to other populations.

Step 1: T2D-AD shared genes and variants 
collection

To collect T2D-AD shared genes and variants from the literature, 
we developed a study protocol using the PRISMA statement (Page 
et al., 2021). The public database PubMed1 was searched from August 
2001 to the 4th of September 2022. The search terms were limited to 
“Type 2 diabetes” AND “Alzheimer’s disease” AND “gene” OR 
“biomarker” OR “Proteomic” OR “Methylation.” Initially, 
we established a systematic screening for all articles published during 
that period according to their title and abstract relevance. Articles on 

1 https://pubmed.ncbi.nlm.nih.gov/

animal models, in vivo studies, and mitochondrial DNA were 
excluded. The final selection criteria were as follows: (1) relevant 
articles, (2) available in English, (3) studies conducted on human 
samples, and (4) genetic, transcriptomic, proteomic, and 
methylation studies.

Step 2: In silico functional variant 
annotation and pathway enrichment 
analysis

Variant annotation and functional effect 
prediction

The collected single nucleotide polymorphism (SNPs) from the 
selected studies were annotated using the VEP (Variant Effect 
Predictor) tool from Ensembl (McLaren et  al., 2016) and the 
SNPnexus web server (Oscanoa et  al., 2020). Next, we  used two 
databases to annotate the functionalities of the variants, depending on 
their locations. Variants in the coding region have been functionally 
annotated using Polyphen-2 (Adzhubei et al., 2010). Polyphen-2 is a 
web-based software that can predict the possible impact of amino acid 
substitutions on the structure and function of human proteins using 
physical and evolutionary comparative considerations (Adzhubei 
et al., 2010). The PolyPhen2 scores range between 0 and 1, with 1 
being the most likely deleterious variant. Similarly, RegulomeDB2 was 
used to prioritize non-coding and modifier variants. RegulomeDB is 
an open-access database that annotates variants in the intergenic 
region based on ENCODE releases, Gene Ontology, Chromatin States 
from the Roadmap Epigenome Consortium, and updates to DNase 
footprinting. The RegulomeDB probability score is ranging from 0 to 
1, with 1 being the most likely to be a regulatory variant (Boyle et al., 
2012). Top-ranked SNPs (RegulomeDB score = 1) were further 

2 https://regulomedb.org/regulome-search/

FIGURE 1

Detailed research work flow. Type 2 Diabetes (T2D); Alzheimer’s disease (AD), Minor allele frequency (MAF).

https://doi.org/10.3389/fnagi.2023.1114810
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://pubmed.ncbi.nlm.nih.gov/
https://regulomedb.org/regulome-search/


Boukhalfa et al. 10.3389/fnagi.2023.1114810

Frontiers in Aging Neuroscience 04 frontiersin.org

investigated using the GTEx portal (Stanfill and Cao, 2021) and 
FeatSNP to assess their association with epigenetic effects in the 
human brain (Ma et al., 2019). Additionally, SNPinfo, a web-based 
server, was used to detect SNPs with potential miRNA-binding sites 
(Xu and Taylor, 2009). Variants with predicted effects on miRNA-
binding sites were explored using miRdSNP (Bruno et al., 2012). The 
list of miRNAs was then used to generate a heat map of pathways 
affected by this miRNA using miRPathDB 2.0 (Kehl et al., 2020).

Pathway enrichment analysis and visualization
Pathway enrichment analysis is an efficient method for gaining 

mechanistic insight into a specific gene list by identifying biological 
pathways enriched in that gene set (Reimand et al., 2019). We performed 
pathway enrichment analysis for the replicated genes among studies using 
the g:Profiler tool (Raudvere et al., 2019). It searches a collection of gene 
sets representing Gene Ontology (GO) terms and pathways (KEGG 
pathway, Reactome, and WikiPathway). The Bonferroni correction was 
applied as the significance threshold for all enrichment analyses. The user 
threshold was set to 0.05. However, pathway enrichment analysis often 
highlights several versions of the same pathway (Reimand et al., 2019). 
Visualization tools can help facilitate the interpretation of analysis results. 
Hence, we used EnrichmentMap (Merico et al., 2010) to visualize the 
non-redundant pathways.

Step 3: Genetic landscape analysis of 
T2D-AD shared genes

Genotyping data and quality control analysis
Genotyping data of 829 individuals from 16 populations were 

downloaded from the International 1,000 Genome Project phase III 
(1000 Genome, n.d)3 and published data (Li et al., 2008; Henn et al., 
2012). The studied populations included those of American: African 
ancestry in the South Western USA (ASW) and people of Mexican 
ancestry living in Los Angeles, California, USA (MEX); European 
ancestry: Northwestern and Western European ancestry populations 
of Utah from the CEPH collection (CEU), Toscani people of Italy 
(TSI), South Spain (Spain_S), North Spain (Spain_N), North West of 
Spain (Spain_NW) and Spain Basic populations (Spain_BASC); 
individuals from East Asian ancestry: Han Chinese in Beijing, China 
(CHB), the Chinese population of metropolitan Denver, Colorado, 
USA (CHD) and Japanese in Tokyo, Japan; (JPT), Individuals from 
North Africa: Algeria (Algeria), Egypt (Egypt), Libya (Libya), Tunisia 
Douiret (TN_Ber), South Morocco (Morocco_S), North Morocco 
(Morocco_N).

We used the PLINK v2 software (Chang et al., 2015) to extract 
variants of the selected common genes between T2D and AD, from 
the genotyping data.

First, to study the genetic landscape of all variants (common and 
rare), we  excluded variants deviating from the Hardy–Weinberg 
equilibrium (HWE) (p-value < 10−4) and those with a genotyping 
rate ≤ 95% for each of the studied populations. Second, we retrained 
variants with minor allele frequency (MAF) >10−2 to explore the genetic 

3 www.internationalgenome.org

landscape of common variants given their importance in the development 
of complex diseases (de Rojas et al., 2021; Shoily et al., 2021).

Statistical analysis

Merged data were pruned based on the physical distances between 
adjacent markers and linkage disequilibrium (LD). High-density 
markers that did not provide additional information were excluded. 
Next, pruning data were used to create a multidimensional scaling plot 
(MDS) to study the landscape of the selected common T2D-AD gene 
regions. To this end, a symmetric matrix of identity-by-state (IBS) 
distances for all pairs of individuals was based on the proportion of 
shared common alleles. This analysis was performed using the Plink 
and R software (R: The R Project for Statistical Computing, n.d).4

After calculating the allele frequencies of the T2D-AD shared 
variants, the populations were clustered according to their geographic 
origins. Four groups were generated: North African (NAF), East Asian 
(EAS), American (AMR), and European (EUR). The Chi-square test 
was used to compare the risk allele frequencies of candidate variants 
between NAF populations and other populations. Bonferroni’s 
adjustment was applied to the level of significance set at a value of p 
threshold of 5% divided by the number of studied variants. All 
analyses were conducted using the R software.

Analyses of population genetic structures

We used a Bayesian clustering algorithm, STRUCTURE Ver. 2.3.4 
software (Pritchard et al., 2000; FALUSH et al., 2007) to explore the 
variability of the common T2D and AD variants in terms of 
population structure. The algorithm assigns samples within a 
hypothetical K number of ancestries. We  set a range of possible 
numbers of clusters ranging from K = 2 to K = 10, and four trials were 
run for each K. The Markov Chain Monte Carlo iteration for each 
structure analysis was run for 10,000 after an initial burn-in period of 
10,000 steps. To assess the most likely number of clusters, we calculated 
Delta K, as proposed by Evanno et al. (2005). The similarity of the runs 
at each K level was evaluated using CLUMPP software as implemented 
online (Jakobsson and Rosenberg, 2007). Distruct software was used 
to visualize the best alignment of subpopulations, inferring population 
substructure and individual assignment across the best runs at each 
K level.

Results

Step 1: T2D-AD shared genes and variants 
collection

The PubMed search based on our defined search terms yielded 
226 results. Studies with irrelevant results and those conducted 
using animal models (n = 163) were excluded. Additionally, four 
relevant studies were excluded due to access issues. The PRISMA 

4 https://www.R-project.org/
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flow diagram for the selected studies is represented in Figure 2. 
Finally, 59 publications were included in the present study 
(Supplementary file 1; Table 1).

The majority of the studies used data from American (Native 
American, Latino American, African American, and Mexican), Asian 
(Han Chinese, Japanese, and Korean), and European ancestry populations.

The literature search revealed 231 variants and 363 genes shared 
between T2D and AD identified by these studies. The 363 genes 

include those mapped to the 231 variants. A total of 46 genes were 
replicated in different studies (Supplementary file 1; Tables 2, 3).

Step 2: In silico functional variant 
annotation and pathway enrichment 
analysis

Variant annotation and functional effect 
prediction

Variant annotation of the 231 common SNPs showed that 
chromosome 19 had the highest number of SNPs (n = 32), followed by 
chromosome 17 (n = 24 SNPs), and chromosome 11 (n = 20 SNPs). 
The results of the variant annotation are shown in Supplementary file 2; 
Tables 1, 2. The shared SNPs were mapped to 106 genes. The top 6 
genes with the highest number of SNPs were MAP kinase activating 
death domain (MADD) (chromosome (CHR) 11, 9 SNPs); EF-hand 
calcium binding domain 5 (EFCAB5) (CHR 17, 9 SNPs); nectin cell 
adhesion molecule 2 (NECTIN2) (CHR 19, 6 SNPs); cystatin C (CST3) 
(CHR 20, 6 SNPs), apolipoprotein E (APOE) (CHR 19, 5 SNPs) and 
1-acylglycerol-3-phosphate O-acyltransferase 1 (AGPAT1) (CHR 6, 5 
SNPs). Variant annotation revealed the association of nine SNPs with 
drug response (Table 1) and 10 variants were annotated as clinically 
likely pathogenic/pathogenic (Table 2).

A total of 66 variants located in 52 genes were identified as missense 
or stop-gain mutations. Among these, 24 SNPs were predicted to 
be possibly damaging by PolyPhen2. We identified six SNPs (rs7412, 
rs2070600, rs4762, rs11540654, rs1799969, and rs751141) located in the 
APOE, advanced glycosylation end-product specific (AGER), 
angiotensinogen (AGT), tumor protein p53 (TP53), intercellular adhesion 
molecule 1 (ICAM1), and epoxide hydrolase 2 (EPHX2) gene, that had 

TABLE 1 Summary of T2D-AD shared variants associated with drug response.

CHR PB Mapped 
gene

rs ID Drug

1 11,796,321 MTHFR rs1801133 l-methylfolate, Vitamin B-complex, Incl. Combinations, methotrexate, bevacizumab, carboplatin, cisplatin, 

cyanocobalamin, folic acid, pemetrexed capecitabine, fluorouracil, leucovorin, oxaliplatin, clozapine, 

olanzapine, nitrous oxide

15 78,590,583 CHRNA5 rs16969968 nicotine, cocaine, bupropion, Drugs used in nicotine dependence, varenicline, ethanol, Opium alkaloids and 

derivatives

19 44,905,579 APOE rs405509 Selective serotonin reuptake inhibitor

19 44,908,684 APOE rs429358 acenocoumarol, warfarin, hmg coa reductase inhibitors, Antivirals for treatment of HIV infections, 

combinations, ritonavir, simvastatin

19 44,908,822 APOE rs7412 atorvastatin, warfarin, Antivirals for treatment of HIV infections, combinations, ritonavir, fenofibrate, 

fluvastatin, pravastatin

19 44,911,194 APOE rs439401 Warfarin

22 19,963,748 COMT rs4680 nicotine, naloxone, oxycodone, fentanyl, methadone, antipsychotics, opioids, entacapone, propranolol, 

modafinil, Analgesics, Antiinflammatory agents, non-steroids, Ergot alkaloids, sumatriptan, clozapine, 

venlafaxine, buprenorphine, fluvoxamine, remifentanil, risperidone

4 88,131,171 ABCG2 rs2231142 rosuvastatin, cyclophosphamide, doxorubicin, fluorouracil, imatinib, gemcitabine, dolutegravir, simvastatin, 

tenofovir, sunitinib, methotrexate, atorvastatin, apixaban, efavirenz, sulfasalazine, fluvastatin, lamotrigine, 

allopurinol, Opioid anesthetics, Other general anesthetics, volatile anesthetics, gefitinib, capecitabine, 

fluorouracil, leucovorin, oxaliplatin

6 31,575,254 LTA-TNF rs1800629 etanercept, carbamazepine, sorafenib, carboplatin, gemcitabine, ethambutol, isoniazid, pyrazinamide, rifampin, 

cyclosporine, mycophenolate mofetil, Tumor necrosis factor alpha (TNF-alpha) inhibitors, atorvastatin

FIGURE 2

PRISMA flow diagram of selected studies. *Excluded papers are those 
with irrelevant results.

https://doi.org/10.3389/fnagi.2023.1114810
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Boukhalfa et al. 10.3389/fnagi.2023.1114810

Frontiers in Aging Neuroscience 06 frontiersin.org

the highest pathogenicity score (PolyPhen2 score = 1). Polyphen2 results 
are provided in Table 3 of Supplementary file 2.

Most SNPs extracted from the included studies were located 
in the non-coding region and have a “modifier” impact. Please 
correct the following sentence Functional annotation using the 
RegulomeDB identified three variants (rs1544210, rs12679834, 
and rs515071) located in the hematopoietically expressed 
homeobox (HHEX), lipoprotein lipase (LPL), and ankyrin 1 
(ANK1) gene which were the most likely regulatory SNPs 
(Table  3). The full list of RegulomeDB outputs is provided in 
Table 4 of Supplementary file 2.

To better assess the role of these variants in genetic cis-regulation 
in the brain, we explored the GTEx pathway. We found an association 
between the minor allele A rs1544210 and the under-expression of the 
EIF2S2P3 pseudogene in the substantia nigra and hypothalamus. 
Similarly, the minor allele G of the variant rs515071 was associated 
with decreased ANK1 expression in the cerebellum and the cerebellar 
hemisphere. The search for rs12679834 revealed no ci-regulation of 
this SNP in the brain tissues (Table 3).

To further explore the regulatory effects of these variants, the 
FeatSNP database was searched to evaluate the possible epigenetic 
effects in different brain regions. We  identified four potential 
transcription factor (TF)-binding motifs associated with allele A of 
rs1544210: USF1, Myc, USF2, and DMRT3. However, histone 
modification signals associated with the selected SNP were 
not detected.

A search of the FeatSNP database showed one potential 
TF-binding motif (NR2C2) associated with the A allele of rs12679834. 
Our results showed a strong correlation between NR2C2 (nuclear 
receptor subfamily 2 group C member 2) expression and LPL 
expression in two different brain regions: putamen (r = 0.736) and 
caudate (r = 0.651). Furthermore, we found that the region tagged with 
SNP rs12679834 was enriched for strong active histone modification 
signals, including H3K4me1 and H3K27ac, in all three brain tissues.

Finally, the results for rs515071 showed that one TF-binding motif 
(TCF3) was associated with the G allele of this variant. The region 

tagged by this SNP was enriched for the active histone modification 
H3K27ac in the inferior temporal lobe, angular gyrus, and anterior 
caudate region.

The SNPinfo results showed that only seven variants were 
predicted to have a potential effect on miRNA-binding sites (Table 4). 
All the identified SNPs, except one (rs6997), affected miRNAs such as 
rs6859 that affect hsa-miR-378 (Supplementary file 2; Tables 5, 6). Our 
results showed that the majority of miRNAs were mapped to several 
pathways involved in different diseases such as cancers,T2D, AD, and 
insulin signaling pathways (Figure 3).

Pathway enrichment analysis and visualization
To gain a deeper understanding of T2D and AD common genes 

we conducted a pathway enrichment analysis using g:Profiler. In order 
to obtain accurate results in terms of the relationship between these 
diseases, the gene set was limited to genes replicated among the 
selected studies. The g:Profiler pathway enrichment analysis results are 
shown in Table 5 and Supplementary files 3 and 4. The obtained 
results were then visualized using EnrichmentMap (Figure 4). The 
main enriched pathways were: lipid subunit organization, positive 
regulation of protein binding, positive regulation of amyloid fibril 
formation, microglial cell activation, (value of p =0.01). Furthermore, 
analysis of the KEGG pathway Reactome, and WikiPathway revealed 
enrichment of cholesterol metabolism (p-value = 2.584 × 10−3) plasma 
lipoprotein assembly (p-value = 7.260 × 10−3), and Statin inhibition of 
cholesterol production (p-value = 1.041 × 10−3).

Step 3: Genetic landscape analysis of 
shared T2D-AD genes

Statistical analysis
All variants located in in T2D-AD common genes were extracted 

from the genotyping data of 829 individuals from the studied 
populations (Supplementary file 5). A total of 212,688 variants were 
identified after merging of the genotyping data. Among them, we did 

TABLE 2 Summary of T2D-AD common variants clinically likely pathogenic.

CHR Position Mapped 
gene

rs ID Phenotype associated in ClinVar

1 11,796,321 MTHFR rs1801133 Homocystinuria Due To Methylene Tetrahydrofolate Reductase Deficiency

17 7,676,040 TP53 rs11540654 Li-Fraumeni Syndrome, Hereditary Cancer-Predisposing Syndrome

19 44,908,684 APOE rs429358 Familial Type 3 Hyperlipoproteinemia, APOE3 ISOFORM

19 44,908,822 APOE rs7412 Familial Type 3 Hyperlipoproteinemia, Hyperlipoproteinemia Due To APOE1

20 23,637,790 CST3 rs1064039 Macular Degeneration, Age-Related

3 39,265,671 CX3CR1 rs3732378 Coronary Artery Disease, Resistance To, Human Immunodeficiency Virus Type 1, Rapid Progression To AIDS, 

Age Related Macular Degeneration 12

6 26,090,951 HFE rs1799945 Hereditary Hemochromatosis, Alzheimer disease Type 1 Familial Porphyria Cutanea Tarda Variegate Porphyria 

Hemochromatosis Type 1 Microvascular Complications Of Diabetes, Transferrin Serum Level Quantitative Trait 

Locus 2, Cardiomyopathy, Abnormality Of Iron Homeostasis, Variegate Porphyria

6 26,092,913 HFE rs1800562 Hereditary Hemochromatosis Type 1, Hereditary Cancer-Predisposing Syndrome, Abdominal Pain, Peripheral 

Neuropathy, Pain, Abnormal Peripheral Nervous System Morphology, Abnormality Of The Male Genitalia, 

Behavioral Abnormality, Abnormality Of The Nervous System, Cardiomyopathy, Hemochromatosis Type 2, HFE-

Related Disorder, Hemochromatosis, Juvenile, Digenic, Alzheimer disease

7 150,999,023 NOS3 rs1799983 Susceptibility To Metabolic Syndrome
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not find the rare variants of interest reported in the literature. Then, 
we generated a second set of common variants after excluding SNPs 
with MAF < 10−2. In total, 123,115 common variants were retrained. 
MDS analysis describing the genetic landscape of these genetic 
variants was generated for the two sets of variants (set 1 with 
MAF < 10−2 = 212,688 variants, and set 2 without 
MAF < 10−2 = 123,115). There was no difference between the MDS 
plots generated by the two sets of variants. The MDS plot showed that 
the North African populations (Algeria, Egypt, Libya, Morocco-N, 
Morocco-S, Tunisia) were clustered within the European populations 
(CEU, Spain-S, Spain-Basic, Spain-NW, and TSI) and distinguished 
from the American (ASW, MEX) and Asian (CHB, CHD, JPT) 
populations (Figures 5A,B). Better individualization was observed in 
MDS performed across continents. In addition, there is great 
divergence among the North African (NAF), American (AMR), and 
East Asian (EAS) groups. However, slight proximity was found 
between the NAF and EUR clusters (Figure 5C).

Among the 231 variants of interest, only 49 risk alleles 
variants were identified in the studied populations. Interethnic 
comparison based on the selected MAF variants revealed 
significant differences at the level of 11 SNPs between North 
African, European, and East Asian populations. The 11 SNPs 
were located in DNM3, CFH, PPARG, ROHA, RAGE, CLU, 
BDNF1, CST9, and PLCG1 genes (Supplementary file 6). No 
significant differences were found for the risk allele frequency of 

candidate genes between the North African and American 
populations (Supplementary file 7).

Analyses of population genetic structures
To determine the distribution of common T2D-AD variants 

between the studied populations, we  adopted a Bayesian iterative 
algorithm using the STRUCTURE software. In accordance with 
Evanno’s ΔK method for STRUCTURE, the hypothetical K number of 
ancestries was set at three (K = 3) to detect the most likely number of 
genetic clusters (Supplementary file 8). The Bar plot shows three 
components: Africa, Asia, and Europe. STRUCTURE analysis 
confirmed the ancestral diversity of the North African populations 
with evidence of the predominance of European components 
(Figure 6A). The Triangle of the structure shows that the NAF cluster 
is close to the European cluster and distinct from the EAS cluster 
(Figure 6B).

Discussion

In the present study, we collected T2D-AD common variants and 
genes from the literature. Then, we  analyzed their functional 
predictions and pathways. Finally, we explored the genetic variability 
of the collected variants among North African populations in 
comparison with other populations worldwide.

TABLE 3 Regulatory T2D-AD shared SNPs.

Gene rsID RegulomeDB 
rank

GTEx e-QTL in brain 
tissues

TFB motifs Histone modifications

HHEX rs1544210 1b EIF2S2P3 in Substantia nigra (value 

of p = 9.4e−7) and Hypothalamus 

(value of p = 0.000025)

USF1, Myc, USF2, 

DMRT3

LPL rs12679834 1b ZNF354C, NR2C2, 

NKX2-8

Located in Substantia Nigra region marked by 

H3K4me1 and H3K27ac histone modifications

ANK1 rs515071 1b ANK1 in Cerebellum (value of 

p = 1.9e−54) and in Cerebellum 

Hemisphere (value of p = 7.5e−49)

Tcf3 Located in Inferior Temporal Lobe, Angular 

Gyrus and Anterior Caudate regions marked by 

H3K27ac histone modifications

Expression quantitative trait loci (e-QTL), Genotype Tissue Expression (GTEx), Transcription factor binding motif (TFB motifs).

TABLE 4 Summary of variants with potential effect on miRNAs binding sites.

Position Mapped 
gene

SNP miRNA Disease

1: 109275684 CELSR2 rs629301 hsa-miR-338-3p, hsa-miR-224, hsa-miR-214, hsa-miR-186, hsa-miR-193b, hsa-miR-

193a-3p, hsa-miR-193, hsa-miR-103, hsa-miR-107, hsa-miR-485-5p, hsa-miR-9, 

hsa-miR-125b, hsa-miR-125a-5p, hsa-miR-125a, hsa-miR-431, hsa-miR-17-5p, hsa-

miR-106a, hsa-miR-20a, hsa-miR-106b, hsa-miR-93, hsa-miR-519d, hsa-miR-20b, 

hsa-miR-17, hsa-miR372, hsa-miR-20, hsa-miR-1,271, hsa-miR-96

19: 44878777 PVRL2 rs6859 hsa-miR-378 Late onset Alzheimer’s Disease

3: 49357401 GPX1 rs1050450 hsa-miR-1,233, hsa-miR-129-3p Breast cancer, Lung cancer, 

Kashin-Beck disease

3: 9757089 OGG1 rs1052133 hsa-miR-1,256 Lung cancer, Colorectal cancer, 

Gallbladder cancer

6: 32180626 RNF5 rs8365 has-miR-196a, has-miR-196b, has-let-7b, has-let-7d, has-let-7i, has-let-7a, has-let-7f, 

has-let-7c, has-let-7e, has-let-7 g, has-miR-98

7: 75986787 POR rs17685 hsa-miR-603
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Common variants and genes between T2D 
and AD

Our literature search revealed 231 variants and 363 genes in 
common between T2D and AD. Annotation of the 231 shared SNPs 
showed that MADD and EFCAB5 harbored the highest number of 
these variants (nine SNPs). MADD gene, also known as IG20, plays a 
critical role in the development of glucose intolerance (Dupuis et al., 
2010; Hu et al., 2010; Strawbridge et al., 2011; Wagner et al., 2011) and 
AD (Del Villar and Miller, 2004; Hassan et al., 2021). In accordance 
with our findings, a large-scale genome-wide cross-trait study 
identified MADD as the only gene significantly associated with AD 
and fasting glucose exclusively in pituitary tissue; it is also the only 
shared gene found in both cross-trait Meta-analysis and 
Transcriptomic-wide association studies. Thus, the pituitary gland 
may link T2D and AD by regulating glucose metabolism and neuronal 
viability through MADD (Zhu et al., 2019).

Regarding the EFCAB5 gene, it encodes the EF-hand calcium-
binding domain 5. Our results are in accordance with those of Karki 
et al. (2020) highlighting the importance of this gene inT2D and AD 
development. Among the nine identified variants in this gene, two 
SNPs (rs9902453 and rs7221743) are associated with coffee 
consumption (Cheung et  al., 2012; Cornelis et  al., 2015). In this 
context functional studies showed the protective role of coffee 
consumption against AD (Kwok et al., 2016; Zhou et al., 2018) and 
T2D-associated memory impairment through adenosine A2 receptor 
(ADORA2A) blockage (Duarte et al., 2019). Thus, we suggest that 
variants in EFCAB5 could affect memory impairment in T2D subjects.

We found six SNPs located in NECTIN2, which encodes the nectin 
cell adhesion molecule 2 protein involved in T-cell signaling (Zhu et al., 
2016). These variants have been previously reported to be shared between 
T2D and AD (Wang et al., 2017). Indeed, these variants are associated 
with lipid metabolite measurements, emphasizing their critical role in the 
development of AD in T2D patients (Xiao et al., 2022).

CST3 encodes cystatin C inhibitors of cysteine proteases 
(Maniwa et al., 2020). It is one of the genes harboring the highest 
number of common SNPs, between T2D and AD (Karki et  al., 
2020). A recent study showed that CST3 protein aggregation 
abolishes its function and slightly increases amyloid-beta 1–40 
(Aβ1-40) fibril formation, enhancing neurodegeneration (Sheikh 
et  al., 2021). Furthermore, the exogenous Cystatin C induces 
impairment of insulin signaling in hippocampal neurons, which 
could promote cognitive decline and AD development (Luo et al., 
2018). In contrast, other studies have suggested that Cystatin C 
exerts neuroprotective effects by inhibiting cysteine proteases, 
rescuing neurodegeneration, inhibiting Aβ oligomerization and 
amyloid fibril formation, inducing autophagy, and neurogenesis 
(Mathews and Levy, 2016). This discrepancy may be explained by 
Cystatin C conformation or its levels in the brain. Indeed, the 
shared T2D-AD variant (rs1064039) was previously associated 

with reduced Cystatin C levels owing to impaired signal peptide 
cleavage (Benussi et al., 2003). We hypothesized that CST3 plays a 
crucial role in the development of T2D-induced AD pathology 
through the regulation of cerebral amyloid angiopathy and insulin 
signaling in a dose dependent manner. Further studies are needed 
to determine its exact function in T2D-inducing AD condition.

We found five shared SNPs between T2D and AD within the 
APOE gene. These findings are in line with the literature. APOE is a 
leading factor for AD development in T2D subjects (Zhen et al., 2018; 
Shinohara et al., 2020). Three variants among the five were associated 
with body mass index (Yengo et al., 2018). Our findings support the 
synergic effect of obesity and APOE genotype on the development of 
T2D and AD (Jones and Rebeck, 2018).

AGPAT1 encodes for 1-acylglycerol-3-phosphate O-acyltransferase 1. 
It harbors five SNPs among the 231 T2D-AD shared variants identified in 
this study. Deletion of this gene induces low glucose and lipid plasma 
levels, as well as neurological disturbances (Agarwal et al., 2017). These 
findings emphasize the importance of AGPAT1 in the regulation of glucose 
homeostasis and neuron viability. Further studies are needed to investigate 
its role in T2D and AD.

The functional annotation of the coding variants revealed six 
probably damaging SNPs located in APOE, AGER, AGT, TP53, 
ICAM1, and EPHX2 gene. All the variants have been identified by the 
Karki et al. (2020), study. Interestingly the two variants rs7412 and 
rs2070600 have been reported by other studies (Wang et al., 2016; Kim 
et  al., 2022). Minor allele (T) carriers of the variant rs7412 are 
classified as APOEε2 carriers. It has been largely proven that APOEε2 
has a protective effect against AD (Shinohara et  al., 2016). 
Controversially, Shinohara et  al., (2020) showed that APOEε2 
accelerates cognitive decline in diabetic patients by 4 years. This could 
be explained by the synergic effect between diabetes (Hardigan et al., 
2016; Peng et  al., 2021) and the APOEε2 genotype in enhancing 
neurovascular impairment and tauopathies (Kim et al., 2022).

The second SNP (rs2070600) located in AGER (advanced 
glycosylation end-product specific receptor), causes a conversion at 
position 82 from glycine to serine (G82S) responsible for a decrease 
of AGER proteolyze and increase of AGEs plasmatic levels 
(Serveaux-Dancer et al., 2019). Several studies shed the light on the 
role of AGEs in T2D and AD through oxidative stress and amyloid 
regulation mechanisms (Michailidis et  al., 2022). As a result, 
we hypothesize that T2D patient carriers of these risk allele variants 
have a greater risk to develop AD.Likely, the functional annotation 
of non-coding variants revealed three top-ranked SNPs rs1544210, 
rs12679834, and rs515071 located, respectively, in HHEX, LPL, and 
ANK1 gene. The minor allele A of the variant rs1544210 is linked 
to an under-expression of EIF2S2P3 pseudogene in the substantia 
nigra and hypothalamus regions. EIF2SS2P3 is a pseudogene 
located in chromosome 10. Transcriptomic-wide association studies 
revealed a significant enrichment of EIF2S2P3 for depressive 
symptoms, T2D (Génin, 2020) and T2D patients skipping breakfast 

TABLE 5 Molecular pathways enriched by shared genes between T2D and AD.

Category Term ID Description Adjusted_p_value Genes

KEGG KEGG:04979 Cholesterol metabolism 0.0025837551982072883 LPL, ABCA1, APOC1, APOE

REAC REAC:R-HSA-8963898 Plasma lipoprotein assembly 0.0072601471697531315 ABCA1, APOC1, APOE

WP WP:WP430 Statin inhibition of cholesterol production 0.0010409155290130897 LPL, ABCA1, APOC1, APOE

Alzheimer’s disease (AD), Kyoto Encyclopedia of Genes and Genomes (KEEG), Reactome (REAC), Type 2 Diabetes (T2D), Wikipathway (WP).
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(Chen et  al., 2022), but its function remains unclear. Available 
evidence showed an increased risk for dementia development in 
T2D patients with depression (Katon et al., 2012). These findings 
highlights the role of EIF2S2P3 pseudogene in the development of 
T2D-induced dementia through enhancing depression. Further 
studies should be conducted to assess the role of EIF2S2P3 in T2D 
and AD development.

The same allele was associated with TFB motif “USF1,” that 
regulates APOE gene a major linking factor between T2D and AD 
(Isotalo et al., 2012).

The second top-ranked SNP is rs12679834 located in the LPL gene. 
We found a TBF motif (NR2C2) with a high score associated with the G 
allele of this variant. NR2C2, also known as TR4, is an orphan nuclear 
receptor targeting many genes involved in metabolism including APOE 

FIGURE 3

Heatmap of T2D_AD miRNAs enriched pathways. Our results showed that the majority of miRNAs were mapped to several pathways involved in different 
diseases such as cancer, T2D, AD and insulin signaling pathways. Type 2 Diabetes (T2D); Alzheimer’s disease (AD),micro Ribonucleic Acid (miRNA).

FIGURE 4

Pathway enrichment analysis of T2D and AD common genes. The main enriched pathways were: lipid subunit organization, positive regulation of 
protein binding, positive regulation of amyloid fibril formation, microglial cell activation (p-value = 0.01).
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(Fogarty et al., 2013). This variant was also marked by H3K4me1 and 
H3K27ac histone modification in three brain regions. Furthermore, an 
increased expression of LPL in microglia appears to have a protective 
effect against AD (Keren-Shaul et al., 2017) and obesity (Gao et al., 2017). 
We suggest that rs12679834 possesses a protective effect against T2D and 
AD development via increasing lipid and lipoprotein uptake in the 
Central nervous system (CNS).

The third SNP was rs515071 located in the ANK1 gene. The minor 
allele G of this variant was associated with decreased expression of ANK1 
gene in the cerebellum and cerebellar hemisphere regions. In agreement 
with our results, the GG genotype of the rs515071 variant is associated 

with a greater risk for T2D (Sun et al., 2017, p. 1) and AD (Chi et al., 
2016). A reduced expression of ANK1 gene could enhance T2D and AD 
development by affecting mediated metabolism, signal transduction (Sun 
et al., 2017), and inflammatory process (Morris et al., 2019).

Shared miRNA and pathways between T2D 
and AD

Six SNPs reported in our study were found to affect miRNA 
molecules implicated in LOAD, insulin signaling, and T2D 

FIGURE 5

Multidimensional scaling plot of T2D and AD shared variants landscape in worldwide populations. The plot shows that North African populations 
(Algeria, Egypt, Libya, Morocco-N, Morocco-S, Tunisia) are clustered within the European populations (CEU, Sapin-S, Spain-Basic, Spain-NW, and TSI) 
and distinguished from the American (ASW, MEX) and Asian (CHB, CHD, JPT) populations (A,B). Better individualization was observed in MDS 
performed across continents. In addition, there is a great divergence among the North African (NAF), American (AMR) and East Asian (EAS) groups. 
However, slight proximity was observed between the NAF and European EUR clusters (C). *Rare variants are those with MAF < 10−2. **Comment variants 
are those with MAF > 10−2. Type 2 Diabetes (T2D); Alzheimer’s disease (AD).

FIGURE 6

STRUCTURE analysis of the genetic relationship between the three group of populations. (A) The Bar plot shows three components: Africa, Asia and 
Europe. STRUCTURE analysis confirmed the ancestral diversity of the North African populations with evidence of the predominance of European 
component. (B) The Triangle of the structure shows that the NAF cluster is close to the EUR cluster and distinct from the EAS cluster. North African 
(NAF), European (EUR), and East Asian (EAS).
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pathways. miR-1965-5p was enriched in the AD, T2D, and insulin 
signaling pathways. It has a positive effect on insulin biogenesis 
by enhancing insulin activity (Panda et al., 2014). miR-196b-5p 
down regulation has been implicated in innate immune response, 
apoptosis, and depression (Zhang et  al., 2018). Inconsistent 
results have been found to be associated with the regulation trend 
in patients with AD (Pichler et  al., 2017). We  suggest that 
miR-196b-5p may play a protective role against T2D and AD 
development through insulin, immune response, and apoptosis 
regulation. However, further studies are required to elucidate 
their role in T2D and AD. Controversially, miR-378, previously 
associated with LOAD (Lusardi et al., 2017), was also enriched in 
the insulin-signaling pathway. Interestingly, miR-378 induces 
insulin resistance by targeting P110a and SIRT7 (Deng and Guo, 
2019). Furthermore, genetic depletion of miR-378a-3p 
ameliorates inflammatory stress and insulin resistance via protein 
kinase R inhibition (Wang et al., 2021). Likewise, upregulation of 
this miRNA has also been found in patients with AD (Dong et al., 
2021; Li and Cai, 2021). This evidence emphasizes its role in 
T2D-induced AD through Central insulin signaling impairment 
(Gabbouj et al., 2019).

A previous study showed that miR-125a-5p and miR-125b-5p 
shared between T2D and the insulin pathway could ameliorate 
gluconeogenesis, glycogen synthesis (Xu et al., 2018), and insulin 
sensitivity (Yu et al., 2019). Interestingly, the same miRNA was 
found to be downregulated in the gray matter of patients with AD 
(Wang et al., 2011). We found that miR-98-5p was enriched in the 
insulin-signaling pathway. Decreased expression of this miRNA 
has been observed in T2D patients (Kokkinopoulou et al., 2019). 
The same study also reported a negative correlation between 
miR-98-5p and insulin levels in patients. Interestingly, Chen et al. 
(2019) found that in AD mice, miR-98 binds to HEY2 inducing a 
decrease of Aβ production, improve oxidative stress, and 
mitochondrial dysfunction through activating the Notch 
signaling pathway. We hypothesized that low levels of miR-98-5p 
could serve as a biomarker for insulin resistance and Aβ 
aggregation. A recent study found a significant downregulation 
of miR-214-3p blood levels in T2D patients (Avgeris et al., 2020). 
Similarly, miR-124-3p is downregulated in patients with AD and 
animal models (Kou et al., 2020), suggesting its potential role as 
a biomarker and therapeutic target for insulin resistance (Cheng 
et al., 2020) and cognitive defects (Zhang et al., 2018).

For a more in-depth understanding of the shared genes, 
we  conducted a pathway enrichment analysis. The results 
revealed that the replicated genes were mainly enriched in lipid 
subunit organization, positive regulation of protein binding, 
positive regulation of amyloid fibril formation, microglial cell 
activation, cholesterol metabolism, plasma lipoprotein assembly, 
and Statin inhibition of cholesterol production pathways. Our 
findings are supported by those of previous studies. Plasma 
protein binding (PPB) has been implicated in several mechanisms, 
particularly drug binding and pharmacokinetics (Smith et al., 
2010). A recent study identified an enrichment of positive 
regulation of PPB in 3 × Tg-AD mice fed rosmarinic acid, a 
preventive molecule against AD (Yamamoto et  al., 2021). 
Rosmarinic acid is a potent suppressor of Aβ and an inhibitor of 
phosphorylated tau accumulation (Yamamoto et  al., 2021). 
Interestingly, Rosmarinic acid possesses a therapeutic effect 

against T2D through the remodeling of amyloid aggregates (Wu 
et al., 2021). We identified, for the first time, the implication of 
positive regulation of PPB in T2D and AD. We hypothesized that 
the regulation of the PPB pathway could serve as a potential 
therapeutic target for these diseases.

The accumulation of amyloid fibrils is a hallmark of several 
degenerative diseases including T2D and AD. Insulin resistance 
promotes the oxidative stress generation and proinflammatory 
cytokines secretion in beta-cells inducing mitochondrial dysfunction 
and accumulation of protein aggregates, including human islet 
amyloid polypeptide (hIAPP) (Rocha et  al., 2020). The latter can 
across the blood–brain barrier (BBB) inducing AD pathology 
(Lupaescu et al., 2022; Marrano et al., 2023).

Furthermore, amyloid deposition causes microglial and astrocyte 
activation leading to cytotoxic molecules release (Lupaescu et al., 2022). 
Recent study has demonstrated that hyperinsulinemia impaired GLUT4 
translocation inducing mitochondrial fission, microglial M1 polarization, 
and neuroinflammation (Yang et al., 2022). Moreover, long-term high fat 
diet induces microglial M1 polarization which explains obesity/diabetes-
associated cognitive impairment (Wu et al., 2020).

Cholesterol metabolism involves energy metabolism, cell 
membrane composition, and myelination. Dysregulation of these 
biological processes induces several pathologies, mainly T2D and 
AD. Reports suggested that a long-term high-fat diet could 
induce AD by enhancing Aβ and phosphorylated tau 
accumulation (Czuba et al., 2017). Downregulation of cholesterol 
biogenesis has been observed in diabetic (Suzuki et al., 2010) and 
AD (Varma et al., 2021) brains. Cholesterol is biosynthesized in 
astrocytes via the Bloch pathway and is transported to neurons 
by APOE via the ABC transporter. For utilization by neurons, 
APOE-containing cholesterol should be absorbed by LRP1/LDLR 
(Czuba et al., 2017). A previous study successfully demonstrated 
that insulin resistance suppresses LRP1 expression, which may 
further compromise insulin signaling and cholesterol metabolism 
in neurons (Liu et  al., 2015). Thus, our pathway enrichment 
analysis confirmed previous findings supporting the role of 
cholesterol metabolism and lipoprotein processes as linking 
factors between T2D and AD.

T2D-AD genetic landscape in North African 
populations

It is likely that genetic background plays an important role in 
the development of preventive strategies targeting modifier risk 
factors, such as T2D. Despite the high prevalence of T2D 
(Magliano et al., 2021) and AD (Nichols et al., 2022) in North 
African populations, we noticed an under or non-representation 
of these groups in the consortiums investigating these diseases 
(Martin et  al., 2019). Taking all these evidences into 
consideration, it is important to dissect the genetic landscape of 
T2D-AD shared genes in North Africa in comparison with other 
well-studied populations. We determined the genetic landscape 
of T2D-AD shared genes in 829 individuals from 16 different 
populations whose genotyping data are publicly available 
[African ancestry in the South Western USA(ASW), Mexican 
ancestry living in Los Angeles, California, USA (MEX), Western 
European ancestry populations of Utah from the CEPH collection 
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(CEU), Toscani people of Italy (TSI),South Spain (Spain_S), 
North Spain (Spain_N), North West of Spain (Spain_NW), Spain 
Basic populations (Spain_BASC), Han Chinese in Beijing, China 
(CHB),Chinese population of metropolitan Denver, Colorado, 
USA (CHD), Japanese in Tokyo, Japan; (JPT), Individuals from 
North Africa: Algeria (Algeria), Egypt (Egypt), Libya (Libya), 
Tunisia Douiret (TN_Ber), South Morocco (Morocco_S), and 
North Morocco (Morocco_N),],. MDS analysis showed genetic 
similarity among North African populations (Algeria, Egypt, 
TN_Ber, Morocco_N, Morocco_Sand Libya), reflected by a 
consistent cluster. A better individualization of the North African 
populations was identified when the MDS analysis was conducted 
at the population group level. A slight similarity between North 
African and Southwestern European populations (CEU, Spain-S, 
Spain_NW, and TSI) was detected. However, a great divergence 
between North African and East Asian populations was observed 
in the two MDS representations. These results were further 
confirmed by STRUCTURE analysis conducted on four clusters 
of populations: North African, European, East Asian, and 
American. STRUCTURE representation shows a high admixture 
of the genetic structure of North African populations consisting 
mainly of European and African components, with minimum 
penetrance of East Asian components. Our findings are consistent 
with those of previous studies. Indeed, several genes/
polymorphisms in T2D (Chande et  al., 2020) and AD (Rubin 
et  al., 2021) are highly variable among ethnic groups. Similar 
genetic positioning was observed among North African, 
European, and Asian populations regarding Metabolic Syndrome 
(MetS) pharmacogenes (Jmel et al., 2018). It is important to note 
that genes explored by Jmel et al. (2018) were also investigated in 
our study because MetS share several mechanisms with T2D and 
AD (Hayden, 2019). The genetic positioning of the North African 
cluster could be explained by the high ethnic heterogeneity of 
these populations. North Africans are multi-ethnic populations 
with several ancestral components: Middle Eastern, Sub-Saharan 
African, European, and autochthonous (Arauna et al., 2019). The 
high heterogeneity of the T2D-AD genetic background in North 
African populations reflects previous historical events such as 
invasion and migration (Botigué et al., 2013; Arauna et al., 2017; 
Fregel et al., 2018). Our results also support the conserved and 
ancient divergence between the North African and East Asian 
populations going back 550 centuries ago (Tateno et al., 2014). 
Thus, the non-replication of some genetic biomarkers of T2D 
(Baroudi et al., 2009; BaroudiOuederni et al., 2009; Ezzidi et al., 
2009; Turki et al., 2012) and AD (Smach et al., 2011, p. 1; Rassas 
et al., 2013; Landoulsi et al., 2018) in the North African group 
could be due to its high heterogeneity and unicity. Indeed, among 
231 risk variants studied, only 49 SNPs were present in the North 
African group. This could be  the result of ethnic selection 
because some AD variants are also ethnicity-specific biomarkers 
(Huang et  al., 2017) or due to the limited size of the North 
African populations investigated.

Furthermore, the inter-ethnic risk allele frequency comparison of 
the 49 variants between North African populations and other 
population groups revealed significant differences in allele frequency 
of 11 SNPs between North African, European, and East Asian 
populations located in DNM3, CFH, PPARG, ROHA, AGER, CLU, 
BDNF1, CST9, and PLCG1 genes.

MAF of two variants, rs4504922 and rs7539972, located in the 
dynamin 3 (DNM3) gene, was significantly different between 
North African and European populations and between North 
African and East Asian populations. DNM3 is enriched in the Fc 
gamma R-mediated phagocytosis pathway associated with AD 
and T2D (Hao et al., 2015; Caputo et al., 2020). These variants 
were previously identified as SNPs shared between T2D and AD 
(Caputo et al., 2020). We suggest that North African carriers of 
these risk allele variants may be at increased risk of T2D and AD.

The rs800292 G > A SNP, located in the complement factor H 
(CFH) gene, has been previously reported to be associated with a 
higher risk of age-related macular degeneration (Guindo-Martínez 
et al., 2021) and diabetic retinopathy (Wang et al., 2013).

Furthermore, the inter-ethnic comparison of risk alleles 
revealed a significant difference in the MAF of three variants 
(rs6809832, rs6997, and rs11715915) located in peroxisome 
proliferator activated receptor gamma (PPARG) and Ras homolog 
family member A (RHOA) genes between North African and East 
Asian populations. These variants have been associated with 
increased BMI and HbA1c levels (Merino et  al., 2017; Yengo 
et  al., 2018; Barton et  al., 2021; Jurgens et  al., 2023). 
We hypothesized that North African carriers of risk alleles of 
these variants may have an increased risk of developing obesity 
and insulin resistance pathologies, such as T2D and AD  
(Magliano et al., 2021; Nichols et al., 2022).

Moreover, we identified significant differences in the MAF of three 
SNPs (rs2070600, rs11136000, and rs6265) located in AGER, clusterin 
(CLU), and brain derived neurotrophic factor (BDNF1) between North 
African and East Asian populations. These variants have been previously 
associated with MCI/AD development in T2D subjects (Cai et al., 2016; 
Wang et al., 2016; Daily and Park, 2017; Stepler and Robinson, 2019; 
Bradley, 2020). The high MAF of these variants in North Africans could 
partly explain their greater risk of developing T2D-AD pathology, 
(Magliano et al., 2021;  Alzheimer’s Disease Facts and Figures, n.d.).

The variant rs3004145 C > G, located downstream of the 
Cystatin C9 (CST9) gene, presents a significant MAF difference 
between North African and East Asian populations. This variant 
has previously been associated with elevated cystatin C levels in 
the European population (Jurgens et  al., 2023). High serum 
cystatin C levels have been previously associated with an 
increased risk of T2D (Yuan et al., 2022), T2D-related neuropathy 
(Hu et al., 2014), and AD (Straface et al., 2005). Thus, we suggest 
that North African carriers of the rs3004145 G allele may have an 
increased risk of T2D-induced AD.

Finally, our statistical analysis revealed a significant MAF 
difference in the exonic variant rs753381 T > C between North 
African and European populations. This variant is located in the 
phospholipase C gamma 1 (PLCG1) gene, recently identified as a 
potential therapeutic target for T2D (Ganekal et al., 2023). It has 
previously been associated with metabolic syndrome (Brown and 
Walker, 2016) and elevated serum cholesterol, LDL, and ApoB 
levels in individuals of African, East Asian, European, Hispanic, 
and South Asian ancestry (Graham et al., 2021). We suggest that 
the differences in rs753381 C allele frequency in North Africa 
explain the low plasma levels of TC, LDL-C, and ApoB compared 
to European populations (Najah et al., 2013). Further studies are 
required to elucidate the relationship between this variant and 
T2D-induced AD development in North Africa.
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Study highlights and testable 
hypotheses

The present study generates several hypotheses: (1) MADD and 
AGPAT1 genes regulate glucose homeostasis and neuronal viability. (2) 
EFCAB5 could be a potential pharmacogene for ADORA2A agonist 
anti-AD therapies. (3) NECTIN2 plays a critical role in T2D-induced AD 
through regulating lipid metabolism. (4) CST3 regulates cerebral amyloid 
angiopathy and insulin signaling in a dose dependent manner. (5) 
Individuals carrier of rs7412, rs1800562, rs2070600 rs1544210, 
rs12679834, and rs515071 risk alleles are of great risk to develop T2D and 
AD. (6) miR-378, miR-125a-5p, miR-125b-5p, miR-196b-5p, miR-98-5p, 
and miR-214-3p are potential therapeutic target for T2D-induced AD. (7) 
Plasma protein binding pathway could serve as a potential therapeutic 
target for T2D-induced AD. (8) North African’s carrier of minor alleles of 
variants located in, DNM3, CFH, PPARG, ROHA, AGER, CLU, BDNF1, 
CST9, and PLCG1 genes are of great risk to develop T2D and AD.

Study limitations

Although our study’s results give rise to several hypotheses consistent 
with the published literature, we also have some limitations. First, our 
search strategy has been limited to one database “PubMed” with one 
query for search builder. This strategy can lead to information leakage. 
Therefore, other datasets and search terms should be  examined to 
consolidate our findings. Second, the restricted size of the studied 
populations, especially in North Africa, could lead to fewer genetic 
variations present in these populations. Finally, the predicted results 
should be  supported by further experimental studies. Despite these 
limitations, our study findings are relevant and pave the way to further 
investigation because of their general consistency with previous results.

Conclusion

Our study contributes to efforts made to better understand the 
genetic variability and molecular mechanisms shared between T2D and 
AD. It is well established that the determination of the genetic component 
of these diseases could help develop new diagnostic and therapeutic 
strategies in the context of precision medicine. However, the promise of 
precision genomic medicine cannot be  fulfilled without a broad 
representation of the global population. Here, we identified pathogenic 
variants and regulatory pathways shared between these diseases. Our 
study is the first to investigate the genetic landscape of shared T2D-AD 
genes in North African populations in comparison to other worldwide 
populations. Our results support the high heterogeneity and the unicity 
of North African populations regarding T2D and AD common genes. 
The inter-ethnic comparison between North African populations and 
worldwide populations revealed significant difference of eleven risk allele 
frequency variants. This finding might be one of the contributing factors 
to the higher prevalence of T2D and AD in North African populations. 
Furthermore, our results could pave the way for new target gene 
sequencing or functional follow-up of putative loci to investigate the exact 
role of these variants in North African populations. Finally, we emphasize 
the importance of further ethnicity-specific contributions in omics studies 
for a better understanding of the link between T2D and AD, and for 
developing an accurate diagnosis using personalized genetic biomarkers.
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