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The use of wearable sensors in movement disorder patients such as Parkinson’s 
disease (PD) and normal pressure hydrocephalus (NPH) is becoming more 
widespread, but most studies are limited to characterizing general aspects of 
mobility using smartphones. There is a need to accurately identify specific activities 
at home in order to properly evaluate gait and balance at home, where most falls 
occur. We developed an activity recognition algorithm to classify multiple daily 
living activities including high fall risk activities such as sit to stand transfers, turns 
and near-falls using data from 5 inertial sensors placed on the chest, upper-legs 
and lower-legs of the subjects. The algorithm is then verified with ground truth 
by collecting video footage of our patients wearing the sensors at home. Our 
activity recognition algorithm showed >95% sensitivity in detection of activities. 
Extracted features from our home monitoring system showed significantly 
better correlation (~69%) with prospectively measured fall frequency of our 
subjects compared to the standard clinical tests (~30%) or other quantitative gait 
metrics used in past studies when attempting to predict future falls over 1 year 
of prospective follow-up. Although detecting near-falls at home is difficult, our 
proposed model suggests that near-fall frequency is the most predictive criterion 
in fall detection through correlation analysis and fitting regression models.
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1. Introduction

Postural instability is both a cardinal symptom of movement disorders like Parkinson’s 
disease (PD) and a major cause of falls in these patients (Palakurthi and Burugupally, 2019). 
Injurious falls and hip fractures occur at higher rates in PD patients, with approximately 75% of 
international hospitalizations in patients with PD occurring due to fractures or falls (Chou et al., 
2011). Therefore, if subtle balance dysfunction could be properly identified and characterized, 
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TABLE 1 Demography of participants.

Condition*
Age (year) Female Height (cm) Weight (kg) UPDRS pull 

test
UPDRS gait Duration of 

disease (year)

Mean (SD) N, % Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

PD (n = 11) 65 (4.76) 2, 20% 181.54 (8.97) 92.94 (23.63) 0.56 (0.96) 0.90 (0.74) 10.50 (5.41)

NPH (n = 8) 69.8 (8.21) 1, 11% 180.72 (3.50) 102.57 (20.71) 1.04 (0.56) 1.85 (0.89) N/A

C (n = 10) 61.1 (9.97) 8, 80% 172.20 (6.83) 79.75 (27.69) 0 (0) 0 (0) N/A

*PD, Parkinson’s disease; NPH, normal pressure hydrocephalus; C, control.

this information could be  used to initiate falls preventions and 
physical therapy programs, improve fall prediction algorithms, and 
monitor or evaluate new treatments.

The Movement Disorder Society-Unified Parkinson’s Disease 
rating scale (MDS-UPDRS) (Goetz et al., 2008) analyzes all motor 
symptoms using a semi-quantitative scale. Its validity and reliability 
are well recognized and it is the clinical gold-standard in terms of 
monitoring symptoms related to PD (Ramaker et al., 2002). However, 
these assessments are subject to inter-rater variability, and the 
unavailability of continuous monitoring limits these methods. The 
score of the evaluation depends on the patient’s current status, which 
may fluctuate day-to-day and depending on the time since the last 
dose of medication was taken. On the other hand, traditional 
lab-based assessments using infrared cameras or quantitative analysis 
to characterize postural instability in patients with movement 
disorders are costly, not portable, and are unable to track long-term 
movement data from these patients in their day-to-day lives when 
most falls occur. Therefore, there is a serious need for long-term, real-
time, and objective characterization of movement as a complement to 
clinical and lab-based assessments (Ramaker et al., 2002).

A few methods of characterizing mobility in patients with 
movement disorders have been proposed, including home movement 
diaries (Hauser et  al., 2006) and characterizing mobility using 
smartphone applications (Lorenzi et  al., 2016; Zhan et  al., 2018). 
Patient diaries and questionnaires at home are frequently used in 
clinical routine to study motor stages and fluctuations in late-stage PD 
(Papapetropoulos, 2012). However, diaries are subject to fatigue, 
errors, and bias which impacts the quality and credibility of the data, 
particularly in patients with cognitive dysfunction (Papapetropoulos, 
2012). Some methods of tracking participants at home may involve 
using mobile phone-based systems that gather data using inertial 
sensors that are built into smartphones (Motolese et al., 2020). This 
yields data that allows for general tracking of activities such as 
walking, sitting and sleeping, but does not provide quantitative 
insights into participants’ postural responses when experiencing a fall 
or near-fall. Additionally, relying on data from a device that is not 
fixed to the patient’s body may introduce error or leave long gaps in 
data. More elaborate systems using multiple cameras throughout a 
person’s home in order to track their movements may also be used, but 
this may not be feasible on a wide scale due to its cost, complexity, and 
privacy concerns (Rougier et al., 2011). In past studies, IMUs have 
shown to be  both accurate and repeatable for measuring gait 
parameters in healthy young adults (Washabaugh et  al., 2017). 
Additionally, publicly available datasets collected from patients with 
movement disorders using IMUs have been utilized to analyze gait 
parameters and freezing of gait episodes (O’Day et al., 2022).

To address some of the problems with characterizing mobility in 
patients with movement disorders, we have developed an algorithm 

that can both accurately measure gait parameters and enable real-time 
detection of high-risk activities in the patient’s home environment 
using inexpensive and widely available wearable technology. The 
merging of cost-effective technology with deep learning techniques 
yields significant promise in the field of wearable sensor technology 
(Ramanujam et al., 2021). The goal of this study was to create a video-
validated dataset of movement disorder patients and healthy controls 
engaged in daily living activities in their homes, develop an algorithm 
for automatic recognition of near-falls/high fall risk activities and 
subsequently quantitatively characterize the patient’s response to these 
events in order to predict future fall risk. Our collected dataset 
includes 29 participants in total, comprised of 11 participants with 
Parkinson’s disease (PD), eight participants with Normal Pressure 
Hydrocephalus (NPH) and 10 Healthy Controls (C). Finally, 
we developed novel behavioral biomarkers based on this data to assess 
their relationship to patients’ prospective fall risk over 1 year of 
follow-up.

2. Methods

2.1. Participant population characteristics

Nineteen movement disorder patients who were being clinically 
evaluated and/or treated for either normal pressure hydrocephalus or 
Parkinson’s disease and 10 age-matched healthy control participants 
were enrolled over a period of 2 years from the Minneapolis VA 
Health Care System (MVAHCS) and University of Minnesota (UMN). 
Enrollment was designed to enroll a variety of types of movement 
disorder patients with varying gait dysfunction and postural instability 
ranging from normal gait and balance (MDS-UPDRS gait and pull test 
item scores of 0) to moderate dysfunction (MDS-UPDRS scores of 3). 
Patient participants were excluded if they were non-ambulatory or if 
they were unable to give consent. Control participants were excluded 
if they had any movement, gait, or balance disorders. Demographic 
information was collected (Table 1). This study was approved by the 
MVAHCS and UMN Institutional Review Boards, and all participants 
provided informed consent for participation according to the 
Declaration of Helsinki.

2.2. Measurement setup

The measurement sensors were customized and reprogrammed 
inertial measurement units (IMU; SparkFun, Inc. Boulder, CO, 
United States). The board was equipped with a high-performance ARM 
Cortex-M4 processor powered by 500 mAh high-capacity Lithium 
battery (InvenSense. ICM-20948 - SparkFun Electronics, 2017). The 
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measurement Integrated circuit (IC) was an ICM-20948 (InvenSense, 
San Jose, CA, United States) which can log nine degrees of freedom 
(accelerometer, gyroscope, magnetometer) at nearly 250 Hz (ICM-
20948 Datasheet|TDK, 2021). The data from the IMU was sampled with 
a 100 Hz frequency and stored on a flash memory though it can 
be streamed wirelessly through Bluetooth connectivity to a smartphone 
or computer (Figure 1).

The sensor configuration is one IMU sensor on each shank (just 
above the ankle), one IMU on each thigh, and one IMU sensor on the 
chest. This five sensor configuration uses an angle-based method 
taking advantage of the geometry of human in-plane walking. Each 
IMU sensor measures the acceleration and angular rate of movement 
of different body segments. An LMI-based non-linear sensor fusion 
algorithm is designed to estimate the limb segment orientations by 
taking advantage of the acceleration for lower frequencies and gyro in 
higher frequencies. The details of our estimation algorithm and the 
accuracy of a variety of kinematic variables which can be calculated 
using this configuration compared to a gold standard infrared camera 
measurements has been previously described (Nouriani et al., 2021).

2.3. Home wearable sensor usage

Each participant was shown how to properly place the IMUs 
(Figure 1) in the clinic at their baseline visit. They were then sent 
home for 1 week and were instructed to wear the IMUs during all 
waking hours. The IMUs were charged overnight. The entirety of the 
dataset was able to be stored on the available flash memory on the 
sensor board and therefore participants did not need to upload data 
or stream any data to an app. They simply wore the sensors during the 
day and charged them at night. Each patient is provided with a custom 
charger connected to a Raspberry Pi Zero board (Raspberry Pi 
Foundation, Cambridge, England) which is programmed to 

synchronize the sensors together using threading with an extremely 
accurate real-time clock module (DS3231 RTC, Adafruit, New York, 
NY, United States) every time the sensors are connected to the charger 
(Extremely Accurate I2C-Integrated DS3231 RTC Datasheet, 2015). 
During the week of wearable sensor use, a research coordinator 
contacted the participants daily to troubleshoot any technical 
problems and check in. Participants were then prospectively followed 
for 1 year and asked to complete fall diaries according to accepted fall 
data formatting. To supplement the fall diaries, a research coordinator 
called the participants weekly for the follow-up year to inquire about 
any falls occurring during the past week.

2.4. Home wearable sensor activity 
definitions and video validation

In order to properly identify home activities, we first defined a 
variety of activities using the IMU data (Supplementary Table S1). The 
algorithm used to identify each home activity is a deep learning-based 
activity recognition architecture using a convolutional neural network 
with long short term memory cells (CNN-LSTM). The CNN-LSTM 
network implements a nonlinear observer for the estimation of the tilt 
angles of the human body limb segments as the input of the CNN 
layers followed by LSTM layers and finally fully connected layers with 
Softmax activation which we have detailed previously (Nouriani et al., 
2022). We also used three other commonly used classifiers (logistic 
regression, support vector machine, decision tree) to compare their 
performance to our CNN-LSTM. The details of these algorithms can 
be  found in the Supplementary methods. In order to validate the 
algorithm-defined activities, we asked a subset of participants (n = 10) 
to wear a small video camera (Runcam, Aberdeen, Hong Kong Island, 
Hong Kong; Runcam 5 Datasheet, 2020) with a necklace to wear at 
home. Each patient was asked to record for 45–60 min each day, 
ideally while ambulating or performing some type of algorithm-
detectable activity. The videos were then manually annotated using a 
video-defined equivalent of each IMU-defined home activity 
(Supplementary Table S1) and synchronized with the sensors using 
the camera timestamps. Examples of the video footage captured by the 
patients are provided in Supplementary materials.

2.5. Fall prediction modeling

We prospectively followed all patient participants for 1 year with 
fall diaries and weekly individual participant contact to document the 
presence of any falls and the total number of falls over the entire year. 
From this data, we calculated the fall frequency as #falls/week. Using 
fall frequency as our outcome, we  then examined the correlation 
between multiple computed features and fall frequency. These features 
ranged from standard demographic characteristics such as age, height, 
and weight, to clinical measurements such as the MDS-UPDRS pull 
test score, and also included a number of quantitative features from 
home measurements (denoted with an “_h”) that have been used in 
prior studies such as the total ambulatory time each day and number 
of ambulatory bouts each day (Supplementary Table S2). We also 
computed several novel features based on our previously video-
validated activities described above. These include the frequency of 
near falls, turns and bends among others (events defined in 

FIGURE 1

Inertial sensors placement on the body in 5-sensor configuration, 
one on the chest and one on each lower leg and on each upper leg.
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Supplementary Table S1, all features used for correlation analysis are 
seen in Supplementary Table S2). We  then created correlation 
confusion matrices to examine correlation of the previously 
mentioned data features with fall frequency. Using the fall diary data 
above, we also examined the time to first fall within the first year.

From the 29 participants, we have collected fall diaries and have 
survival data for 17 subjects. We did not collect the fall diaries from 
the control subjects and hence excluded them for the fall prediction 
model. From the remaining subjects, nine are censored since they are 
either new patients, or their home data is missing, or stopped sending 
their fall diaries to us before week 52.

3. Results

3.1. Population characteristics

Eight patients with NPH and 11 with PD were enrolled for a total 
of 19 patient participants. Ten healthy, age-matched control 
participants were also enrolled. Demographic characteristics are 
demonstrated in Table 1. There were no significant differences in age, 
sex, height or weight between controls and patient participants. As 
expected, patient participants had significantly worse gait and postural 
stability MDS-UPDRS scores as compared to healthy, age-matched 
control participants.

3.2. Activity recognition algorithm 
validation

Ten of our patients generated more than 40 h of video footage 
which was manually annotated (see Supplementary Table S1 for 
definitions). Figure 2 demonstrates an example of 1 day of recorded 
data using our sensors compared to the video footage obtained from 
a patient at home. This patient generated approximately 90 min of 
video footage during which he was ambulatory for approximately 
45 min punctuated in the middle by 45 min where he was sitting at 
rest. The algorithm-predicted activity (blue) overlies the actual video-
annotated activity (orange) for the vast majority of the time, with an 

example of one misclassified activity (~8:58 am, standing misclassified 
as walking, seen in the Figure 2 inset).

The sum total of video footage in the entire subset of patients 
resulted in more than 14,000 total events which were used for 
algorithm predictions. Figure  3 demonstrates the home activities 
predicted by our activity recognition algorithm in comparison to the 
video-annotated data collected on the subset of patients with video 
recorded events. Events which were common and straightforward to 
both define and detect such as walking, standing and turning 
demonstrated the highest accuracy (>99%). Because these three events 
were the most common overall, they also represented most of the false 
positive and false negative errors for all events. Bending, sitting and 
transitions from sit to stand or stand to sit were significantly less 
common and slightly less accurately predicted (91–94%). Near falls in 
any direction were among the least common events and were less 
accurately predicted (~80%).

Table 2 shows the number of true positive (TP), false positive 
(FP), true negative (TN), and false negative (FN) samples from our 
activity recognition algorithm compared to the ground truth from 
video annotations. We can use these values to calculate the sensitivity 
(true positive rate or TPR), specificity (true negative rate or TNR), 
positive predictive value (PPV), negative predictive value (NPV), and 
accuracy (ACC). Because the number of total events is quite high, the 
specificity and overall accuracy of all the events are high, particularly 
for the low likelihood events such as sit to stand transitions, near-falls 
and falls. Nonetheless, even the low likelihood events had sensitivities 
>95% with the exception of near-falls which was 80%.

To compare our LSTM algorithm to other standard classifiers 
commonly used to make predictions on large datasets, we have created 
receiver operating characteristic (ROC) curves for 6 activities of 
standing, walking, sit-stand transitions, turning, bending and near-
falls. Figure 4 shows the ROC curves for four binary classifiers of 
Logistic Regression (LOG), Support Vector Machines (SVM), 
Decision Tree (DT), and our Long-Short-Term-Memory cells (LSTM) 
for each activity (Nouriani et al., 2022). The area under the curve for 
each plot is summarized in Table 3. The performance of the LSTM 
classifier is superior in all activities with AUCs ranging from 0.982 to 
0.999 for all activities while DT performs next best with slightly worse 
results. The SVM and LOG methods are significantly less accurate 

FIGURE 2

Predicted activities compared to the video annotations obtained from a patient at home environment.
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than LSTM or DT but still show acceptable results for a diagnostic 
classifier with AUCs ranging from 0.65 to 0.97. All classifiers worked 
well for relatively easily classified activities such as standing, walking 
or bending, but more difficult activities to classify such as near falls 
required the more sophisticated CNN-LSTM algorithm. There were 
no differences in activity classification between groups such that the 
CNN-LSTM algorithm was able to accurately classify activities in 
controls, NPH and PD patients equally well (Supplementary Figure S2). 
The overall performance (in terms of area under the curve) of each 
classifier is very similar across different patient groups.

Figure 5 demonstrates a correlation matrix examining the top 10 
features correlated with prospectively observed fall frequency over the 
subsequent year of follow-up. Two of our novel metrics: the total 
number and frequency of near falls detected by the home monitoring 

setup showed the highest correlation with patient fall frequency (0.69 
and 0.67, respectively). Supplementary Figure S1 shows the median of 
number of near-falls per week (Nfalls_h) for the three groups of our 
subjects. As expected, control subjects had significantly lower number 
of near-falls than our PD and NPH patients. PD patients showed a 
slightly higher median compared to NPH patients.

Eight of the most correlated features with fall frequency come 
from values calculated solely using the IMUs while the patient moves 
around their home and surrounding environment. For example, time 
spent lying down per day (lie down frequency, i.e., lying duration/
total time), the total number of ambulatory bouts at home 
(totNumABs), the frequency of sitting at home (sit_freq_h, i.e., 
sitting duration/total time), walking frequency at home (walk_
freq_h), the peak acceleration of the chest at home (peak_acc_h, 

FIGURE 3

Confusion matrix of activity recognition algorithm result compared to the annotated videos for six subjects.

TABLE 2 Statistics of each activity in our activity recognition algorithm.

Activity TP FP TN FN TPR TNR PPV NPV ACC

Stand 2,323 54 11,998 14 0.994009 0.995519 0.977282 0.998834 0.995274

Walk 5,309 47 9,006 27 0.99494 0.994808 0.991225 0.997011 0.994857

Stand to sit 119 0 14,259 11 0.915385 1 1 0.999229 0.999236

Sit 300 26 14,045 18 0.943396 0.998152 0.920245 0.99872 0.996942

Sit to stand 112 1 14,268 8 0.933333 0.99993 0.99115 0.99944 0.999375

Turn 5,414 30 8,898 47 0.991394 0.99664 0.994489 0.994746 0.994649

Lie down 1 3 14,385 0 1 0.999791 0.25 1 0.999792

Bend 577 5 13,779 28 0.953719 0.999637 0.991409 0.997972 0.997707

Near-fall 58 5 14,311 15 0.794521 0.999651 0.920635 0.998953 0.99861

Fall 2 0 14,387 0 1 1 1 1 1
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which represents the strongest perturbation the subject experiences 
at home as measured by the chest accelerometer in each day) and the 
distribution of ambulatory bouts in time [alpha parameter for ABs of 
more than 8 s (alpha_8) (Nouriani et al., 2022)] at home are all within 
the 10 features with the highest correlation with fall frequency. It 
should be noted that some features were inversely correlated with fall 

frequency such that increased number of ambulatory bouts and 
increased walking frequency at home were associated with fewer falls 
(−0.40 and –0.36, respectively). Furthermore, Figure 5 also shows 
how correlated some of these features are with each other. For 
example, the total number of ABs are highly correlated with walking 
frequency (0.81), and the total number and frequency of near falls are 

FIGURE 4

Receiver operating characteristic curves for four binary classifiers plotted separately for each activity.

TABLE 3 Area under the ROC curves for each activity.

Classifier Standing Walking Sit-stands Turning Bending Near-falls

LOG 0.85759 0.85745 0.65548 0.69863 0.96702 0.73180

SVM 0.99691 0.91850 0.71383 0.78733 0.95410 0.73401

DT 0.99999 0.99881 0.95043 0.95940 0.98589 0.90834

LSTM 0.99999 0.99985 0.98920 0.99288 0.99774 0.98253
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almost perfectly correlated (0.98). We constructed a linear regression 
model on 5 features which are not highly correlated with each other. 
The details of the regression model are presented in Tables 4, 5. The 
model shows that near-fall frequency (nfall_freq), alpha parameter 
for ABs of more than 8 s (alpha_8) and UPDRS score (updrs) were 
the most significant predictors, respectively. The regression model 
parameters are summarized in Table 5. The only non-quantitative 
features included in the 10 most correlated features were the 
MDS-UPDRS pull test item score measured in clinic, and the total 
number of failures (needing to be caught by examiner) in clinical pull 
tests (tot_failures). These were among the most weakly correlated 
features (0.30 and 0.26, respectively) overall and were not significantly 
associated with fall frequency in the multivariable linear 
regression model.

4. Discussion

Using a combination of domain specific knowledge and machine 
learning techniques, we  developed an automatic algorithm for 
detection and characterization of near-falls and high fall risk activities 
of the patients. We  created a validated, video annotated and 
quantitative dataset of movement disorder subjects wearing inertial 
sensors at their home environment. The statistical analysis of our 
algorithm shows >95% sensitivity in detection of activities apart from 
near-falls, which showed 80% sensitivity. The correlation analysis of 
the computed features in our dataset showed that our novel metrics 
based on near-falls are superior in terms of the highest correlation 
with patient fall frequency over an entire year of follow-up while 

clinic-based features were either not correlated or were among the 
most weakly correlated features.

4.1. Video validation of CNN-LSTM 
algorithm in the home setting

Using video to validate algorithm predictions based on IMU data 
is a necessary component to reliably interpret any wearable dataset, 

FIGURE 5

Correlation matrix including the first 10 features with the most correlation with the fall frequency of patients at home.

TABLE 4 Linear regression coefficients for fall frequency prediction.

Feature Estimate
Standard 

error
t-stat p-value

Intercept 0.047251 0.020211 2.337934 0.041485

Nfall_Freq_h 0.696391 0.188534 3.69372 0.004151

Tot_Num_Abs 6.82E-08 1.62E-06 0.042112 0.967239

Sit_Freq_h −0.00035 0.000178 −1.99592 0.073889

UPDRS −0.01573 0.006449 −2.43948 0.03488

Alpha_8 −0.00391 0.001185 −3.30116 0.007998

TABLE 5 Linear regression model summary for fall frequency prediction.

Feature SumSq MeanSq F p-value

Total 0.014705 0.0009803

Model 0.012228 0.0024457 9.8737 0.001268

Residual 0.002477 0.0002477
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but is frequently lacking in studies employing wearable sensors (Del 
Din et al., 2019). Studies that do employ some measure of validation 
typically do so in the clinic or laboratory setting, rather than “in the 
wild” as we have done in this study (Nouredanesh et al., 2021). There 
are essentially no studies that have attempted to capture and validate 
near falls or “stumbles” in the wild. Nor are there any widely accepted 
definitions or datasets that contain or even attempt to define these 
events. For example, one study asked participants in a survey whether 
they had near falls which they defined as “a fall initiated but arrested 
by support from the wall, railing or another person.” This study used 
purely clinical data to predict falls and near falls. No quantitative data 
was included (Lindholm et  al., 2015). Another study artificially 
induced “missteps” in the laboratory and then developed an algorithm 
to detect such “missteps” during 3 days of home wearable use. There 
were no video recordings to validate these missteps and as such, they 
acknowledge there is no way to know if any of their detected missteps 
was in fact a misstep. Additionally, anything that did not look like a 
misstep in the lab would, by definition, be missing from their dataset 
(Iluz et al., 2014).

As such, our video-validated home data represents an ecologically 
valid quantitative dataset that can then be leveraged to understand the 
factors relevant in producing falls with far more detail compared to 
the current standard solution which involves qualitative clinical 
examination or laboratory-based task assessments that may or not 
be related to real world balance perturbations. Since most falls occur 
at home and surrounding environment, a wearable dataset that is 
“validated” in the clinic or lab may not be ecologically valid for fall 
prediction or other uses. On the other hand, some activities such as 
walking, standing and bending may be able to be easily validated in 
the clinic setting and so datasets validated with video “in the wild” 
should be compared to datasets using clinic-based assessments in 
order to better understand what can accurately assessed in the clinic 
vs. which assessments need to occur at home.

Our activity recognition algorithm uses a nonlinear switched-gain 
observer based on measurements from IMUs worn on leg segments 
and the chest in order to estimate body segment orientation. The 
observer estimates the tilt angles and measurement bias is estimated 
and removed. This has been measured in prior studies using infrared-
based motion capture systems to ensure its accuracy (Nouriani et al., 
2021). These estimates are then used to train the LSTM deep learning 
algorithm on all of the activities. Since many of the activity definitions 
are based on the tilt angles (Supplementary Table S1), this may be one 
reason that our LSTM activity recognition method showed superior 
accuracy. In addition, our deep learning network demonstrated lower 
computation cost compared to the other methods as it reduces the 
number of raw IMU signals necessary for activity recognition. Future 
studies should investigate how to reduce both the number of worn 
IMUs and number of recorded events without affecting diagnostic 
accuracy in order to minimize the burden on patients wearing 
the IMUs.

4.2. Development of novel behavioral 
biomarkers of falls

We have developed prospective, predictive falls risk metrics that 
integrate the patient’s postural response along with data that reflects 
the patient’s home environment based on near-falls detection. We have 

included all known gait parameters used in prior studies and current 
clinical standards in the study, however our proposed metrics showed 
superior performance in predicting falls in these patients. While there 
are simple measures which may be  more easily measured with a 
smartphone or smartwatch (e.g., frequency of lying down, number of 
ambulatory bouts), our study suggests these are inferior to the number 
or frequency of near-falls. Similarly, clinical tests are typically 
inadequate in describing the likelihood of the subject falling and in 
characterizing the extent of their postural instability (Ramaker et al., 
2002). Inter-and intra-rater variability in the execution and 
interpretation of clinical testing likely is responsible for some of their 
poor predictive power. Furthermore, incidents that trigger stumbles 
and falls at home are almost certainly different from testing conducted 
by clinicians or researchers in an artificial environment. Unfortunately, 
there are few studies on postural instability in home environments and 
these studies typically do not provide enough validation for their 
results in real-life situations at home or at least the demonstration of 
generalizability to the home environment (Silva de Lima et al., 2020). 
While there may be overlap in the postural response to balance testing 
in the clinic or lab and that at home, datasets such as the one described 
in our study should be used to investigate similarities and differences 
between these two settings in the future. This could lead to better fall 
prediction algorithms and improved diagnostic monitoring and 
treatment evaluations in the clinic, lab and at home in the future.

Despite being the most relevant feature of the dataset for fall 
prediction, near-falls were the most difficult activity to accurately 
detect with a sensitivity of 80%. This was for several reasons. First, 
near-falls look similar to other activities (like sit-stand transitions and 
bending) when examining inertial sensor data. Second, some of the 
near-falls were so subtle that they could not even be  detected in 
videos. Finally, the natural occurrence of near-falls is relatively rare 
and obtaining video-validated samples is difficult since most of the 
patients who are at risk of falling are usually less active or use a 
walking aid to avoid falling. As such, they were also among the least 
common events and our algorithm, like all machine learning 
algorithms, performs better with more samples. Continued data 
collection with more validated events will likely help increase the 
accuracy of the algorithm over time.

4.3. Future dataset usage

We have collected our dataset using an inexpensive wearable 
system based on inertial sensors to provide kinematic data of PD and 
NPH patients at home. Typical uses of IMUs worn by movement 
disorder patients at home are detailed gait analysis and metrics on 
mobility/ambulation which can be used for a wide variety of purposes 
such as disease stage assessment, fall prediction, and treatment 
evaluation, among others (Lee et al., 2014; Mohammadian Rad et al., 
2018; Pang et al., 2019; Pardoel et al., 2019). An advantage of our 
system is that it contains data from sensors on the chest and both feet 
that can be used to give detailed information on the postural response 
to near falls that occur in a natural setting in addition to all of those 
typical uses described above. Given the contribution of postural 
instability to falls in these patients, characterizing postural instability 
at home could potentially be very useful in their monitoring and 
treatment evaluation, particularly as their disease progresses and their 
likelihood of falling increases. Most studies of postural instability are 
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still based on questionnaires or short-term simulations of near-falls in 
a clinical or lab setup (Ramaker et  al., 2002). In addition, while 
wearable studies are becoming more common, clinical fall risk 
assessment is usually performed using diaries and questionnaires or 
one-time evaluations of gait and balance factors of the patients in a 
clinical trial (Ramaker et al., 2002; Hauser et al., 2006; Papapetropoulos, 
2012). These methods are questionable in their quality and credibility 
due to their short-term and subjective assessment of the patients’ 
response (Ramaker et al., 2002). Thus, there is a crucial need for a 
long-term, easily obtained, and objective characterization of gait and 
postural instability in the home setting as a complement to clinical 
assessments. We would argue that a dataset such as the one described 
in this manuscript would represent the first step toward that goal.

One limitation of this dataset is its practicality as the current setup 
with five sensors might not be practical for everyday patient use. Future 
research should develop algorithms to use as few sensors as possible in 
optimal locations on the body. Because we were interested mainly in 
postural instability and falls, we did not include IMUs on the upper 
limbs and so our dataset does not include hand or arm movements. 
Given the frequent presence of upper extremity tremor in PD, this is 
particularly relevant for these patients in their diagnosis, monitoring 
and treatment evaluation. In addition, many activities of daily living 
can likely be classified with an upper extremity IMU. Further research 
should plan to integrate IMU/smartwatch-based data to obtain the 
widest variety of activities with the best diagnostic accuracy. Wearable 
usage should also be  tailored to the specific usage desired by the 
clinician and patient. Finally, we  plan to further develop activity 
recognition algorithms using unsupervised and semi-supervised 
learning methods to increase their accuracy or discover new activities 
which might have been missed by the current methods.

Even though near-fall detection is difficult to recognize and our 
algorithm shows 80% sensitivity, near-fall frequency at home was still 
the most predictive criterion in the linear regression model compared 
to any other metric. Our results showed that the detection of near-falls 
is a far more powerful way to examine home monitoring data compared 
to current methods and should be incorporated into fall prediction 
algorithms. This validated dataset of movement disorder patients 
engaged in daily living activities in their homes can serve as a valuable 
resource for researchers to provide a ground truth for IMU algorithm 
comparison that include the natural responses of patients at home.

Data availability statement

The raw data supporting the conclusions of this article will be 
made available by the authors, without undue reservation 
upon request.

Ethics statement

The studies involving human participants were reviewed and 
approved by University of Minnesota IRB. The patients/participants 
provided their written informed consent to participate in this study.

Author contributions

RM conceived the original idea. AN developed the algorithms, 
designed the sensors and measurement setup with the help and 
supervision of RR. AN, AJ, JH, LS, JJ, TL, ER, YM, SR, KN, and CS 
helped with the data collection and annotations. AN analyzed and 
interpreted the results with the help and supervision of RM. AN and 
RM wrote the manuscript with the help of AJ and LS. RM and RR 
supervised the project. All authors contributed to the article and 
approved the submitted version.

Funding

This work was funded in part by a grant from the University of 
Minnesota MnDRIVE Neuromodulation Program and Institute for 
Engineering in Medicine (IEM) doctoral fellowship.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnagi.2023.1117802/
full#supplementary-material

References
Chou, K. L., Zamudio, J., Schmidt, P., Price, C. C., Parashos, S. A., Bloem, B. R., et al. 

(2011). Hospitalization in Parkinson disease: a survey of national Parkinson foundation 
centers. Parkinsonism Relat. Disord. 17, 440–445. doi: 10.1016/j.parkreldis.2011.03.002

Del Din, S., Galna, B., Godfrey, A., Bekkers, E. M., Pelosin, E., Nieuwhof, F., et al. 
(2019). Analysis of free-living gait in older adults with and without Parkinson’s disease 
and with and without a history of falls: identifying generic and disease-specific 
characteristics. J. Gerontol. Series A 74, 500–506. doi: 10.1093/gerona/glx254

Extremely Accurate I2C-Integrated DS3231 RTC Datasheet (2015). Extremely 
Accurate I2C-Integrated DS3231 RTC Datasheet. Available at: https://datasheets.
maximintegrated.com/en/ds/DS3231.pdf ().

Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-Martin, P., 
et al. (2008). Movement Disorder Society-sponsored revision of the unified Parkinson's 
disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. 
Movement Disord. 23, 2129–2170. doi: 10.1002/mds.22340

Hauser, R. A., Russ, H., Haeger, D. A., Bruguiere-Fontenille, M., Müller, T., and 
Wenning, G. K. (2006). Patient evaluation of a home diary to assess duration and 
severity of dyskinesia in Parkinson disease. Clin. Neuropharmacol. 29, 322–330. doi: 
10.1097/01.WNF.0000229546.81245.7F

ICM-20948 Datasheet|TDK (2021). ICM-20948 Datasheet|TDK. Available at: https://
invensense.tdk.com/download-pdf/icm-20948-datasheet/ (Accessed December 19, 2021).

https://doi.org/10.3389/fnagi.2023.1117802
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1117802/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1117802/full#supplementary-material
https://doi.org/10.1016/j.parkreldis.2011.03.002
https://doi.org/10.1093/gerona/glx254
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
https://doi.org/10.1002/mds.22340
https://doi.org/10.1097/01.WNF.0000229546.81245.7F
https://invensense.tdk.com/download-pdf/icm-20948-datasheet/
https://invensense.tdk.com/download-pdf/icm-20948-datasheet/


Nouriani et al. 10.3389/fnagi.2023.1117802

Frontiers in Aging Neuroscience 10 frontiersin.org

Iluz, T., Gazit, E., Herman, T., Sprecher, E., Brozgol, M., Giladi, N., et al. (2014). 
Automated detection of missteps during community ambulation in patients with 
Parkinson’s disease: a new approach for quantifying fall risk in the community setting. 
J. Neuroeng. Rehabil. 11, 1–9. doi: 10.1186/1743-0003-11-48

InvenSense. ICM-20948 - SparkFun Electronics. (2017) Available at: https://cdn.
sparkfun.com/assets/7/f/e/c/d/DS-000189-ICM-20948-v1.3.pdf (Accessed December 
19, 2021).

Lee, J. K., Robinovitch, S. N., and Park, E. J. (2014). Inertial sensing-based pre-impact 
detection of falls involving near-fall scenarios. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 
258–266. doi: 10.1109/TNSRE.2014.2357806

Lindholm, B., Hagell, P., Hansson, O., and Nilsson, M. H. (2015). Prediction of falls 
and/or near falls in people with mild Parkinson’s disease. PLoS One 10:e0117018. doi: 
10.1371/journal.pone.0117018

Lorenzi, P., Rao, R., Romano, G., Kita, A., and Irrera, F. (2016). Mobile devices for the 
real-time detection of specific human motion disorders. IEEE Sensors J. 16, 1–7. doi: 
10.1109/JSEN.2016.2530944

Mohammadian Rad, N., Van Laarhoven, T., Furlanello, C., and Marchiori, E. (2018). 
Novelty detection using deep normative modeling for IMU-based abnormal movement 
monitoring in Parkinson’s disease and autism spectrum disorders. Sensors 18:3533. doi: 
10.3390/s18103533

Motolese, F., Magliozzi, A., Puttini, F., Rossi, M., Capone, F., Karlinski, K., et al. (2020). 
Parkinson's disease remote patient monitoring during the COVID-19 lockdown. Front. 
Neurol. 11:567413. doi: 10.3389/fneur.2020.567413

Nouredanesh, M., Godfrey, A., Howcroft, J., Lemaire, E. D., and Tung, J. (2021). Fall 
risk assessment in the wild: a critical examination of wearable sensor use in free-living 
conditions. Gait Posture 85, 178–190. doi: 10.1016/j.gaitpost.2020.04.010

Nouriani, A., McGovern, R. A., and Rajamani, R. (2021). Step length estimation with 
wearable sensors using a switched-gain nonlinear observer. Biomed. Signal Process. 
Control 69:102822. doi: 10.1016/j.bspc.2021.102822

Nouriani, A., McGovern, R. A., and Rajamani, R. (2022). Deep-learning-based human 
activity recognition using wearable sensors. IFAC-PapersOnLine 55, 1–6. doi: 10.1016/j.
ifacol.2022.11.152

O’Day, J., Lee, M., Seagers, K., Hoffman, S., Jih-Schiff, A., Kidziński, Ł., et al. (2022). 
Assessing inertial measurement unit locations for freezing of gait detection and patient 
preference. J. Neuroeng. Rehabil. 19:20. doi: 10.1186/s12984-022-00992-x

Palakurthi, B., and Burugupally, S. P. (2019). Postural instability in Parkinson's  
disease: a review. Brain Sci. 9:239. Published 2019 Sep 18. doi: 10.3390/brainsci909 
0239

Pang, I., Okubo, Y., Sturnieks, D., Lord, S. R., and Brodie, M. A. (2019). Detection of 
near falls using wearable devices: a systematic review. J. Geriatr. Phys. Ther. 42, 48–56. 
doi: 10.1519/JPT.0000000000000181

Papapetropoulos, S. (2012). Patient diaries as a clinical endpoint in Parkinson's 
disease clinical trials. CNS Neurosci. Ther. 18, 380–387. doi: 10.1111/J.1755-5949.2011. 
00253.X

Pardoel, S., Kofman, J., Nantel, J., and Lemaire, E. D. (2019). Wearable-sensor-based 
detection and prediction of freezing of gait in Parkinson’s disease: a review. Sensors 
19:5141. doi: 10.3390/s19235141

Ramaker, C., Marinus, J., Stiggelbout, A. M., and Van Hilten, B. J. (2002). Systematic 
evaluation of rating scales for impairment and disability in Parkinson's disease. Mov. 
Disord. 17, 867–876. doi: 10.1002/mds.10248

Ramanujam, E., Perumal, T., and Padmavathi, S. (2021). Human activity recognition 
with smartphone and wearable sensors using deep learning techniques: a review. IEEE 
Sensors J. 21, 13029–13040. doi: 10.1109/JSEN.2021.3069927

Rougier, C., Meunier, J., St-Arnaud, A., and Rousseau, J. (2011).  
Robust video surveillance for fall detection based on human shape deformation. IEEE 
Trans. Circuits Syst. Video Technol. 21, 611–622. doi: 10.1109/TCSVT.2011. 
2129370

Runcam 5 Datasheet (2020). Runcam 5 Datasheet. Available at: https://www.runcam.
com/download/runcam5/RunCam5-Manual-EN.pdf (Accessed December 19,  
2021).

Silva de Lima, A. L., Smits, T., Darweesh, S. K., Valenti, G., Milosevic, M., Pijl, M., et al. 
(2020). Home-based monitoring of falls using wearable sensors in Parkinson's disease. 
Mov. Disord. 35, 109–115. doi: 10.1002/mds.27830

Washabaugh, E. P., Kalyanaraman, T., Adamczyk, P. G., Claflin, E. S., and Krishnan, C. 
(2017). Validity and repeatability of inertial measurement units for measuring gait 
parameters. Gait Posture 55, 87–93. doi: 10.1016/j.gaitpost.2017.04.013

Zhan, A., Mohan, S., Tarolli, C., Schneider, R. B., Adams, J. L., Sharma, S., et al. (2018). 
Using smartphones and machine learning to quantify Parkinson disease severity: the 
mobile Parkinson disease score. JAMA Neurol. 75, 876–880. doi: 10.1001/
jamaneurol.2018.0809

https://doi.org/10.3389/fnagi.2023.1117802
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://doi.org/10.1186/1743-0003-11-48
https://cdn.sparkfun.com/assets/7/f/e/c/d/DS-000189-ICM-20948-v1.3.pdf
https://cdn.sparkfun.com/assets/7/f/e/c/d/DS-000189-ICM-20948-v1.3.pdf
https://doi.org/10.1109/TNSRE.2014.2357806
https://doi.org/10.1371/journal.pone.0117018
https://doi.org/10.1109/JSEN.2016.2530944
https://doi.org/10.3390/s18103533
https://doi.org/10.3389/fneur.2020.567413
https://doi.org/10.1016/j.gaitpost.2020.04.010
https://doi.org/10.1016/j.bspc.2021.102822
https://doi.org/10.1016/j.ifacol.2022.11.152
https://doi.org/10.1016/j.ifacol.2022.11.152
https://doi.org/10.1186/s12984-022-00992-x
https://doi.org/10.3390/brainsci9090239
https://doi.org/10.3390/brainsci9090239
https://doi.org/10.1519/JPT.0000000000000181
https://doi.org/10.1111/J.1755-5949.2011.00253.X
https://doi.org/10.1111/J.1755-5949.2011.00253.X
https://doi.org/10.3390/s19235141
https://doi.org/10.1002/mds.10248
https://doi.org/10.1109/JSEN.2021.3069927
https://doi.org/10.1109/TCSVT.2011.2129370
https://doi.org/10.1109/TCSVT.2011.2129370
https://www.runcam.com/download/runcam5/RunCam5-Manual-EN.pdf
https://www.runcam.com/download/runcam5/RunCam5-Manual-EN.pdf
https://doi.org/10.1002/mds.27830
https://doi.org/10.1016/j.gaitpost.2017.04.013
https://doi.org/10.1001/jamaneurol.2018.0809
https://doi.org/10.1001/jamaneurol.2018.0809

	Real world validation of activity recognition algorithm and development of novel behavioral biomarkers of falls in aged control and movement disorder patients
	1. Introduction
	2. Methods
	2.1. Participant population characteristics
	2.2. Measurement setup
	2.3. Home wearable sensor usage
	2.4. Home wearable sensor activity definitions and video validation
	2.5. Fall prediction modeling

	3. Results
	3.1. Population characteristics
	3.2. Activity recognition algorithm validation

	4. Discussion
	4.1. Video validation of CNN-LSTM algorithm in the home setting
	4.2. Development of novel behavioral biomarkers of falls
	4.3. Future dataset usage

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material

	﻿References

