
Frontiers in Aging Neuroscience 01 frontiersin.org

TYPE Systematic Review
PUBLISHED 15 February 2023
DOI 10.3389/fnagi.2023.1119956

Recent trends in wearable device 
used to detect freezing of gait and 
falls in people with Parkinson’s 
disease: A systematic review
Tinghuai Huang 1†, Meng Li 1† and Jianwei Huang 2*
1 Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, Guangdong, China, 
2 Department of Gastroenterology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 
Medical University, Guangzhou, Guangdong, China

Background: The occurrence of freezing of gait (FOG) is often observed in moderate 
to last-stage Parkinson’s disease (PD), leading to a high risk of falls. The emergence of 
the wearable device has offered the possibility of FOG detection and falls of patients 
with PD allowing high validation in a low-cost way.

Objective: This systematic review seeks to provide a comprehensive overview of 
existing literature to establish the forefront of sensors type, placement and algorithm 
to detect FOG and falls among patients with PD.

Methods: Two electronic databases were screened by title and abstract to summarize 
the state of art on FOG and fall detection with any wearable technology among 
patients with PD. To be eligible for inclusion, papers were required to be  full-text 
articles published in English, and the last search was completed on September 26, 
2022. Studies were excluded if they; (i) only examined cueing function for FOG, (ii) 
only used non-wearable devices to detect or predict FOG or falls, and (iii) did not 
provide sufficient details about the study design and results. A total of 1,748 articles 
were retrieved from two databases. However, only 75 articles were deemed to meet 
the inclusion criteria according to the title, abstract and full-text reviewed. Variable 
was extracted from chosen research, including authorship, details of the experimental 
object, type of sensor, device location, activities, year of publication, evaluation in 
real-time, the algorithm and detection performance.

Results: A total of 72 on FOG detection and 3 on fall detection were selected for 
data extraction. There were wide varieties of the studied population (from 1 to 131), 
type of sensor, placement and algorithm. The thigh and ankle were the most popular 
device location, and the combination of accelerometer and gyroscope was the most 
frequently used inertial measurement unit (IMU). Furthermore, 41.3% of the studies 
used the dataset as a resource to examine the validity of their algorithm. The results 
also showed that increasingly complex machine-learning algorithms had become 
the trend in FOG and fall detection.

Conclusion: These data support the application of the wearable device to access 
FOG and falls among patients with PD and controls. Machine learning algorithms 
and multiple types of sensors have become the recent trend in this field. Future work 
should consider an adequate sample size, and the experiment should be performed 
in a free-living environment. Moreover, a consensus on provoking FOG/fall, methods 
of assessing validity and algorithm are necessary.
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Introduction

Parkinson’s disease (PD) is an age-related progressive 
neurodegenerative condition clinically characterized by bradykinesia 
and either resting tremor or rigidity, affecting about 1% of adults older 
than 60 worldwide (Samii et  al., 2004). The freezing of gait (FOG) 
occurrence is often observed in moderate to last-stage PD, increasing 
fall risk, reducing the quality of life, and the likelihood of independent 
living (Kerr et al., 2010).

As a complex and highly-variable phenomenon, FOG can 
be defined as a brief episode absence or marked reduction in the 
forward progression of the feet despite the intention to walk, which 
remains a persistent and incapacitating motor problem for many 
patients in daily life (Rahman et al., 2008). Episodes can be brief or 
exceed 30 s (Schaafsma et  al., 2003). It is hard to anticipate the 
occurrence of FOG for patients with PD who live at home since 
FOG can occur several times a day and most commonly between 
doses when the medication wears off (Nantel and Bronte-Stewart, 
2014; Okuma et al., 2018).

FOG management can be divided into pharmacological treatment 
(Nonnekes et al., 2015) and non-pharmacological treatment, such as 
exercise (Corcos et al., 2013), deep brain stimulation (Hacker et al., 
2020), or cueing devices (Griffin et al., 2011). Meanwhile, due to the 
limitations and side effects of the pharmacological intervention (Obeso 
et al., 2000; Aquino and Fox, 2015), more attention has been focused 
on non-pharmacological interventions, such as resistance exercises can 
evaluate the severity of FOG and should run through the diagnosis and 
treatment. The most common evaluation methods include the Timed 
up and Go test (TUG; Mak and Pang, 2009; Kerr et al., 2010), Unified 
Parkinson’s Disease Rating Scale (UPDRS; Lun et al., 2005; Kerr et al., 
2010), Freezing of Gait Questionnaire (FOG-Q; Giladi et al., 2009; 
Tambasco et al., 2015) and so on. Nevertheless, most of them have 
limited specificity and sensitivity for identifying prospective fallers in 
patients with PD (Boonstra et al., 2008) and may not be sufficiently 
sensitive to detect changes in balance and walking in the PD population 
with mild to moderate disease severity (Lo et al., 2010; Fox et al., 2011; 
Ustinova et al., 2011; Tomlinson et al., 2014).

With the development of wireless communication and 
microelectronics technology, wearable micro-electro-mechanical 
systems (MEMS), such as accelerometers and magnetometers, have 
become small, lightweight and low-cost (Patel et al., 2012). There is a 
growing interest in using wearable health technology to access FOG and 
falls. These sensors, generally consisting of accelerometers, gyroscopes, 
magnetometers and others, can capture body movements in real-time. 
With a significant advantage compared to clinical scales and 
conventional assessment tools, the wearable device can act as a personal 
healthcare worker to help patients evaluate the severity of PD, improve 
treatment, and avoid the incidence of privacy breaches (Patel et al., 2012; 
Del Din et al., 2016).

However, owing to the high degree of diversity and complexity of 
FOG, a huge body of research investigated the feasibility of numerous 
sensors on various body parts with different algorithms, ranging from 
machine learning and threshold approaches. There is little agreement on 
the most effective system design. Meanwhile, most current review 
articles about FOG detection with wearable sensors ignored the 
relationship between technology and time. Therefore, we  provide a 
systematic review of the use of wearable systems detect FOG and falls in 
PD, and the development of this technology, to help guide 
future research.

Review methodology

A literature review was performed according to the guidelines of the 
PRISMA statement. An electronic database search of titles and abstracts 
was performed by searching Pubmed and Web of Science, and the final 
search was completed on September 26, 2022. These databases were 
chosen to allow both medical and engineering journals to be included 
in the search process. The final search query is summarized in Table 1.

Only original, full-text, peer-reviewed journal articles published in 
English to access FOG and falls in people with PD were considered in 
this systematic review. Duplicate findings were removed, and the 
remaining pieces were relevant according to their title and abstract. 
Leaving documents were reviewed in full.

Articles were screened based on a series of eligibility standards:

 1. Use wearable devices (a single or combination of wearable 
devices) to collect data as input.

 2. Involve people with PD or a dataset of PD.
 3. Present original research on the validation of wearable sensors to 

detect, predict or measure FOG, falls or fall risk.

Studies were excluded:

 1. Only examined cueing function for FOG.
 2. Only use non-wearable devices to detect or predict FOG or falls.
 3. Did not provide sufficient details about the study design 

and results.

Two reviewers independently screened titles and abstracts included 
in electronic databases according to eligibility standards. Two reviewers 
screened the full text of those selected for eligibility. Disagreements 
between reviewers were resolved by consensus, if needed, after the 
consultation of a third reviewer. Variable was extracted from chosen 
research and classified in a predefined table. Authorship, details of the 
experimental object (i.e., study population, age and medication status), 

TABLE 1 Search string used for each database.

Database Search string Records

PubMed ((((freezing of gait [Title/

Abstract]) OR (freezing*[Title/

Abstract])) OR (fall*[Title/

Abstract])) AND (((wearable*) 

OR (sensor*)) OR (device*))) 

AND (Parkinson*[Title/

Abstract])

684

Web of Science (((TI = (sensor*) OR 

TS = (sensor*) OR 

TI = (device*) OR 

TS = (device*) OR 

TS = (wearable*) OR 

TI = (wearable*)) AND 

(TS = (freezing*) OR 

TI = (freezing*) OR TI = (fall*) 

OR TS = (fall*)) AND 

(TI = (Parkinson’s*) OR 

TS = (Parkinson’s*))))

1,064

The truncation symbol was used to broaden the search with more specificity.
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type of sensor, device site, activities, year of publication, evaluation in 
real-time, the algorithm to process data and classifier performance were 
all recorded.

Results

Studies selection

An initial database search identified 1,748 articles that were 
potentially eligible for inclusion. 514 articles were excluded as 
duplicates, resulting in 1,234 papers being screened (955 records 
excluded). The remaining 279 articles were screened by full text. 
Following screening and eligibility assessment, 75 pieces were 
shortlisted in this systemic review (72 on FOG detection and 3 on fall 
detection of PD patients). A complete overview of the selection process 
is summarized in Figure 1.

FOG detection

For FOG detection, 72 papers investigated the usage of wearable 
devices to access FOG in PD (Table 2; Mazilu et al., 2015, 2016; Zach 
et al., 2015; Capecci et al., 2016; Ahn et al., 2017; Kita et al., 2017; Saad 
et al., 2017; Camps et al., 2018; Samà et al., 2018; Borzì et al., 2019; 
Chomiak et al., 2019; Pierleoni et al., 2019; San-Segundo et al., 2019; 
Ayena and Otis, 2020; Kleanthous et al., 2020; Li et al., 2020; Tang et al., 

2020; Dvorani et al., 2021; El-Attar et al., 2021; Esfahani et al., 2021; 
Ghosh and Banerjee, 2021; Halder et al., 2021; Prado et al., 2021; Shalin 
et al., 2021; Naghavi and Wade, 2022). The number of subjects used to 
test the validity of the FOG detection system varied significantly 
between studies, from 1 (O'day et al., 2020) to 131 (Borzì et al., 2019) 
(MED = 12). The studied population consisted of patients with 
Parkinson’s disease, PD patients with diagnosed FOG events (n = 35), 
PD patients with no diagnosed FOG events (n = 6), healthy control 
(n = 6) and healthy elderly control (n = 1). Furthermore, 43.1% of papers 
included in this review (n = 31) used the data set as a resource to examine 
the validity of their algorithm. The most commonly used data set was 
from Bachlin et al. (2010).

Device type and placement are remarkably diverse between studies. 
Concerning the type of sensor, 27 papers used a single type of wearable 
device to implement FOG detection, including 25 articles that used an 
accelerometer, two with electroencephalography and one with plantar 
pressure sensors. It is important to note that 45 articles used multiple 
wearable device types to access FOG detection (Figure  2). The 
combination of accelerometers and gyroscopes was the choice of 15 
papers, and 12 pieces combined accelerometers, gyroscopes and 
magnetometers to access FOG detection. Likewise, wearable devices are 
located on various parts of the human body. Of the 72 included studies, 
the same number of papers reported placing a wearable device on the 
thigh and ankle (22.22% of studies, n = 16, 3 times as the single site on 
the ankle), the shank (19.44% of studies, n = 14, 4 times as the single 
location), the waist (16.67% of studies, n = 12) and the lower back 
(16.67% of studies, n = 12, 6 times as the single location). Details on the 

FIGURE 1

Study flow diagram.
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TABLE 2 Summary of FOG detection studies.

Author Studied 
population

Type of sensor Device 
location (n)

Walking task Algorithm Classifier (SD) ON OFF Year of 
publication

Real time Source 
of data 
set

Li et al. (2020) 10 PD Accelerometer Thigh (1) Calf (1) 

Lower back (1)

Walking task The attention-

enhanced LSTM

Sensitivity: 95.1% Specificity: 98.8% – – 2020 N Bachlin 

et al. 

(2010)

San-Segundo et al. 

(2019)

10 PD Accelerometer Ankle (1) Thigh (1) 

Lower back (1)

Walking task and 

dual task

Random forest, 

multilayer 

perceptron and 

hidden Markov 

models

Sensitivity 95% Specificity 75% – Y 2019 N Bachlin 

et al. 

(2010)

Prado et al. (2021) 10 PD Pressure sensors 

Accelerometer Angular 

velocity Sensor Euler 

angles sensor

Sole (2) Zeno Walkway on a 

standardized 5-m 

course

Artificial neural 

network

Sensitivity: 96.0% (2.5) Specificity: 

99.6% (0.3) Precision: 89.5% (5.9) 

Accuracy: 99.5% (0.4)

– – 2021 Y ?

Mazilu et al. (2016) 18 PD FOG+ Accelerometer Gyroscope Wrist (2) Ankle (2) A series of walking 

task

Supervised machine 

learning

Subject-dependent accuracy: 85% 

specificity: 80% Subject-independent 

Accuracy: 90% Specificity: 66%

Y – 2016 Y Mazilu 

et al. 

(2013)

Ahn et al. (2017) 10 PD FOG+ 10 HC Accelerometer Gyroscope 

Magnetometer

Head (1) Ankle (2) TUG and 10 m 

walking task

Threshold Accuracy: 92.86% – Y 2017 Y –

Tang et al. (2020) 12 PD Accelerometer Gyroscope Lower back (1) TUG Threshold Sensitivity: 90.6% (7.71) Specificity: 

94.3% (8.36)

– – 2020 N –

Borzì et al. (2019) 38 PD FOG+ 93 PD 

FOG−

Accelerometer Gyroscope 

Orientation sensor

FOG waist (1) LA 

thigh (1)

LA test and 

unscripted and 

unconstrained 

activity of daily 

living

SVM linear, k-NN, 

neural network and 

decision tree

LA test AUC: 92% FOG test AUC: 

97%

– – 2019 N –

Mazilu et al. (2015) 18 PD FOG+ Electrocardiography Skin 

conductance

Chest (1) Finger (1) Ziegler protocol, 

cognitive tasks and 

hospital tour

Threshold Predicting accuracy 71.3% with an 

average of 4.2 s before a freezing 

episode happened

Y Y 2015 Y –

Halder et al. (2021) 10 PD Accelerometer Ankle (1) Thigh (1) 

Hip (1)

Walking task and 

dual task

k-NN FOG precision: 95.55% (4.6) 

sensitivity: 94.97% (4.86) specificity: 

99.19% (0.85) F1 score: 95.25% (4.72) 

accuracy: 98.92% (1.56) Pre of post 

FOG precision: 92.73% (10.15) 

sensitivity: 91.5% (10.34) specificity: 

99.83% (0.32) F1 score: 92.10% 

(10.25)

– – 2021 N Bachlin 

et al. 

(2010)

(Continued)
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Author Studied 
population

Type of sensor Device 
location (n)

Walking task Algorithm Classifier (SD) ON OFF Year of 
publication

Real time Source 
of data 
set

Zach et al. (2015) 23 PD FOG+ Accelerometer Waist (1) Walking task Threshold Full rapid turns sensitivity: 78% 

specificity: 59% Walking rapidly with 

small steps sensitivity: 64% 

specificity: 69% Combining all tasks 

sensitivity: 75% specificity: 76%

– Y 2015 N –

Camps et al. (2018) 21 PD Accelerometer Gyroscope 

Magnetometer

Waist (1) Walking task and 

dual task

Deep learning 

eight-layered 

1D-ConvNet

Accuracy: 89% Sensitivity: 91.9% 

Specificity: 89.5%

Y Y 2018 N REMPARK 

project

el-Attar et al. 

(2021)

10 PD Accelerometer Ankle (1) Knee (1) 

Hip (1)

Walking task and 

dual task

SVM and artificial 

neural network

SVM accuracy: 87.5% Neural 

network accuracy: 93.8%

– – 2021 N Bachlin 

et al. 

(2010)

Capecci et al. 

(2016)

20 PD FOG+ Accelerometer Hip (1) TUG and dual task Threshold Moore-Bächlin Algorithm sensitivity: 

70.1% specificity: 84.1% Moore-

Bächlin Algorithm with step cadence 

sensitivity: 87.57% specificity: 94.97%

– – 2016 Y –

Naghavi and Wade 

(2022)

7 PD Accelerometer Gyroscope Ankle (2) Walking task Convolutional 

neural network, 

transfer learning and 

k-means clustering

Sensitivity: 63.0% Specificity: 98.6% 

Target models identified 87.4% FOG 

on sets, with 21.9% predicted

– – 2022 Y Naghavi 

et al. 

(2019)

Saad et al. (2017) 5 PD Accelerometer Telemeter 

Goniometer

Shin (1) Walking task Gaussian neural 

network

Efficiency: 87% – – 2017 N –

Pierleoni et al. 

(2019)

10 PD Accelerometer Gyroscope 

Magnetometer

Chest (1) Walking task Threshold Accuracy: 99.7% – – 2019 Y –

Samà et al. (2018) 15 PD Accelerometer Waist (1) Walking task and 

dual task

Threshold Sensitivity: 91.7% Specificity: 87.4% Y Y 2018 Y MASPARK 

project

Ghosh and 

Banerjee (2021)

10 PD Accelerometer Leg (2) Hip (2) Walking task and 

dual task

Linear discriminant 

analysis, 

classification and 

regression trees, 

SVM and random 

forest.

Accuracy: 89.94% Sensitivity: 87.8% 

Specificity: 93.02%

– – 2021 N Bachlin 

et al. 

(2010)

Kita et al. (2017) 32 PD Accelerometer Gyroscope Shin (2) Walking task Threshold Specificity 97.57% Sensitivity 93.41% 

Precision 89.55% Accuracy 97.56%

– – 2017 N –

Esfahani et al. 

(2021)

10 PD Accelerometer Gyroscope 

Magnetometer

Shank (1) Thigh (1) 

Lower back (1)

Walking task LSTM Sensitivity 92.57% Specificity 95.62% – – 2021 N Bachlin 

et al. 

(2010)

(Continued)

TABLE 2 (Continued)
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TABLE 2 (Continued)

Author Studied 
population

Type of sensor Device 
location (n)

Walking task Algorithm Classifier (SD) ON OFF Year of 
publication

Real time Source 
of data 
set

Kleanthous et al. 

(2020)

10 PD FOG+ Accelerometer Ankle (1) Thigh (1) 

Trunk (1)

Walking task Random forest, 

extreme Gradient 

boosting, Gradient 

boosting, SVM using 

radial basis 

functions, and 

neural network

SVM FOG sensitivity: 72.34% 

specificity: 87.36% Transition 

sensitivity: 91.49% specificity: 88.51% 

Normal activity sensitivity: 75% 

specificity: 93.62%

– Y 2020 N Bachlin 

et al. 

(2010)

Ayena and Otis 

(2020)

12 PD 9 HEC 10 HC Force sensitive resistor 

Accelerometer

Sole (2) TUG Threshold A significant difference was found for 

three FSR and IMU and on FSR and 

IMU in the elderly population 

(p < 0.001)

– – 2020 N –

Shalin et al. (2021) 11 PD FOG+ Accelerometer Plantar 

pressure sensor

Sole (2) Walking task LSTM Sensitivity: 82.1% (6.2) Specificity: 

89.5% (3.6)

– – 2021 Y –

Dvorani et al. 

(2021)

16 PD FOG+ Accelerometer Shoe (2) Walking task SVM and Adaboost 

classifiers

Sensitivity: 88.5% (5.8) Specificity: 

83.3% (17.1) AUC: 92.8% (5.9)

– – 2021 Y ?

Chomiak et al. 

(2019)

21 PD 9 HC Accelerometer Gyroscope Above the 

patellofemoral joint 

line (1)

Walking task and 

dual task

Nonlinear 

m-dimensional 

phase-space data 

extraction and 

Monte Carlo analysis

Error rate: 0% Sensitivity: 100% 

Specificity: 100%

– – 2019 Y –

Borzì et al. (2021) 11 PD FOG+ Accelerometer 

Magnetometer Gyroscope

Shin (2) TUG standardized 

7-m course

Linear discriminant 

analysis and SVM

The implemented classification 

algorithm in patients on (off) therapy 

sensitivity: 84.1% (85.5%), specificity: 

85.9% (86.3%) accuracy: 85.5% 

(86.1%) Machine learning sensitivity: 

84.0% (56.6%) specificity: 88.3% 

(92.5%) accuracy: 87.4% (86.3%)

Y Y 2021 Y –

Kim et al. (2018) 32PD Accelerometer Gyroscope In the trouser pocket 

(1)

A series of walking 

tasks

Convolutional 

neural network

Average sensitivity of 93.8% and a 

specificity of 90.1%

– – 2018 N –

Marcante et al. 

(2021)

20 PD Accelerometer Plantar 

pressure sensors

Sole (2) A series of walking 

tasks

Threshold Accuracy: 90% False positive rate: 6% 

False negative rate: 4%

Y Y 2020 N –

Mancini et al. 

(2021)

Study I: 27 PD 

FOG+ 18 PD FOG− 

Study II: 23 PD 

FOG+ 25 PD FOG−

Accelerometer Gyroscope 

Magnetometer

Study I: Shin (2) Foot 

(2) Wrist (2) Sternum 

and posterior trunk 

over L5 (1) Study II: 

Foot (2) over the 

lumbar area (1)

Walking task Open-source 

algorithm

Rater 1 accuracy: 88% sensitivity: 

89% specificity: 88% false positive 

rate: 13% false negative rate: 11% 

AUC: 93% Rater 2 accuracy: 85% 

sensitivity: 80% specificity: 87% false 

positive rate: 13% false negative rate: 

20% AUC: 89%

– Y 2021 N –

(Continued)
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Author Studied 
population

Type of sensor Device 
location (n)

Walking task Algorithm Classifier (SD) ON OFF Year of 
publication

Real time Source 
of data 
set

Pardoel et al. 

(2021)

11 PD Accelerometer Gyroscope 

Plantar pressure sensor

Sole (2) Shank (2) A series of walking 

task

Decision tree 

ensemble model

1 s window classification of Total-

FOG data sensitivity: 76.4% 

specificity: 86.2% The transition 

between Pre-FOG gait and FOG 

sensitivity: 85.2% The FOG window 

sensitivity: 93.4%

– Y 2021 Y –

Prateek et al. 

(2018)

16 PD Accelerometer Gyroscope The heel of shoe (2) A series of walking 

task

Threshold Accuracy: 81.03% – – 2018 N –

Bikias et al. (2021) 11 PD Accelerometer Gyroscope Wrist (1) – Machine learning Leave-one-subject-out cross-

validation sensitivity: 83% specificity: 

88% fold cross-validation schemes 

sensitivity: 86% specificity: 90%

– – 2021 N –

Naghavi and Wade 

(2019)

10 PD Accelerometer Shank (1) Thigh (1) 

Lower back (2)

Two walking tasks 

and one dual task

Threshold Accuracy: 88.8% Sensitivity: 92.5% 

Specificity: 89.0%

– Y 2019 Y Bachlin 

et al. 

(2010)

Pardoel et al. 

(2021)

11 PD FOG+ Accelerometer Gyroscope Knee (2) Ankle (2) Walking task along 

a complex pathway 

to provoke FOG

Threshold Detection model episodes identified: 

92.1% (8.2%) precision: 31.8% 

(19.9%) Prediction model episodes 

identified: 93.8% (6.8%) precision: 

30.6% (17.0%)

Y – 2021 N –

Mesin et al. (2022) 12 PD FOG+ Accelerometer Gyroscope 

Electroencephalogram 

Skin conductance 

Electromyography 

Electrocardiogram

Lateral tibia of the leg 

(2) Fifth lumbar spine 

(1) Wrist (1)

A series of walking 

task

SVM and k-NN Subject-independent accuracy: 85% 

subject-dependent accuracy: 88%

– Y 2022 N Zhang et al. 

(2022)

Demrozi et al. 

(2020)

10 PD Accelerometer Back (1) Hip (1) 

Ankle (1)

Walking task k-NN Sensitivity: 94.1% Specificity: 97.1% – – 2020 Y Bachlin 

et al. 

(2010)

Mikos et al. (2019) 25 PD IMU Ankle (2) TUG standardized 

7-m course

Neural network Sensitivity: 95.9% Specificity: 93.1% – – 2019 Y ?

Reches et al. (2020) 71 PD FOG+ Accelerometer Gyroscope 

Magnetometer

Lower back (2) Ankle 

(2)

A series of walking 

tasks and dual task

SVM with the radial 

basis function

Sensitivity: 84.1% Specificity: 83.4% 

Accuracy: 85.0%

Y Y 2020 N ?

Sigcha et al. (2020) 21 PD FOG+ Accelerometer Waist (1) 20 min of scripted 

ADL

Recurrent neural 

network

Mean sensitivity: 87.1% Mean 

specificity: 87.1% Mean AUC: 93.9%

– – 2020 N Rodríguez-

Martín 

et al. 

(2017)

(Continued)

TABLE 2 (Continued)
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TABLE 2 (Continued)

Author Studied 
population

Type of sensor Device 
location (n)

Walking task Algorithm Classifier (SD) ON OFF Year of 
publication

Real time Source 
of data 
set

Ahlrichs et al. 

(2016)

8 PD FOG+ 12 PD 

FOG−

Accelerometer Gyroscope 

Magnetometer

– Scripted activities 

simulating natural 

behavior at the 

patients’ home

SVM Sensitivity:92.3% Specificity:100% – – 2016 Y Rodriguez-

Martin 

et al. 

(2015)

Pham et al. (2017) 10 PD Accelerometer Shank (1) Thigh (1) 

Lower back (1)

Walking task Anomaly score 

detector with 

adaptive 

thresholding

Sensitivity: 96% Specificity: 79% 

Ankle only accuracy: 94% specificity: 

84% Lower back only accuracy: 89% 

specificity: 94%

– Y 2017 N Bachlin 

et al. 

(2010)

Suppa et al. (2017) 28 PD FOG+ 16 PD 

FOG−

Accelerometer Gyroscope Shin (2) TUG on 

standardized 3-m 

course

Ad hoc algorithms Accuracy: 98.51% Sensitivity: 93.41% 

Specificity: 98.51% Positive 

predictive: 89.55% Negative 

predictive: 97.31%

Y Y 2017 N –

Ren et al. (2022) 12 PD FOG+ Accelerometer Gyroscope 

Force sensing resistor 

sensors

Waist (1) Thigh (2) 

Shank (2) Sole (2)

Walking task Threshold Left shank gyro and accelerometer 

sensitivity 78.39% specificity 91.66% 

accuracy 88.09 precision 77.58% 

f-score 77.98%

Y – 2022 N ?

Ashfaque Mostafa 

et al. (2021)

10 PD FOG+ Accelerometer Shank (1) Thigh (1) 

Lower back (1)

Unscripted and 

unconstrained 

activities of daily 

living in an 

apartment-like 

setting

Moving windows 

extracted from the 

signals, handcrafted 

features, recurrence 

plots, short-time 

Fourier transform, 

discreet wavelet 

transform, Pseudo 

Wigner Ville 

distribution with 

deep learning-based 

LSTM and 

convolutional neural 

networks

Window size of 3 accuracy: 98.5% 

sensitivity: 98.5% specificity: 97.9% 

Window size of 4 sensitivity: 96.9% 

specificity: 96.7%

– – 2021 N Bachlin 

et al. 

(2010)

Guo et al. (2019) 10 PD Accelerometer Ankle (1) Thigh (1) 

Hip (1)

Walking task and 

dual task

The time-varying 

autoregressive 

moving average 

model

Sensitivity: 99.2% Specificity: 94.59% 

Accuracy average of sensitivity: 

96.86% specificity: 96.9%

– Y 2019 N Bachlin 

et al. 

(2010)

Azevedo Coste 

et al. (2014)

4 PD Accelerometer Gyroscope 

Magnetometer

Shank (1) Walking task with 

dual tasking

Threshold Sensitivity: 79.5% Specificity: not 

reported Only number of falls 

positives: 13 vs.35 true positives

– – 2014 N –

(Continued)
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Author Studied 
population

Type of sensor Device 
location (n)

Walking task Algorithm Classifier (SD) ON OFF Year of 
publication

Real time Source 
of data 
set

Naghavi et al. 

(2019)

18 PD Accelerometer Ankle (2) A series of daily 

walking tasks

ADAptive SYNthetic 

sampling algorithm

Accuracy: 97.4% Prediction: 66.7% – – 2019 Y Schaafsma 

et al. 

(2003)

O'day et al. (2020) 1 PD FOG+ IMU Shank (2) Walking task Closed-loop DBS 

algorithms

– – – 2019 Y –

Kim et al. (2015) 15 PD FOG+ Accelerometer Gyroscope Waist (1) Trouser 

pocket (1) Shin (1)

Walking task and 

dual (single) task

AdaBoost.M1 

classifier

Waist only sensitivity: 86% specificity: 

91.7% Trouser pocket only sensitivity: 

84% specificity: 92.5%

– – 2015 N –

Palmerini et al. 

(2017)

18 PD Electrocardiography 

Skin-conductance

Shank (2) Lower back 

(1)

Walking task and 

dual task

Threshold AUC: 76% Sensitivity: 83% 

Specificity: 67%

Y – 2017 Y Mazilu 

et al. 

(2015)

Cole et al. (2011) 10 PD 2 HC Accelerometer 

Electromyographic

Forearm 

accelerometer (1) 

Thigh accelerometer 

(1) Skin 

accelerometer and 

Electromyographic 

(1)

Unscripted and 

unconstrained 

activities of daily 

living in an 

apartment-like 

setting

Dynamic neural 

network and linear 

classifier

Sensitivity: 82.9% Specificity: 97.3% – – 2011 N –

Rezvanian and 

Lockhart (2016)

10 PD FOG+ Accelerometer Shank (1) Thigh (1) 

Lower back (1)

A series of walking 

task

Continuous wavelet 

transform

Skin only sensitivity: 84.9% 

specificity: 81.0% Thigh only 

sensitivity: 73.6% specificity: 79.6% 

Lower back only: sensitivity: 83.5% 

specificity: 67.2%

Y Y 2016 N Bachlin 

et al. 

(2010)

Pardoel et al. 

(2022)

11 PD FOG+ Plantar pressure sensor Sole (2) Walking task and 

dual task

Decision tree and 

random 

undersampling 

boosting

Sensitivity: 77.3% Specificity: 82.9% – – 2022 N Pardoel 

et al. 

(2021)

Tripoliti et al. 

(2013)

5 PD FOG+ 6 PD 

FOG− 5 HC

Accelerometer Gyroscope Wrist (2) Shin (2) 

Waist (1) Chest (1)

A series of walking 

tasks

Threshold Sensitivity: 81.94% Specificity: 

98.74%

Y Y 2013 N –

Aich et al. (2018) 36 PD FOG+ 15 PD 

FOG−

Accelerometer Knee (2) Walking task Naïve Bayes, k-NN, 

SVM and decision 

tree

Accuracy: 89.139% Sensitivity: 

88.524% Specificity: 88.769%

– – 2018 N –

(Continued)

TABLE 2 (Continued)
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TABLE 2 (Continued)

Author Studied 
population

Type of sensor Device 
location (n)

Walking task Algorithm Classifier (SD) ON OFF Year of 
publication

Real time Source 
of data 
set

Arami et al. (2019) 10 PD FOG+ Accelerometer Lower back (1) Thigh 

(2) Shank (2)

Walking task SVM and 

probabilistic neural 

networks

Sensitivity: 93% (4) Specificity: 91% 

(6)

Y – 2019 Y Bachlin 

et al. 

(2010)

Guo et al. (2022) 12 PD FOG+ Electroencephalography Waist on L5 (1) Leg 

(2)

Two TUG tasks LSTM Cross-subject setting GM: 91.0% 

(3.5%) Subject-dependent setting 

GM: 91.0% (5.0%)

– Y 2022 N –

Moore et al. (2013) 25 PD Accelerometer Lumbar region of the 

back (1) Thigh (2) 

Shank (2) Foot (2)

TUG tasks Threshold Lower back sensor, 10s window: 

sensitivity: 86.2% specificity: 82.4%

– Y 2013 N –

Moore et al. (2007) 11 PD FOG+ 10 HC Accelerometer Shank (1) A series of walking 

task

Threshold Accuracy: 89% Sensitivity: 89% False 

positives: 10%

Y Y 2008 N –

Mazzetta et al. 

(2019)

7 PD FOG+ Accelerometer Gyroscope 

Electromyography

Tibialis anterior (1) 

Gastrocnemius of the 

right leg (1)

TUG on 

standardized 7-m 

course

Threshold False negative: 2% False positive: 5% Y Y 2019 Y –

Rodríguez-Martín 

et al. (2017)

21 PD FOG+ Accelerometer Waist (1) A set of scripted 

activities at 

patients’ home

SVM Generic model sensitivity: 74.7% 

specificity: 79.0% Personalized model 

sensitivity: 88.09% specificity: 80.09%

Y Y 2017 Y REMPARK 

project

Shi et al. (2022) 63 PD FOG+ Accelerometer Gyroscope 

Magnetometer

Ankle (2) 7th cervical 

vertebra (1)

TUG on 

standardized 7-m 

course and daily 

routine

Continuous wavelet 

transform and 

convolutional neural 

network

Geometric mean: 90.7% F1 score: 

91.5%

– – 2022 N –

Kwon et al. (2014) 20 PD FOG+ Accelerometer Shoe (1) A walking task Threshold Sensitivity: 86% Specificity: 86% Y – 2014 N –

O’Day et al. (2022) 16 PD IMU Chest (1) Lumbar 

region (1) Ankle (2) 

Feet (2)

Free-living setting Convolutional 

neural network

Lumbar and both ankles AUROC: 

83%

– Y 2022 N –

Shi et al. (2020) 67 PD FOG+ Accelerometer Gyroscope 

Magnetometer

Lateral malleolus area 

of the ankles (2) 7th 

cervical vertebra of 

the spine (1)

TUG on 

standardized 7-m 

course

Convolutional 

neural network and 

continuous wavelet 

transform

Accuracy: 89.2% Geometric mean: 

88.8%

– Y 2020 N –

Yungher et al. 

(2014)

14 PD FOG+ Accelerometer Gyroscope 

Magnetometer

Lower back (1) Thigh 

(2) Shin (2) Foot (2)

TUG on 

standardized 5-m 

course

Threshold – – Y 2014 N –

(Continued)
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Author Studied 
population

Type of sensor Device 
location (n)

Walking task Algorithm Classifier (SD) ON OFF Year of 
publication

Real time Source 
of data 
set

Ly et al. (2017) 6 PD FOG+ Electroencephalography Head (1) A series of TUG Bayesian Neural 

Networks and time-

frequency Stockwell 

Transform

Sensitivity: 84.2% Specificity: 88% 

Accuracy: 86.2%

– Y 2017 N –

Jovanov et al. 

(2009)

1 PD 4 non-PD Accelerometer Gyroscope Knee (1) Walking task Threshold The average detection latency for five 

experiments was 332 ms and the 

maximum latency was 580 ms.

– – 2009 Y –

Tzallas et al. (2014) Lab 24 PD FOG 

Home 12 PD FOG

Accelerometer Gyroscope Wrist (2) Skin (2) 

Waist (1)

Lab: a series of 

walking tasks. 

Home: 5 

consecutive days of 

free living.

Hidden Markov 

Model and SVM

Lab accuracy: 79% Home mean 

absolute error: 79%

Y Y 2014 N –

Stamatakis et al. 

(2011)

1 PD 1 HC Accelerometer Hallux Heel (1) Foot 

(2)

Walking task Threshold – – – 2011 N –

Rodríguez-Martín 

et al. (2017)

12 PD Accelerometer Gyroscope Waist (1) Walking task, 

dual-task and 

free-living setting 

for 3 days

SVM Sensitivity: 82.08% Specificity: 

93.75%

Y Y 2017 Y –

Iakovakis et al. 

(2016)

5 PD 10 HC Sphygmomanometer 

Smartwatch

Wrist (2) Walking task SVM, linear 

regression and 

neural network

Linear regression predictive accuracy: 

73%

– – 2016 Y –

PD, Parkinson’s disease; FOG, freezing of gait; FOG+, PD patients with diagnosed FOG events; FOG−, PD patients with no diagnosed FOG events; HC, healthy control; HEC, health elderly control; LA, leg agility; k-NN, k-nearest neighbor; SVM, support vector machine; 
LSTM, long short term memory; FSR, force sensitive resistor; IMU, inertial measurement unit; TUG, time up and go test; AUC, area under the curve; ADL, activity of daily living; ON, subjects were in the ON medication state; OFF, subjects were in the OFF medication 
state; REMPARK, Remote and Autonomous Management of Parkinson’s Disease; MASPARK, Improving Quality of Life with an Automatic Control System, a question mark means articles used data set but did not provide the source of data set or cannot be found.

TABLE 2 (Continued)
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studies included in this systematic review that reported placement are 
summarized in Figure 3 and Table 3.

The algorithm plays a vital role in FOG detection and varies in 
complexity. Generally, it can be categorized into threshold and machine 
learning. Of 72 papers, 30 used threshold-based algorithms to detect 
FOG, leaving 42 pieces used machine learning. In Figure 4, we observed 
that the number of articles that used thresholds was more than or equal 
to articles that used machine learning before 2019. Since then, more 
papers have used machine learning than the threshold, even five times 
higher in 2021. Evaluation in real-time was the choice of 24 articles. 
Machine learning algorithms were used in 15 of the 24 articles, leaving 
9 papers that used threshold algorithms to detect a FOG episode as 
it occurs.

Among the 73 articles investigating FOG detection, a vast majority 
of studies (n = 71) reported measures of validation performance [e.g., 
sensitivity, specificity, accuracy, area under the curve (AUC) or f-score], 
and 2 studies did not report validity measures (Stamatakis et al., 2011; 

Yungher et al., 2014). Overall, the sensitivities reported in the reviewed 
studies ranged from 63 to 100%, from 59 to 100% for specificity, from 
71.3 to 99.7% for accuracy, AUC ranged from 76 to 97% and f-score 
ranged from 77.98 to 92.10% (Table 4).

Fall detection

A total of 3 papers on fall detection were included and varied in the 
study population, approach and performance (Table 5). The number of 
subjects ranged from 12 to 29 (MED = 15), and the studied population 
can be categorized into patients with PD (n = 3), healthy control (n = 1) 
and healthy elderly control (n = 1). None of them used a data set.

All articles used multiple wearable devices. However, the type of 
sensor and placement are remarkably diverse between studies. Two 
pieces used accelerometers and gyroscopes to detect falls, while the 
remaining one used an accelerometer, force sensor and bending sensor. 

FIGURE 2

Number of publications each year per number of sensor type.

FIGURE 3

Number of publications each year per number of sensor locations.
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As for device location, 1 article placed sensors on the shank, 1 on the 
waist and 1 on the insole. Regarding the algorithm, 2 papers used 
threshold to process data, leaving 1 article used machine learning. Three 
articles reported fall detection performance, but only two performed fall 
detection in real-time. Meanwhile, the measure of validation 
performance was varied. One piece used accuracy (73.33%), and one 
used root mean square error (0.16), leaving one article mentioning the 
data difference.

Discussion

This systematic review aimed to examine the articles of FOG and 
fall detection area to determine the best type of wearable devices, the 
most appropriate device locations, and the most effective approaches to 
processing data, which can balance accuracy and immediacy. This paper 
also discussed the recent trend of related technologies. A total of 75 
articles were included in this review, 72 on FOG and 3 on falls.

FOG/falls detection apparatus

The apparatus used in FOG or fall detection can be  generally 
divided into wearable devices and context-aware systems. Due to the 
development of wireless communication and microelectronics 
technology, many researchers focus on wearable devices to detect FOG 
or falls. In this review, the type of sensors and the combination are 
remarkably diverse between studies. Twenty-eight studies used a single 
type of wearable device to detect FOG, and 92.9% of them relied on 
accelerometers only (n = 26), and the sensitivity of using an 
accelerometer only ranged from 70.1 to 99.2% (MED = 88.52%), and 
the specificity ranged from 59 to 99.83% (MED = 88%). Meanwhile, 2 
studies used electroencephalography only, while Pardoel et al. (2022), 
the pressure sensor was the only device for FOG detection, its sensitivity 
ranged from 77.3 to 84.2%, and specificity ranged from 82.9 to 88%. 
These results indicated that the type of sensor would not affect the 
accuracy of using a single type of sensor. The use of single kind of 
sensor can reduce the calculation and complexity of the FOG 
detection system.

In this review, we found a large proportion of studies using IMU, 
which often consists of more than one type of sensor, have become 
popular in FOG and fall detection applications. As shown in Table 2, 
a total of 44 papers utilized IMU for FOG detection, 3 of them only 
mentioned IMU, remaining 41 articles illustrated the type of sensors. 
The combination consisting of an accelerometer and a gyroscope was 
the most popular in this review, 15 papers used this combination, and 
the combination of an accelerometer, a gyroscope and a magnetometer 
was the choice of 12 articles. The difference in validation performance 
(e.g., sensitivity and specificity) between combinations were slight, 
except for the specificity of the combination of electrocardiography 
and skin conductance (67%). Multiple types of sensors were the 
choice of 3 articles to detect falls in patients with PD. There might 
be  several reasons behind this trend. First, the IMUs can provide 
multidimensional data to measure body movement of FOG and fall 
detection, improving the validation performance. Second, the rapid 
development of MEMS facilitated lower energy consumption and 
small-sized chips with low cost, which makes the placement of 
wearable IMUs much easier. Third, as machine-learning technology 
advances rapidly, researchers can process vast quantities of data and 
conclude with high accuracy.

Device location

As mentioned above, various protocols were described concerning 
the device’s location on the human body to detect FOG and falls. 
Generally, the human body is divided into the head and neck, trunk, 
upper limb and lower limb. Of the 72 studies included in this review, 
84.7% studies used the lower limb as a wearable device location (n = 61). 
The most popular placements were the thigh (n = 16) and the ankle 
(n = 16). Besides, the sole was the most common single placement on 
the lower limb. The results also showed that the waist (n = 12) and lower 
back (n = 12) were the most used on the trunk, and the waist (n = 6) was 
the most frequent single placement on the human body. Considering 
fall detection, 2 articles used the lower limb as a wearable sensor 
location, leaving 1 article placed sensors on the upper limb. The critical 
task of the lower limb is to support the entire body. Changes in the 
lower limb (e.g., velocity, direction and speed) can intuitively reflect the 
status of patients.

TABLE 3 Summary of device location of FOG detection studies.

Body 
part

Body 
landmark or 
placement

Number 
of articles 

(n)

Ratio 
(%)

Single 
location 

(n)

Head and 

neck

Head 2 2.78 1

7th cervical 

vertebra

2 2.78 0

Upper 

limb

Forearm 1 1.39 0

Wrist 7 9.72 1

Finger 1 1.39 0

Trunk Chest 4 5.56 1

Back 1 1.39 0

Lower back 12 16.67 1

Lumbar 4 5.56 0

Trunk 1 1.39 0

Waist 12 16.67 6

Lower 

limb

Foot 4 5.56 0

Calf 1 1.39 0

Gastrocnemius 1 1.39 0

Hallux 1 1.39 0

Heel 2 2.78 0

Hip 6 8.33 1

Knee 4 5.56 2

Lateral tibia of leg 1 1.39 0

Leg 2 2.78 0

Sole 7 9.72 5

Shank 13 18.06 4

Shin 8 11.11 3

Shoe 2 2.78 2

Thigh 16 22.22 0

Tibialis anterior 1 1.39 0

Trouser pocket 2 2.78 1

Ankle 16 22.22 3
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FOG/fall detection algorithms

FOG and fall detection approaches vary in complexity. Threshold-
based algorithm appeared to be the most straightforward method in 
FOG and fall detection. A total of 30 articles included in this review use 
threshold-based algorithms in FOG detection. As for fall detection, 2 
papers used threshold-based algorithms. With threshold-based 
algorithms, the occurrence of FOG and falls are considered to 

be detected if indicators are beyond a specific threshold. Otherwise, the 
event of FOG/fall does not exist. With the advantage of being 
computationally efficient, threshold methods can process data in a short 
period, making them easily used in real-time systems. However, the 
drawback of the threshold-based algorithm is obvious. Generally, a high 
threshold may lead to a low false positive rate but also ignore some 
occurrences of FOG/fall, and vice versa. This is the conundrum that 
almost current researchers have to face.

FIGURE 4

Number of publications each year per type of algorithm.

TABLE 4 Number of publications per type of outcome for each sensor combination.

Combination Number of articles 
(n)

Ratio (%) Sensitivity Specificity

Accelerometer and gyroscope 15 34.1 63–100% (MED = 86%) 66–100% (MED = 92.9%)

Accelerometer, gyroscope and 

magnetometer

12 27.3 56.6%−92.6 (MED = 84.1%) 83.4–100% (MED = 88.2%)

Pressure sensor, accelerometer, angular 

velocity sensor and Euler angles sensor

1 2.3 96% 99.6%

Accelerometer, gyroscope and 

orientation sensor

1 2.3 – –

Electrocardiography and skin 

conductance

2 4.5 83% 67%

Accelerometer, telemeter and 

goniometer

1 2.3 – –

Accelerometer and force sensor 3 6.8 82.1% 89.5%

Accelerometer, gyroscope and force 

sensor

2 4.5 76.4–93.4% (MED = 84.9) 86.2–91.66% (MED = 88.9)

Accelerometer, gyroscope, 

electroencephalogram, skin 

conductance, electromyography and 

electrocardiogram

1 2.3 – –

IMU 3 6.8 94.1% 97.1%

Accelerometer and electromyographic 1 2.3 82.9% 97.3%

Accelerometer, gyroscope and 

electromyography

1 2.3 – –

Sphygmomanometer and smartwatch 1 2.3 – –
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To improve the accuracy of FOG and fall detection, machine 
learning algorithms, including SVM (Tzallas et al., 2014; Ahlrichs et al., 
2016; Iakovakis et al., 2016; Rodríguez-Martín et al., 2017; Aich et al., 
2018; Arami et al., 2019; Borzì et al., 2019, 2021; Kleanthous et al., 2020; 
Reches et al., 2020; Dvorani et al., 2021; El-Attar et al., 2021; Ghosh and 
Banerjee, 2021; Mesin et al., 2022), k-NN (Aich et al., 2018; Borzì et al., 
2019; Demrozi et  al., 2020; Halder et  al., 2021; Mesin et  al., 2022), 
decision trees (Aich et al., 2018; Borzì et al., 2019; Pardoel et al., 2021, 
2022), hidden Markov model (Tzallas et al., 2014; San-Segundo et al., 
2019), neural network (Cole et al., 2011; Iakovakis et al., 2016; Ly et al., 
2017; Saad et al., 2017; Kim et al., 2018; Arami et al., 2019; Borzì et al., 
2019; Mikos et al., 2019; Kleanthous et al., 2020; O'day et al., 2020, 2022; 
Shi et al., 2020, 2022; Sigcha et al., 2020; Ashfaque Mostafa et al., 2021; 
El-Attar et  al., 2021; Prado et  al., 2021; Naghavi and Wade, 2022), 
random forest (San-Segundo et al., 2019; Kleanthous et al., 2020; Ghosh 
and Banerjee, 2021) and LSTM (Li et al., 2020; Ashfaque Mostafa et al., 
2021; Esfahani et al., 2021; Shalin et al., 2021; Guo et al., 2022), were 
used extensively in recent studies. Data were collected from sensors, and 
a training period is necessary for machine learning. Machine learning 
can improve the validation performance of FOG/fall detection but 

might require a longer time for data processing. With the development 
of computer technology, studies have increasingly examined machine 
learning algorithms in real-time FOG detection. Furthermore, the 
utilization of machine learning algorithms to identify FOG is becoming 
the primary current for the sake of improving validation performance 
(Figure 3).

FOG/fall detection performance

The validation performance of FOG/fall detection varies, including 
sensitivity, specificity, accuracy, AUC and f-score. Among the 73 articles 
investigating FOG detection, the sensitivities ranged from 63 to 100%. 
The highest sensitivity (100%) was achieved by Chomiak et al. (2019) 
and the lowest sensitivity (63%) was reported by Naghavi et al. (2019). 
The specificities were from 59 to 100%. The lowest specificity (59%) was 
written by Zach et  al. (2015) and only one article reported 100% 
specificity (Chomiak et  al., 2019). Some papers used accuracy as a 
validation performance standard, ranging from 71.3 to 99.7%. The 
accuracy (71.3%) in Mazilu et al. (2015) was the lowest, and the highest 

TABLE 5 Summary of fall detection studies.

Author Studied 
population

Type of 
sensor

Device 
location

Walking 
task

Algorithm Classifier ON OFF Year of 
publication

Real 
time

Source 
of data 
set

Greene 

et al. 

(2018)

15 PD Accelerometer 

Gyroscope

Shank (2) The free-

living 

setting for 

6 months

Threshold Accuracy 

73.33%

– – 2018 N –

Takač 

et al. 

(2013)

12 PD Accelerometer 

Gyroscope

Waist (1) Walking 

task 

performed

Neural 

network

root mean 

square error 

(RMSE) = 0.16

– – 2013 Y –

Ayena 

et al. 

(2016)

7 PD 12 Young 

non-PD 10 

Elderly non-PD

Accelerometer 

Force sensor 

Bending 

sensor

Sole (2) Participants 

performed 

the OLST 

at home as 

part of a 

serious 

game for 

balance 

training

Threshold The proposed 

OLST score 

was not 

significantly 

different from 

the iOLST 

score in all 

groups. 

Discriminant 

validity-

Proposed 

OLST score 

was 

significantly 

different 

between PD 

and non-PD 

subjects. The 

proposed 

OLST score 

has 

significantly 

differed 

between 

ground types

Y – 2016 Y –

PD, Parkinson’s disease; ON, subjects were in the ON medication state; OFF, subjects were in the OFF medication state; OLST, one-leg standing test.
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accuracy (99.7%) was achieved by Pierleoni et al. (2019). A few studies 
reported AUC ranged from 76 to 97%. The highest AUC (97%) was 
achieved by Borzì et  al. (2019) and the lowest AUC (76%) was in 
Palmerini et  al. (2017) A few studies utilized f-score to evaluate 
validation performance ranging from 77.98 to 92.10%. The lowest 
f-score (77.98%) was reported by Ren et  al. (2022) and the highest 
f-score (92.10%) was written by Halder et al. (2021). Meanwhile, the 
measure of validation performance various considerably, including 
accuracy (73.33%, n = 1), root mean square error (0.16, n = 1) and data 
difference (n = 1).

It should be noted that the conclusion of the best FOG/fall detection 
based on the reported validation performance is unwarranted since the 
collection approaches of FOG/fall data varies considerably, including 
methods of provoking FOG/fall, and the number of subjects varied, 
which might affect the validation performance.

Conclusion

Based on 75 articles on wearable device utilization for FOG and 
fall detection in patients with PD, this review represented the recent 
trend and several critical aspects in current research, including the 
type of sensors, device location, FOG/fall algorithms, the number of 
subjects (or data set) and validation performance. Research on FOG 
and fall detection has been developed rapidly in recent years, and 
emerging technology like machine learning can balance accuracy and 
immediacy. Furthermore, using multiple types of sensors has become 
the recent trend in FOG and fall detection in patients with 
PD. Nevertheless, the limitations in the current studies were obvious. 
The research was carried out with a low number of samples. A 
universally recognized adequate standard provoking FOG and fall is 
yet lacking, it might lead researchers to encounter difficulties in 
finding the best system based on the reported validation performance. 
Besides, there is little consensus on algorithm analysis. Future work 
should give careful consideration to address these limitations. First, an 
adequately studied population should be provided to support their 

study. Second, a consensus on provoking FOG/fall, methods of 
assessing validity and algorithm are necessary. Lastly, studies should 
carry out in a free-living environment with low-cost and low-energy 
consumption apparatus.
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