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Introduction: Primary Progressive Aphasia (PPA) is a neurological disease 
characterized by linguistic deficits. Semantic (svPPA) and non-fluent/agrammatic 
(nfvPPA) variants are the two main clinical subtypes. We applied a novel analytical 
framework, based on radiomic analysis, to investigate White Matter (WM) 
asymmetry and to examine whether asymmetry is associated with verbal fluency 
performance.

Methods: Analyses were performed on T1-weighted images including 56 patients 
with PPA (31 svPPA and 25 nfvPPA) and 53 age- and sex-matched controls. 
Asymmetry Index (AI) was computed for 86 radiomics features in 34 white matter 
regions. The relationships between AI, verbal fluency performance (semantic 
and phonemic) and Boston Naming Test score (BNT) were explored through 
Spearman correlation analysis.

Results: Relative to controls, WM asymmetry in svPPA patients involved regions 
adjacent to middle temporal cortex as part of the inferior longitudinal (ILF), 
fronto-occipital (IFOF) and superior longitudinal fasciculi. Conversely, nfvPPA 
patients showed an asymmetry of WM in lateral occipital regions (ILF/IFOF). A 
higher lateralization involving IFOF, cingulum and forceps minor was found in 
nfvPPA compared to svPPA patients. In nfvPPA patients, semantic fluency was 
positively correlated to asymmetry in ILF/IFOF tracts. Performances at BNT were 
associated with AI values of the middle temporal (ILF/SLF) and parahippocampal 
(ILF/IFOF) gyri in svPPA patients.

Discussion:  Radiomics features depicted distinct pathways of asymmetry in svPPA 
and nfvPPA involving damage of principal fiber tracts associated with speech and 
language. Assessing asymmetry of radiomics in PPA allows achieving a deeper 
insight into the neuroanatomical damage and may represent a candidate severity 
marker for language impairments in PPA patients.
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1. Introduction

Primary Progressive Aphasia (PPA) is a rare neurological 
syndrome, with estimated prevalence of three cases per 100.000 people/
persons in the general population (Coyle-Gilchrist et al., 2016). PPA is 
pathologically associated with Frontotemporal lobe degeneration 
(FTLD) and clinically characterized by prominent linguistic deficits 
(Mesulam, 1982; Gorno-Tempini et al., 2011; Leyton et al., 2011; Tee 
and Gorno-Tempini, 2019). PPA usually arises with subtle speech 
problems that could progress into an almost total inability to speak.

The semantic (svPPA) and non-fluent/agrammatic (nfvPPA) 
variants of primary progressive aphasia represent the two main clinical 
subtypes of PPA (Gorno-Tempini et  al., 2011). svPPA and nfvPPA 
exhibit distinct patterns of cortical atrophy and a discrete underlying 
pathology (Mesulam, 2001). Over 50% of nfvPPA patients have FTLD 
tauopathy (including Pick’s disease, Corticobasal Degeneration, 
Progressive Supranuclear Palsy), and around 20% of patients have 
TDP-43 proteinopathy (predominantly type A). Conversely, the majority 
of svPPA has a TDP-43 pathology (Harris and Jones, 2014). Patients with 
svPPA present loss of word knowledge with difficulties in single-word 
comprehension and naming, despite relatively preserved grammar and 
fluency. Conversely, patients with nfvPPA show abnormality of grammar 
in spoken or written language, and/or apraxia of speech with relatively 
preserved single-word comprehension (Mesulam, 1982; Ash et al., 2010; 
Wilson et al., 2010; Gorno-Tempini et al., 2011).

In the past years, several studies have investigated the brain 
damage associated with PPA, reveling an asymmetric prominence of 
grey and white matter changes, neuronal loss and disease-specific 
proteinopathy (Grossman et al., 2008; Mesulam et al., 2008, 2014; 
Grossman, 2012). Concerning neuroimaging investigations, patients 
with svPPA show a predominant left-sided temporal patter of gray 
matter atrophy, with subcortical compromission of the amygdala and 
hippocampus (Brambati et al., 2009; Collins et al., 2017; Nigro et al., 
2021). Conversely, a prominent atrophy of left frontal regions is 
usually observed in nfvPPA patients (Gorno-Tempini et al., 2011; 
Mesulam et al., 2014; Mandelli et al., 2016a,b). Moreover, studies that 
use diffusion tensor imaging (DTI) highlight a severe damage of white 
matter tracts with a lateralization involving the left inferior 
longitudinal fasciculus (ILF), uncinate fasciculus (UF) and posterior 
cingulate in svPPA patients (Galantucci et al., 2011; Agosta et al., 2012; 
Mahoney et  al., 2013; Mesulam et  al., 2014; Vandenberghe, 2016; 
Bouchard et al., 2019; Reyes et al., 2019) while a compromission of the 
left intrafrontal and frontostriatal fascicules has been reported in 
nfvPPA patients (Mandelli et al., 2014, 2016a).

In recent years, several studies have highlighted the potentialities 
of radiomics in the clinical and diagnostic work-up of patients with 
neurodegenerative diseases as an approach that allows capturing 
from radiological images non-trivial and complex features (compared 
to classical morphological approaches) associated with clinical and 
biological outcomes (Abbasian Ardakani et al., 2022). The radiomic-
based analytical framework combines features of global and local 
regions with machine and deep learning algorithms aiming at 
unveiling higher-order information underlying specific disorders 
(Wu et al., 2019; Xiao et al., 2019; Cao et al., 2020; Feng and Ding, 
2020; Liu et al., 2020; Jain et al., 2021; Kim et al., 2021; Zhou et al., 
2021; Cheung et  al., 2022). Studies that used radiomics on gray 
matter and white matter regions in patients with Alzheimer’s (AD) 
and Parkinson’s diseases (PD) showed promising results in terms of 

patients’ characterization by merging the high-throughput extraction 
of pattern-based information over specific brain regions with clinical 
data. In the field of FTLD dementias, radiomics has shown excellent 
performances in distinguishing FTD subtypes (Tafuri et al., 2022).

Given previous evidences of an asymmetrical brain involvement 
in PPA patients, in this study we applied radiomic analysis to explore 
white matter laterality pattern in patients with PPA variants and to 
investigate its relationship with performance at linguistic tasks.

2. Methods

2.1. Participants

Data used in the preparation of this retrospective study were 
obtained from the Frontotemporal Lobar Degeneration Neuroimaging 
Initiative (FTLDNI) database (for up-to-date information on 
participation and protocol, please visit1). We included 56 patients with 
PPA (31 svPPA and 25 nfvPPA) and 53 age- and sex-matched healthy 
control (HC) who had a valid baseline T1-weighted MRI sequence. In 
order to avoid potential bias derived from different imaging protocols, 
we selected exclusively images acquired at the University of California, 
San Francisco (i.e., the largest recruiting center). Approval for the 
FTLDNI protocol has been granted by institutional review board at 
the study site. All patients underwent clinical, imaging, language, and 
neuropsychological examination and fulfilled the current diagnostic 
criteria for PPA (Gorno-Tempini et  al., 2011). The control group 
consisted of individuals with no previous history of diagnosed 
neurological or psychiatric disorder and no complaint of memory 
decline (more information at2).

2.2. Clinical and language assessment

The Clinical Dementia Rating scale (CDR), with its language 
subscore (CDR language), was administered to assess the global 
cognitive status (Morris, 1993; Knopman et al., 2008).

Linguistic abilities were tested with the semantic verbal fluency 
(animal) and the phonemic verbal fluency (d words) tests (Benton, 
1969). Semantic fluency test assesses the ability to verbally generate as 
many words as possible from a given semantic category. In phonemic 
task participants are asked to produce as many words as possible 
beginning with the letter D in 1 minute. Finally, the total Boston Naming 
Test (BNT) correct score was computed as a measure of general 
linguistic ability, object naming and word retrieval (Kaplan et al., 1983).

2.3. MRI data processing

MR images were acquired on a 3 T Siemens Trio Tim system 
equipped with a 12-channel head coil including whole-brain three-
dimensional T1 MPRAGE (TR/TE = 2,300/2.9 ms, matrix = 240 ×  
256 × 160, isotropic voxels 1 mm3, slice thickness = 1 mm). An 

1 http://memory.ucsf.edu/research

2 https://memory.ucsf.edu/research-trials/research/4rtni-2
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experienced neuroradiologist examined the images for brain 
abnormalities other than atrophy.

The MRI were processed with FreeSurfer 6.0 with the standard 
cross-sectional pipeline (recon-all). The pre-processing steps 
comprised removal of non-brain tissue, bias correction, and 
segmentation into gray matter (GM), white matter (WM), and 
cerebrospinal fluid. The brain extracted non-uniform intensity 
corrected image (nu.mgz) was used to compute the radiomics features 
in WM regions. In particular, the FreeSurfer white matter parcellation 
approach (Salat et al., 2009) was used to classify the white matter 
according to the nearest cortical region (Desikan et al., 2006) and 
obtaining 34 regions of interest (ROIs) for each hemisphere. Detailed 
information on these procedures have been described in previous 
publications (Dale et al., 1999; Fischl et al., 2002, 2004).

2.4. Radiomics asymmetry index

The python package PyRadiomics (van Griethuysen et al., 2017) 
was used to extract radiomics features from 68 white matter ROIs (34 
regions for each hemisphere). For each ROI, we defined a set of 86 
radiomic features, including 16 first-order features to describe voxel 
intensity distribution within image mask and 70 second-order textural 
measures to highlight spatial distribution of voxels through five 
different matrices: 24 features from Gray Level Co-occurrence 
Matrices (GLCM), 16 from Gray Level Run Length Matrices 
(GLRLM), 14 measures from Gray Level Dependence Matrices 
(GLDM) and 16 features from Gray Level Size Zone Matrices 
(GLSZM) (Zwanenburg et al., 2020).

Given a brain region, the Asymmetry Index (AI) was computed 
for each radiomics measure as the ratio of the absolute difference 
between left and right feature values to its sum, multiplied by 100 
(Pedraza et al., 2004; Heckemann et al., 2011; Kim et al., 2012; Okada 
et al., 2016; Sarica et al., 2018):
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2.5. Statistical analysis

Data were explored with descriptive statistics (mean ± standard 
deviation or frequency).

Group differences in demographical, clinical data and 
performance at linguistic tasks were analyzed with chi-square test and 
Kruskal-Wallis analysis of variance followed by post-hoc test.

For each radiomics feature, analysis of variance was used to 
compare asymmetry index values between groups while controlling 
for age, gender and education, followed by effect size (Cohen’s d) 
computation (Cohen, 1988). Significance threshold was set at p < 0.05 
after Bonferroni correction for multiple comparisons.

Partial correlation (Spearman’s correlation) was used to explore 
the relationship between linguistic tests performances and AI values 
while controlling for the influence of age, gender, education and CDR 
total score. We considered only moderate correlations (Spearman 
r > |0.4|) (Schober et al., 2018). Statistical analysis was performed by 
using R software (Version 3.6.3: R Foundation for Statistical 
Computing, Vienna, Austria).

White matter areas that were statistically significant in pairwise 
comparisons and correlation analyses were mapped onto the JHU 
WM tractography atlas (Wakana et al., 2007) to identify white matter 
tracts involved in PPA neurodegeneration.

3. Results

3.1. Participants characteristics

Demographic and clinical data are reported in Table  1. No 
significant group differences emerged in education and gender. 
Patients with nfvPPA were older than controls and svPPA patients 
(p < 0.01, Bonferroni corrected). Concerning clinical data, PPA 
groups had higher CDR scores than controls (value of p < 0.001, 
Bonferroni corrected). Linguistic tests scores were lower in PPA 
patients respect to control group (p < 0.001, Bonferroni corrected). 
Significant differences in phonemic verbal fluency test emerged 
between patients’ groups, with nfvPPA patients presenting lower 

TABLE 1 Demographic and clinical data reported as mean and standard deviation (SD) values.

HC n = 53 nfvPPA n = 25 svPPA n = 31 Kruskal–Wallis test Post-hoc

Mean (SD or %) Mean (SD or %) Mean (SD or %) p

Age, years 64.11 (6.33) 68.56 (7.38) 62.81 (6.47) <0.005 nfvPPAvsHC, svPPA, 0.01

Female 23 (43.4) 11 (44.0) 18 (58.1) 0.393 -

Education, years 21.96 (19.13) 15.80 (2.60) 19.06 (15.08) 0.263 -

CDR 0.03 (0.12)a 0.44 (0.34) 0.65 (0.32) <0.001 HCvsnfvPPA, svPPA, <0.001

CDR language 0.0 (0.0)a 1.25 (0.77) 0.95 (0.51) <0.001 HCvsnfvPPA, svPPA, <0.001

Verbal Fluency-Animal 23.53 (5.14) 11.88 (8.69) 9.03 (4.15) <0.001 HCvsnfvPPA, svPPA, <0.001

Verbal Fluency-d words 15.87 (4.13) 6.60 (6.18) 8.97 (4.48) <0.001 HCvsnfvPPA, svPPA, <0.001 nfvPPA 

vs. svPPA, 0.01

Boston Naming Test 14.32 (0.89) 12.52 (2.45) 5.71 (3.53) <0.001 HCvsnfvPPA, svPPA, <0.001 nfvPPA 

vs. svPPA, <0.001

HC, Healthy Controls; nfvPPA, non-fluent variant of Primary Progressive Aphasia; svPPA, semantic variant of Primary Progressive Aphasia; CDR, Clinical Dementia Rating scale. aData 
available for 24 out of 53 healthy controls.

https://doi.org/10.3389/fnagi.2023.1120935
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Tafuri et al. 10.3389/fnagi.2023.1120935

Frontiers in Aging Neuroscience 04 frontiersin.org

scores than svPPA (d words, p = 0.01, Bonferroni corrected) and 
svPPA patients showing lower scores at BNT test than nfvPPA 
patients (p < 0.001, Bonferroni corrected).

3.2. Radiomics asymmetry index analysis

As reported in Figure 1, svPPA and nfvPPA patients showed an 
asymmetric pattern of compromission involving ILF and IFOF 
white matter fasciculi. In particular, radiomics asymmetry in 
svPPA patients mostly involved white matter regions adjacent to 
the medial orbitofrontal and middle temporal cortices as part of 
ILF/IFOF, SLF fasciculi and forceps minor white matter tract 
(detailed radiomics features are reported in Figure 2A). On the 
contrary, nfvPPA showed an asymmetrical radiomics in fusiform, 
isthmus cingulate and lateral occipital regions comprised in ILF, 
IFOF and forceps major fiber tracts (Figure 2B). Finally, between 
groups comparison depicted significative lateralized measures in 

rostral middle frontal, superior parietal and superior frontal 
cortices, corresponding to SLF, IFOF, cingulum and forceps minor 
white matter tracts (Figures 1C, 2C).

3.3. Correlation analysis

Results of correlation analysis are reported in Table  2. In 
nfvPPA patients, a significant correlation (p < 0.0059, r = 0.592) was 
found between semantic fluency scores and AI values of GLCM 
lmc1 (Informational measure of correlation-1, for more details 
visits3) evaluated in WM region adjacent to lateral occipital gyrus 
(ILF/IFOF). On the other hand, BNT scores were significantly 
associated with two AI measures in WM near the middle temporal 

3 https://pyradiomics.readthedocs.io/en/latest/features.html

FIGURE 1

White matter ROIs (in blue) and tracts involved (red, Fornix; green, IFOF; yellow, ILF; orange, SLF; pink, cingulum) for (A) svPPA versus HC, (B) nfvPPA 
versus HC and (C) svPPA versus nfvPPA comparisons. HC, Healthy Controls; nfvPPA, non-fluent variant of Primary Progressive Aphasia; svPPA, 
semantic variant of Primary Progressive Aphasia; WM, white matter; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; SLF, 
superior longitudinal fasciculus.
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(ILF/IFOF/SLF) (p = 0.0002, r = 0.654) and parahippocampal gyri 
(ILF/IFOF) (p = 0.0004, r = −0.631) of svPPA patients, namely a 
positive correlation with the range of voxel intensities and a 

negative correlation with GLDM high grey level emphasis values. 
No significant correlation was found between AI values and 
phonemic fluency for both PPA groups.

FIGURE 2

Effect size d for each binary comparison. (A) svPPA versus HC; (B) nfvPPA versus HC; (C) svPPA versus nfvPPA. We report the selected radiomics 
features (y-axis) for each ROI (white matter regions). HC, Healthy Controls; nfvPPA, non-fluent variant of Primary Progressive Aphasia; svPPA, semantic 
variant of Primary Progressive Aphasia; WM, white matter; GLCM, Gray Level Co-occurrence Matrices; GLRLM, Gray Level Run Length Matrices; GLDM, 
Gray Level Dependence Matrices; GLSZM, Gray Level Size Zone Matrices.
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4. Discussion

In the study, we investigated the asymmetry of radiomics features 
in white matter of svPPA and nfvPPA patients. Compared to controls, 
PPA patients were characterized by a lateralized structural 
compromission involving fronto-temporal and occipital white matter 
areas corresponding to different fiber tracts, namely the inferior 
longitudinal (ILF) and superior longitudinal (SLF) fasciculi, inferior 
fronto-occipital fasciculus (IFOF), fornix and cingulum (Routier et al., 
2018; Cocquyt et al., 2020). Moreover, an increased asymmetry of 
specific radiomic measurements in white matter areas adjacent to the 
lateral occipital gyrus was associated with lower semantic fluency 
performance in nfvPPA.

Overall, our findings provide further evidence that PPA patients 
exhibit an asymmetric damage that involved both gray and white 
matter morphology. Concerning svPPA patients, radiomics findings 
reported several significative AIs in ILF/IFOF and SLF with a 
predominance of the white matter near the middle temporal gyrus. 
Respect to previous study (Lombardi et al., 2021), our finding was in 
line with the left-sided compromission of this region. Similarly, 
tractography studies on diffusion-weighted imaging data also 
confirmed this lateralized damage (Agosta et al., 2012; Routier et al., 
2018). In particular, tract analysis showed a focal asymmetric 
reduction of fractal anisotropy involving the left temporal regions (left 
SLF) (Bouchard et al., 2019), corresponding to an increased mean 
diffusivity of ILF, bilaterally. Non fluent/agrammatic variant of PPA, 
instead, showed an asymmetric white matter damage close to the 
lateral occipital gyrus, corresponding to ILF and IFOF tracts 
(Galantucci et  al., 2011; Mandelli et  al., 2014). Structural 
compromission of this WM region has been reported in previous 
voxel-wise study, depicting a lateralized damage of inferior temporal 

and lateral occipital WM in nfvPPA (Lombardi et al., 2021). This 
finding was also confirmed by diffusion MRI results observing a 
fractal anisotropy decreasing in left occipital WM fibers in nfvPPA 
respect to healthy subjects (Agosta et al., 2012). Noteworthy, the most 
discriminative WM asymmetry to differentiate svPPA from nfvPPA 
was found in frontal regions (cingulum and the forceps minor WM 
tracts). Our result was suggestive of a more pronounced lateralization 
in frontal WM of nfvPPA respect to svPPA patients (Catani et al., 
2013; Spinelli et al., 2017). Furthermore, radiomics analysis assessed 
the left-sided compromission of the ‘frontal aslant tract’ in nfvPPA 
patients, as the principal pathway that connect the frontal gyrus with 
supplementary and pre-supplementary motor areas and playing a 
crucial role in speech production (Catani et al., 2013; Mandelli et al., 
2014; Canu et al., 2019).

Correlation analysis highlighted a strong relationship between the 
severity of linguistic deficits and AI of radiomics measures particularly 
between semantic fluency and asymmetry of lateral occipital white 
matter in nfvPPA patients. This neural correlate confirmed previous 
findings that demonstrated an association between semantic fluency 
deficit and a cortical thinning of the left lateral occipital cortex and 
lingual gyrus (Vonk et al., 2019). Moreover, Li et al. (2017) highlighted 
the same correlation results with a left-sided compromission of the 
IFOF tract, posteriorly starting from the lateral occipital white matter 
(Almairac et al., 2015). On the other hand, our lateralization analysis 
revealed an association in svPPA patients between WM AIs in the 
areas close to the parahippocampal/middle temporal and the Boston 
Naming Test scores. These findings further corroborate the connection 
of noun production and WM tracts projecting in temporal regions 
(including the cingulum), underlining the key role of the 
frontotemporal network in noun production (Ash et al., 2013). Of 
note, a study of surface stimulation over the parahippocampal gyrus 

TABLE 2 Spearman’s correlation coefficients of Verbal Fluency-Animal and Boston Naming test scores with radiomics AI for nfvPPA and svPPA patients.

svPPA nfvPPA

Asymmetry index ROI Value of p r Value of p r

Verbal Fluency—Animal

GLDM SmallDependenceEmphasis WM precuneus (ILF/IFOF) 0.292 −0.210 0.0475 −0.448

GLDM HighGrayLevelEmphasis WM parahippocampal (ILF/IFOF) 0.007 −0.503 0.9288 0.021

GLCM lmc1 WM lateraloccipital (ILF/IFOF) 0.548 0.121 0.0059 0.592

Boston Naming Test

GLRLM RunEntropy WM middletemporal (ILF/IFOF/SLF) 0.055 −0.373 0.017 −0.523

GLDM SmallDependenceLowGrayLevelEmphasis WM posteriorcingulate (Cingulum) 0.626 0.098 0.003 −0.617

GLCM Imc1 WM lateraloccipital (ILF/IFOF) 0.730 0.069 0.012 0.544

GLDM DependenceNonUniformity WM middletemporal (ILF/IFOF/SLF) 0.091 −0.331 0.053 −0.437

Firstorder Range WM middletemporal (ILF/IFOF/SLF) 0.0002 0.654 0.242 0.273

GLDM HighGrayLevelEmphasis WM parahippocampal (ILF/IFOF) 0.0004 −0.631 0.449 −0.179

GLCM ClusterTendency WM middletemporal (ILF/IFOF/SLF) 0.001 −0.580 0.104 0.374

Firstorder Uniformity WM middletemporal (ILF/IFOF/SLF) 0.005 −0.525 0.758 −0.073

GLDM DependenceNonUniformityNormalized WM middletemporal (ILF/IFOF/SLF) 0.025 −0.430 0.344 −0.223

GLDM SmallDependenceEmphasis WM precuneus (ILF/IFOF) 0.019 −0.448 0.189 −0.305

nfvPPA, non-fluent variant of Primary Progressive Aphasia; svPPA, semantic variant of Primary Progressive Aphasia; WM, white matter; GLCM, Gray Level Co-occurrence Matrix; GLRLM, 
Gray Level Run Length Matrix; GLDM, Gray Level Dependence Matrix; WM, white matter; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior 
longitudinal fasciculus.

https://doi.org/10.3389/fnagi.2023.1120935
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Tafuri et al. 10.3389/fnagi.2023.1120935

Frontiers in Aging Neuroscience 07 frontiersin.org

resulted in aphasic reactions, suggesting that it has a role in language 
comprehension and production (Sharp et al., 2004).

Overall, the strength of our approach raised from the potentiality 
of radiomics to capture the asymmetric structural deterioration of 
white matter in PPA patients. Indeed, radiomics was able to highlight 
the lateralized damage of the principal tracts involved in PPA 
variants. We  demonstrated a focal involvement of the inferior 
longitudinal and inferior fronto-occipital fasciculi, as part of the 
speech-production network. Furthermore, correlation analysis 
disclosed another captivating finding, highlighting the importance 
of ILF and IFOF tracts as involved in written and spoken language 
production. Accordingly, radiomics asymmetry may represent a 
candidate severity marker for language impairments in PPA patients. 
Overall, all these findings suggest our novel approach extracted from 
structural MRI makes the proposed study noteworthy and easily 
reproducible in the clinical practice routine as support to diagnosis 
and prognosis steps.

The principal limitation of our work is the lack of confirmation of 
the lateralization of white matter with diffusion-based data. Future 
studies should merge radiomics approach with diffusion weighted 
images to investigate the asymmetry of tract damage and to highlight 
possible association with language deficits in PPA variants. Moreover, 
the study has a relatively small sample size, which may not be entirely 
representative of the PPA spectrum, also lacking patients with 
logopenic variant. Of note, none of our patients had a histopathological 
diagnostic confirmation. Finally, the lack of clinical interpretation of 
the selected radiomic measurements makes it difficult to accurately 
interpret the results. Future studies should points out possible 
correlations of radiomics with biological data (genomics, 
transcriptomics, metabolomics, etc.) to give further insights into the 
clinical relevance of the radiomic findings.

5. Conclusion

This work provided important findings over structural white 
matter asymmetry in Primary Progressive Aphasia. Radiomics 
features depicted a mostly lateralized pattern on semantic variant 
respect to non-fluent/agrammatic PPA patients involving damage of 
principal linguistic fiber tracts, respectively the temporal and occipital 
parts of inferior longitudinal/fronto-occipital fasciculi. Moreover, the 
evaluation of radiomics asymmetry in association with 
neuropsychological fluency tasks highlighted novel neuroanatomical 
correlates with semantic fluency and Boston Naming Test specific for 
each variant of PPA.
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