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Introduction: Alzheimer’s disease (AD) even nowadays remains a complex

neurodegenerative disease and its diagnosis relies mainly on cognitive tests

which have many limitations. On the other hand, qualitative imaging will not

provide an early diagnosis because the radiologist will perceive brain atrophy

on a late disease stage. Therefore, the main objective of this study is to

investigate the necessity of quantitative imaging in the assessment of AD by using

machine learning (ML) methods. Nowadays, ML methods are used to address high

dimensional data, integrate data from different sources, model the etiological and

clinical heterogeneity, and discover new biomarkers in the assessment of AD.

Methods: In this study radiomic features from both entorhinal cortex and

hippocampus were extracted from 194 normal controls (NC), 284 mild cognitive

impairment (MCI) and 130 AD subjects. Texture analysis evaluates statistical

properties of the image intensities which might represent changes in MRI

image pixel intensity due to the pathophysiology of a disease. Therefore, this

quantitative method could detect smaller-scale changes of neurodegeneration.

Then the radiomics signatures extracted by texture analysis and baseline

neuropsychological scales, were used to build an XGBoost integrated model

which has been trained and integrated.

Results: The model was explained by using the Shapley values produced by

the SHAP (SHapley Additive exPlanations) method. XGBoost produced a f1-score

of 0.949, 0.818, and 0.810 between NC vs. AD, MC vs. MCI, and MCI vs. AD,

respectively.
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Discussion: These directions have the potential to help to the earlier diagnosis

and to a better manage of the disease progression and therefore, develop novel

treatment strategies. This study clearly showed the importance of explainable ML

approach in the assessment of AD.

KEYWORDS

Alzheimer’s disease, MRI, machine learning (ML), radiomic, explainability and
interpretability

1. Introduction

According to World Health Organization (WHO), Alzheimer’s
disease (AD) is in the top 10 diseases leading cause of death in
the United States (US) and it cannot be prevented or cured (Vaz
and Silvestre, 2020). It is the most common form of dementia
and clinically the disease manifests as memory loss disorientation,
confusion and behavior changes, whereas, in advance subjects
there is difficulty in speaking, walking even swallowing, therefore,
these individuals require 24/7 care. According WHO,1 there are 47
million patients worldwide and by 2030 this number is projected
to increase to 78 million. Although, therapeutic guidelines of
the disease are beyond the scope of this manuscript, interesting
information regarding new therapeutic guidelines and potential
benefits of electromagnetic fields (EMF) as an innovative approach
for the treatment of AD have been reported to many studies
(Ahmad et al., 2020; Fakhoury et al., 2021).

The diagnosis of the disease still remains probable and relies
on clinical and neuropsychological tests (Folstein et al., 1975;
Morris, 1993) which evaluate memory and language abilities.
Therefore, a subject is categorized as a patient with “probable” AD
and only post-mortem material will confirm the disease through
the detection of deposits of amyloid-β (Aβ) plaque deposition
and tau protein (NFTs) in the brain tissue (Braak and Braak,
1997). However, decades before the first clinical symptoms become
apparent, there is an inevitable progression of atrophy, which
initially affects the Medial Temporal Lobe (MTL) (Scahill et al.,
2002; Petrella et al., 2003; Jack et al., 2004). Most importantly,
mild cognitive impairment (MCI) which is the pre-dementia stage
cannot be identified easily by cognitive tests, as these subjects do not
have major memory problems which will affect their daily routine,
therefore they cannot be detected. Thus, a large effort has been
made to develop techniques that will allow the early identification
of AD, and in particular in quantitative imaging.

In diagnostic imaging interpretation, radiologists describe
qualitative characteristics of a region of interest (ROI) such as
its size, shape, speculation, cavitation or contrast enhancement.
The necessity of quantitative imaging in AD assessment derives
from the fact that the human eye cannot perceive anatomical
changes through qualitative imaging in the early stages of the
disease, whereas, through radiomic unique information which
may contain neurodegenerative changes can be extracted at the
microscopic level and before atrophy of the brain occurs. Through

1 https://www.who.int/news-room/fact-sheets/detail/dementia

quantitative imaging high-dimensional minable data (radiomics)
are extracted, such as histogram, texture features, wavelets,
Laplacian transforms, minkowski functionals or fractal dimensions.
In medical imaging, radiomics refers to the extract of a large
number of quantitative features to be used in the improvement
of diagnosis, prognostication and decision support. Through
radiomics valuable features (patterns) that are imperceptible to
the human eye are extracted, providing the clinician with valuable
information (Vial et al., 2018). The term radiomics, is motivated by
the idea that biomedical images contain hidden information that
reflects the underlying pathophysiology and that these relationships
can be revealed through quantitative image analysis (Gillies et al.,
2016). Features are specific image characteristic (patterns) that
may not be visible to a human but are recognized by a computer
algorithm. In combination with clinical data these models could
provide better classification accuracy.

Radiomics were initially used to identify imaging biomarkers
related to cancer (Mayerhoefer et al., 2020). However, nowadays are
being used for the assessment of other diseases as well, such as AD
(Chincarini et al., 2011; Feng et al., 2018; Leandrou et al., 2020).
After the acquisition of high-quality images, the identification
and segmentation of the ROIs is performed. Then, from these
ROIs quantitative features are extracted to develop diagnostic or
predictive models (Gillies et al., 2016). Brain magnetic resonance
imaging (MRI) studies require preprocessing steps such as spatial
registration and normalization, as mentioned in the section “2.
Materials and methods.” Although volumetry represents the most
used method to date, there is lack of research in the assessment
of AD using texture analysis. The study of Sørensen et al. (2015),
found that hippocampal texture was superior to volume reduction
for the disease prediction. For a comprehensive read in the
assessment of AD using quantitative methods, including texture,
the reader is refer to Leandrou et al. (2018).

With the rapid development of the acquisition imaging
techniques there is high dimensional and multimodal
neuroimaging data available which is difficult to analyze with
contemporary methods. As a result, the high demand of
computational analysis, has evolved the use of computational
machine learning (ML) methods for the integrative analysis of
those data. ML can be used to determine which features alone or in
combination are strongly correlated with outcomes for a disease.
More importantly, ML techniques such as deep learning and other
neural networks allow for the discovery of relationships that have
not been considered within the radiomic feature set extracted
(Vial et al., 2018), therefore, lead to new knowledge discovery of a
complex disease.
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Due to the plethora of information provided by radiomics,
genetics and cognitive tests, AD research through ML methods
is very popular. Table 1 tabulates studies that have used ML
techniques and radiomics for the assessment of AD, proposing that
these methods are suitable for the AD diagnosis. From the results
high accuracy metrics are reported, however, in the literature there
are many studies that used a very small sample, or do not refer to
the preprocessing methods used or the split of train or testing set,
showing that their methodology might not be appropriate.

In this study it is hypothesized that through the earlier
involvement of entorhinal cortex and hippocampus and by using
radiomics, it is likely to detect these microscopic alterations of
the disease before atrophy spreads. The use of radiomic features
on the entorhinal cortex represents a novelty in the assessment of
AD as only in one study has been used before (Leandrou et al.,
2020). We aimed to build and validate a radiomics-integrated
model through features extracted from both the hippocampus
and entorhinal cortex to classify MCI and AD subjects from NC.
Only radiomics features were used and the results are compared
to other multimodal studies that combined quantitative imaging
with other features such as genetics. The paper is organized as
follows. The data acquisition is fully described in the section
“2. Materials and methods.” In the same section there is a
comprehensive description of the data preprocessing and the
explainable machine learning model. The results follow in the
section “3. Results” and the discussion follow in the section “4.
Discussion.” “5. Conclusion” section presents the conclusion over
the hypothesis.

2. Materials and methods

This is an observational, cross-sectional study. Hence, this
study reports its background, methods, and results in line with
the STrengthening the Reporting of OBservational studies in
Epidemiology (STROBE) reporting guidelines (von Elm et al.,
2007). To engage in a transparent way of reporting AI-based
studies, this article is also aligned with the Minimum Information
about CLinical Artificial Intelligence Modeling (MI-CLAIM)
checklist (Norgeot et al., 2020).

2.1. The Alzheimer’s Disease
Neuroimaging Initiative

Data were acquired from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI).2 The ADNI was launched
in 2003 by the National Institute on Aging, the National Institute
of Biomedical Imaging and Bioengineering, the Food and Drug
Administration, private pharmaceutical companies and non-profit
organizations as a public-private partnership. The goal of the
ADNI study is to determine biological biomarkers of AD through
neuroimaging, genetics, neuropsychological tests and other
measures in order to develop new treatments and monitor their
effectiveness and lessen the time of clinical trials.

2 http://adni.loni.usc.edu/

2.2. MRI data

All the subjects had a standardized protocol on 1.5-T MRI
units from Siemens Medical Solutions and General Electric
Healthcare. MR protocols included high-resolution (typically
1.25 × 1.25 × 1.25 mm3 voxels) T1-weighted volumetric 3D
sagittal magnetization prepared rapid gradient-echo (MPRAGE)
scans. The typical 1.5T acquisition parameters were TR = 2400 ms,
minimum full TE, TI = 1000 ms, flip angle = 8◦, FOV = 24 cm,
with a 256 × 256 × 170 acquisition matrix in the x-, y-, and
z-dimensions, yielding a voxel size of 1.25 × 1.25 × 1.2 mm3. MRI
data acquisition techniques were standardized across different sites
according to ADNI protocol.3

2.3. Segmentation algorithm and texture
analysis

Region of interest segmentation was performed using the
Freesurfer image analysis suite (Massachusetts General Hospital,
Boston, MA), which is documented and freely available for
download online.4 The Freesurfer pipeline, conforms the MRI
scans to an isotropic voxel size of 1 mm3, and the MRI intensity
was normalized using the automated N3 algorithm (Sled et al.,
1998) followed by skull stripping and neck removal. Details of these
have been discussed in previous publications (Fischl et al., 2004,
2002). In brief, this multistep pipeline includes motion correction,
automated Talairach transformation, first normalization of voxel
intensities, removal of the skull, linear volumetric registration,
intensity normalization, non-linear volumetric registration,
volumetric labeling, second normalization of voxel intensities,
and white matter segmentation. Output includes segmentation
of subcortical structures, extraction of cortical surfaces, cortical
thickness estimation, spatial normalization onto the FreeSurfer
surface template (FsAverage), and parcelation of cortical regions.

Texture features were calculated using KNIME Analytics
platform (Berthold et al., 2008). Knime is an open-source bioimage
analysis platform which hosts an image processing extension
where the user can process and analyze huge amounts of images
through workflows. For this study a workflow was build to extract
the following Haralick texture features (Haralick et al., 1973):
Angular Second Moment (ASM), Contrast, Corelation, Variance,
Sum Average, Sum Variance, Entropy and Cluster shade. Their
average in four directions (0◦, 45◦, 90◦, 135◦) was used.

2.4. Subjects

All subjects selected for this study were from standardized data
collections5 and specifically from the ADNI-1 Complete 2 and
3 year 1.5 Tesla datasets. All data acquired as part of this study
are publicly available (see text footnote 2). Enrolled subjects were
all between 55 and 90 years of age and each subject was willing,

3 http://adni.loni.usc.edu/methods/documents/mri-protocols/

4 http://surfer.nmr.mgh.harvard.edu/

5 http://adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data/
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TABLE 1 Selected quantitative MRI studies where machine learning (ML) techniques and radiomics were used in the assessment of AD.

References Subjects Description Split Methodology Results

Bogdanovic et al., 2022 Total 9,592 subjects (NC,
EMCI, LMCI, SMC. AD)

Structural MRI, PET, gene
expression and cognitive
measures.

Training (70%) and testing
(30%)

Correlation analysis f1-score:0.84

Shu et al., 2021 MCI: 357 AD:154 Structural MRI, CSF, APOE
ε4, cognitive measures.

Training (70%) and Testing
(30%)

Logistic regression AUC of 0.814, sensitivity of
0.726, and specificity of 0.798.

Achilleos et al., 2020 NC: 144, AD: 69 Haralick features from
hippocampus.

10-fold cross validation Decision tree and
random forests

Accuracy: 0.770

Khan and Zubair, 2020 343 sessions–150
subjects (NC: 72,
AD:78)

Structural MRI,
cognitive measures,
demographics.

Random selection allocation
for train, validate and test

Random Forest Accuracy: 0.868
precision: 0.941
recall: 0.8
AUC: 0.872

Battineni et al., 2020 373 sessions–150
subjects (NC:72,
AD:64, MCIc:14)

Structural MRI, cognitive
measures, demographics.

10-fold cross validation Hybrid modeling Accuracy: 0.980
precision: 0.981
recall: 0.980 ROC:
0.991

Kim et al., 2019 NC:146, AD: 143 Structural MRI. 10-fold cross validation Principal component and
linear discriminant
analysis

Accuracy: 75.8%

Spasov et al., 2018 NC: 184, MCI: 409 AD: 192 Structural MRI, APOEε4
cognitive measures,
demographics.

10-fold cross validation Convolution neural
network

AUC of 0.925, accuracy: 86%,
sensitivity: 87.5% and
specificity: 85%

NC, normal control; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; AD, Alzheimer’s disease; MRI, magnetic resonance imaging; PET, positron emission
tomography; CSF, cerebrospinal fluid; MMSE, mini mental state examination; CDR, clinical dementia rate; AUC, area under curve; MCIc, mild cognitive impairment converted.

able to perform all test procedures described in the protocol and
had a study partner able to provide an independent evaluation
of functioning. Overall, 455 subjects were included in the study:
153 NC, 218 MCI and 84 AD as seen in Table 2. According
to ADNI protocols, all procedures performed in studies were in
accordance with the ethical standards of the institutional and/or
national research committee and with the 1964 Helsinki declaration
or comparable ethical standards. More details can be found at http:
//adni.loni.usc.edu/.

2.5. Cognitive measures

All subjects underwent through clinical and cognitive
assessment at the time of baseline scan to determine their
diagnosis. Inclusion criteria for NC were: MMSE scores between
24 and 30; CDR of zero; absence of depression, MCI and dementia.
Inclusion criteria for MCI were: MMSE scores between 24 and
30; CDR of 0.5; objective memory loss, measured by education
adjusted scores on Wechsler Memory Scale Logical Memory II
(Elwood, 1991), absence of significant levels of impairment in
other cognitive domains and absence of dementia. Inclusion
criteria for AD were: MMSE scores between 20 and 26; CDR of
0.5 or 1.0; National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association (NINCDS/ADRDA) criteria for probable
AD (McKhann et al., 1984; Dubois et al., 2007). Definitive
autopsy-based diagnosis of AD was not possible and detailed
description of inclusion/exclusion criteria can be found in the
ADNI protocol.6

6 http://adni.loni.usc.edu/methods/documents/

2.6. Explainable machine learning and
statistical analysis

In the context of explainable ML systems, when a model is built
it is important to understand how it is choosing the appropriate
features for classification (or prediction). In explainable ML it
is estimated how much each feature contributes to the model’s
classification. The importance of each feature was evaluated by
using the Shapely Addictive exPlanations (SHAP) in terms of
Shapley values. A scalable tree boosting system XGBoost ensemble
classifier was used which is less prone to overfitting and requires
less feature engineering (Chen and Guestrin, 2016).

An individual radiomic feature is generally insufficient to
differentiate between the MCI and AD groups. Hence, to achieve
a higher likelihood of group separation, a multivariate analysis,
which identifies sets of characteristics, was performed. Feature
selection methods were applied to avoid overfitting. Initially, a zero
or near zero variance filter was used to identify and remove features
that were almost constant, and therefore non-informative in the
training dataset. Next, a Pearson correlation coefficient (>0.90)
was performed to remove redundant features. For the development
of this model, first, we split the data in training and test set.
The hold-out test set consisted of 30% randomly selected samples
from the original data set and the split was stratified so that both
train and test sets have the same proportion of labels. A nested 5-
fold cross-validation (CV) procedure with an accuracy metric was
used to determine the optimal parameters of the learning rate and
maximum depth of trees. Randomized grid search is used with 60
iterations is used in order to find the best hyperparameters. The
trained model was then applied to the hold-out test set in order
to predict the corresponding outcomes. Additionally, accuracy,
sensitivity, specificity, FPR: False Positive Rate; FNR: False Negative
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TABLE 2 Baseline demographics and hippocampal and entorhinal cortex
volume.

Variables at
baseline

NC
(n = 194)

MCI
(n = 284)

AD
(n = 130)

p-
value

Sex (M/F) 96/98 181/103 60/70 0.003

Age (mean ± SD) 74.9 (5.2) 71.8 (8.1) 75.0 (7.5) 0.588

MMSE score
(mean ± SD)

29 (1.1) 27 (1.4) 23 (2.2) 0.000

Entorhinal cortex
volume (mm3)

1930 (284) 1719 (384) 1417 (348) <0.001

Hippocampal
volume (mm3)

3539 (413) 3243 (461) 2892 (474) <0.001

NC, normal controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; MMSE,
mini mental state examination; SD, standard deviation.

Rate and area under the receiver operating characteristic (ROC)
curve were also calculated, as a measure of the quality of the binary
classifications (Table 3).

The overall methodology workflow can be seen in Figure 1.

3. Results

As mentioned before, in this study we evaluated the importance
of each feature by using SHAP values. SHAP value is a measure
which shows whether one feature has positive or negative impact
on the output and how high affects the model output. A higher
SHAP value (higher deviation from the center of the graph) means
that the feature value has a higher impact on the prediction for the
selected class. Positive SHAP values (points right from the center)
are feature values with an impact toward the prediction for the
selected class. Negative values (points left from the center) have
an impact against classification in this class. F1-score is one of the
most important evaluation metrics in ML. It sums up the predictive
performance of a model by combining two otherwise competing
metrics — precision and recall. Precision is also known as positive
predictive value, and recall is also known as sensitivity in diagnostic
binary classification.

Figure 2 visualizes sensitivity, specificity, accuracy and f1-score
between the groups and as expected, the graphs confirm that NC vs.
MCI and MCI vs. AD groups are more difficult to be classified.

Table 3 shows complete evaluation of XGBoost performance
between the groups of radiomic features alone and in combination
with cognitive measures. To measure the performance of the
classification tasks between the groups, sensitivity, specificity,
accuracy, precision, False Positive Rate (FPR), False Negative Rate
(FNR), f1 score and area under curve (ROC) were calculated. The
combination of radiomic and clinical features is most common
method in AD research, and in our study XGBoost produced a f1-
score of 0.949, 0.818 and 0.810 between NC vs. AD, NC vs. MCI
and MCI vs. AD groups, respectively, which is considered to be
highly competitive among other studies in the literature. Overall
classification accuracy was also very satisfactory deviating from
0.786 to 0.946.

Figures 3–5, depict the summary plots of variables importance
in the classification of NC vs. AD, NC vs. MCI and MCI vs.
AD. They illustrate the selected number of features that are most

important in the classification of NC vs. AD, NC vs. MCI and MCI
vs. AD, respectively. For each feature, points in the horizontal axis
represent SHAP values.

For the classification of NC vs. AD subjects (Figure 3), it is
noticed that the feature which proved to demonstrate the highest
positive impact on the model output was the entorhinal cortex
contrast. As expected, lower entorhinal cortex and hippocampal
volume values, have a positive impact for this group.

When considering the impact of these variables on the model
output for the classification of NC vs. MCI (Figure 4) the
results indicated a positive impact for low entorhinal cortex sum
average values, followed by a positive impact of high hippocampal
sum variance values. For this group, both entorhinal cortex and
hippocampal volumes, appear to have lower impact on the model
as NC and MCI subjects do not have major volume differences.

Finally, the classification of MCI vs. AD (Figure 5) seems
to be positively affected by high hippocampal variance measures
followed by hippocampal sum variance and sum average where
lower values affect the model positively. Interestingly, entorhinal
cortex volume seems to have a higher impact compared to
hippocampal volume for this group.

4. Discussion

In the present study, radiomics signatures from the entorhinal
cortex and the hippocampus were used and combined with baseline
neuropsychological scales. Then, an XGBoost integrated model was
used which has been trained and integrated for the classification
of MCI and AD subjects. The model was explained by using
the Shapley values produced by the SHAP method. No, genomic
data such as apolipoprotein E4 (apoE4) were included in the final
model because we wanted to evaluate the performance of radiomic
features. The main results are summarized in the Table 3. Our
findings indicated that the combination of radiomic features alone
or in combination with cognitive measures, could be used for the
evaluation of AD.

As in every disease, biomarkers play a crucial role in its
early diagnosis. In AD, the most studied biomarkers include
biochemical biomarkers such as apoE4 or cerebrospinal fluid (CSF)
sample, cognitive tests and neuroimaging markers. However, the
application of biochemical markers is not very commonly used due
to their interventional collection procedure. On the other hand,
cognitive tests will be only applied on patients with symptoms.
Therefore, neuroimaging biomarkers especially of those derived
from MRI where no ionized radiation is used, are currently the
main research focus.

In this study we chose to extract radiomic features from
two of the most well studied ROIs in AD, the hippocampus
and the entorhinal cortex. Although hippocampus represents the
most established ROI used in the assessment of AD, the earlier
involvement of the entorhinal cortex was proved by many studies
(Gómez-Isla et al., 1997; Juottonen et al., 1999; Galton et al.,
2001; Killiany et al., 2002; Busatto et al., 2003; deToledo-Morrell
et al., 2004; Tapiola et al., 2008). In two comprehensive reviews
(Zhou et al., 2016; Leandrou et al., 2018) the authors concluded
that structural changes in the early stages of the disease are more
pronounced in the entorhinal cortex. Interestingly, the use of
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TABLE 3 XGBoost classification performance between groups.

Measure NC vs. AD NC vs. MCI MCI vs. AD

Radiomics Radiomics and
cognitive measures

Radiomics Radiomics and
cognitive measures

Radiomics Radiomics and
cognitive measures

Sensitivity 0.799 0.965 0.623 0.764 0.805 0.870

Specificity 0.878 0.907 0.711 0.862 0.582 0.693

Accuracy 0.847 0.946 0.666 0.806 0.719 0.786

Precision 0.822 0.933 0.688 0.881 0.749 0.758

FPR 0.074 0.093 0.142 0.137 0.165 0.306

FNR 0.080 0.034 0.349 0.235 0.118 0.129

f1 Score 0.797 0.949 0.643 0.818 0.766 0.810

ROC 0.910 0.940 0.720 0.880 0.750 0.780

NC, normal controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; FPR, false positive rate; FNR, false negative rate; ROC, receiver operating characteristic.

FIGURE 1

Methodology workflow.

FIGURE 2

Sensitivity, specificity, accuracy, and f1 scores between the groups.

entorhinal cortex texture features in the assessment of AD is very
limited in the literature, however, it is the first structure affected
by AD. Therefore, in the present study entorhinal cortex texture

features were combined with hippocampal texture features and
evaluated if there significantly different radiomic features between
NC, MCI, and AD subjects.

Frontiers in Aging Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1149871
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1149871 May 31, 2023 Time: 14:38 # 7

Leandrou et al. 10.3389/fnagi.2023.1149871

FIGURE 3

Impact of variables on the classification of NC vs. AD group.

FIGURE 4

Impact of variables on the classification of NC vs. MCI group.

As the ADNI database is used by many researchers in the
assessment of AD, we compared the classification results or our
model with those of previous studies. For the classification of NC
and AD subjects (Li et al., 2020), used support vector machines
(SVM) and RF to verify the efficiency of their model. An average
accuracy of 89.7–95.9 and 87.1–90.8% in the validation set and
81.9–89.1 and 83.2–83.7% in the test set, respectively were achieved.
Similarly, the study by Jiang et al. (2022) achieved a classification

accuracy between NC and AD of 89.85% ± 1.12%. However, in their
model apart from MRI radiomic data, cognitive, genetic and PET
data were also used. Although our model used only data derived
from MRI and cognitive tests it achieved an f1-score of 0.949 and an
accuracy of 0.946 for the classification of NC vs. AD subjects. This
result is highly competitive among those published in the literature.

In the study by Liu et al. (2018) ML was also used and
specifically multiple kernel boosting (MKBoost) algorithm. In their
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FIGURE 5

Impact of variables on the classification of AD vs. MCI.

model, included whole brain measures from structural MRI. They
achieved an accuracy of 95.65% and a ROC of 0.954 for NC vs. AD,
an accuracy of 86.79% and a ROC of 0.826 for NC vs. MCI and an
accuracy of 89.63% and an ROC of 0.907 for MCI vs. AD. Their
results were similar to our study were a ROC of 0.940, 0.880 and
0.780 were seen between NC vs. AD, NC vs. MCI and MCI vs. AD.
However, our study only used 2 structures whereas Liu et al. (2020)
used features from the whole brain. In a multimodel deep learning
Convolutional Neural Network (CNN) study by Liu et al. (2020),
the hippocampus was used for the classification of NC vs. AD, and
NC vs. MCI subjects. They achieved an accuracy of 88.9% and an
AUC of 92.5%, and an accuracy of 76.2% and an AUC of 77.5%,
respectively.

In AD, the classification of MCI subjects is the most challenging
as these subjects are not easily identified. These subjects may have
decreased memory function beyond the normal level based on a
given person’s age and education; however, they do not fulfill the
criteria for dementia, as their cognitive function is comparable to
NC subjects. Most of the MCI subjects will remain stable even
after 10 years of follow-up (Mitchell and Shiri-Feshki, 2009) and
only a small percent (10–15%) will progress to AD (Farias et al.,
2009). Distinguishing MCI subjects is of great importance and
much effort has been put into identifying the MCI subjects that
will eventually convert to AD. In this study, for the classification
of NC vs. MCI and MCI vs. AD subjects we achieved an f1 score
of 0.818 of 0.810 and a ROC of 0.880 and 0.780, respectively. In
a similar study, (Shu et al., 2021) for the classification of MCI
subjects from AD they achieved an accuracy of 0.814. In another
study (Bogdanovic et al., 2022) where XGBoost was also used they
achieved a f1-score of 0.840. However, in the aforementioned
studies, apart from radiomics, they included other biomarkers such
as CSF and/or apoe gene.

Compared to commonly used classification methods such as
logistic regression, XGBoost method seems to perform better.
Specifically, in the study by Leandrou et al. (2020) where the same
database and subjects to this study were used, the classification
accuracies between NC vs. AD, NC vs. MCI and MCI vs. AD
were 0.914, 0.740 and 0.780, which were lower compared to the
XGBoost results of this study. However, although most of the
texture features and group of subjects were used, a diagnostic
performance comparison between XGBoost and logistic regression
is beyond the scope of this study, and should not be criticized only
by the aforementioned results. One study that directly compared
logistic regression and SVM to XGBoost was made by Suh et al.
(2020) and it was found that the use of XGBoost significantly
improved the classification compared to the linear Support Vector
Machine (SVM) and logistic regression.

Unfortunately, the diagnosis of the disease, still depends on
cognitive tests and qualitative imaging assessment. According to
the results of this study, quantitative imaging can provide an earlier
diagnosis of the disease. However, with quantitative imaging the
most major problem of ML is that computers do not explain
their predictions which is a barrier to the adoption of ML. What
differentiates this study from other ML studies is that the clinician
can evaluate the impact of each feature selected by the model.
Therefore, the clinical could link a feature used by the model with
the history of the patient. Compared to other quantitative imaging
features such as from positron emission tomography (PET), MRI
lacks of ionizing radiation, therefore, it can be used without any
radiation risks. Although amyloid markers such as cerebrospinal
fluid (CSF) Amyloid β (Aβ1−42) and Aβ PET could detect changes
in an earlier stage of the disease, both techniques begin to plateau
at the MCI stage where the disease becomes evident (Frisoni et al.,
2006). Furthermore, PET studies are not accessible for all subjects,
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due to several factors such as cost, radiopharmaceutical limitations
(availability, targeting amyloid or tau proteins).

Of course, this study has some limitations. First, the sample
size could limit the statistical power of the model. Furthermore,
only baseline measures were included. Longitudinal measures are
very important in AD research to evaluate the overall progress of
the subjects, especially of the MCIs. Another, limitation, could be
the fact that apart from radiomics and patient demographics, no
other biomarkers were included such as, Aβ amyloid, apoE4, CSF
sample. However, in this study we wanted to evaluate a radiomics-
integrated model only without the aforementioned biomarkers.
Future work in AD research should include more participants
through multicenter collaboration and datasets.

5. Conclusion

Quantitative imaging has shown promising results in the
assessment of AD. The results of this study shown that entorhinal
cortex and hippocampal texture features can be used as potential
biomarkers of the disease and in combination with ML algorithms
can provide an earlier diagnosis especially from other quantitative
techniques, such as volumetric. One of the most challenging tasks
in AD assessment if the identification of MCI subjects. The deep
learning-based classification algorithm used in this study accurately
differentiated MCI and AD subjects with a relatively high accuracy.
It is expected that when radiomic features are combined with other
data as well, such as cognitive measures they will perform even
better. Furthermore, explainable ML methods can be used to unveil
new knowledge to the complexity of AD.
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