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Introduction: Parkinson’s disease is one of the most prevalent neurodegenerative

diseases. In the most advanced stages, PD produces motor dysfunction that

impairs basic activities of daily living such as balance, gait, sitting, or standing.

Early identification allows healthcare personnel to intervene more e�ectively in

rehabilitation. Understanding the altered aspects and impact on the progression

of the disease is important for improving the quality of life. This study proposes a

two-stage neural network model for the classifying the initial stages of PD using

data recorded with smartphone sensors during a modified Timed Up & Go test.

Methods: The proposed model consists on two stages: in the first stage, a

semantic segmentation of the raw sensor signals classifies the activities included in

the test and obtains biomechanical variables that are considered clinically relevant

parameters for functional assessment. The second stage is a neural network

with three input branches: one with the biomechanical variables, one with the

spectrogram image of the sensor signals, and the third with the raw sensor signals.

Results: This stage employs convolutional layers and long short-term memory.

The results show a mean accuracy of 99.64% for the stratified k-fold

training/validation process and 100% success rate of participants in the test phase.

Discussion: The proposed model is capable of identifying the three initial stages

of Parkinson’s disease using a 2-min functional test. The test easy instrumentation

requirements and short duration make it feasible for use feasible in the clinical

context.

KEYWORDS

Parkinson’s disease, classification severity, neural network, smartphone, functional
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1. Introduction

Parkinson’s disease (PD) is a prevalent progressive neurodegenerative disease (Ascherio

and Schwarzschild, 2016; Simon et al., 2020). In the advanced stages, PD can cause motor

dysfunction that alters the performance of basic activities of daily living (ADLs). Early

identification of PD through clinical evaluation and functional tests allows the healthcare

personnel to intervene properly in rehabilitation plans (Ascherio and Schwarzschild, 2016).

Understanding the specific functional alterations in ADL, such as balance, gait, sitting, or

standing, can help clinicians develop individualized rehabilitation plans and improve the

quality of life of PD patients (Ascherio and Schwarzschild, 2016).
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In the recent years there has been a trend toward sensorizing

and applying data processing techniques to clinical functional tests.

Portable sensors such as instrumented insoles, accelerometers,

or inertial sensors (Ponciano et al., 2020) have been used to

obtain clinically relevant parameters for studying the functional

alterations of PD patients (Serra-Añó et al., 2020; Mollà-Casanova

et al., 2022). The use of instrumented functional tests have also

resulted in the generation of significant amounts of data (Weiss

et al., 2011; Channa et al., 2020; Fuentes-Abolafio et al., 2020),

opening up the possibility of applying advanced data analysis

techniques such as machine learning and deep learning (Rehman

et al., 2019; Butt et al., 2020; Xia et al., 2020; Mirelman et al., 2021).

In PD, clinically relevant parameters obtained from functional

tests have been used to generate mathematical models that

establish disease severity classifications (Bhidayasiri and Tarsy,

2012), determine functional status categories (Wrisley and Kumar,

2010), or identify risk levels (Sun and Sosnoff, 2018; Friedrich

et al., 2021). Many studies have focused on analysing signals in

the space-time domain, calculating biomechanical variables such as

the trajectory of the center of pressures or time distribution during

gait phases (Tong et al., 2021). Various classification techniques,

including support vector machine (SVM), random forest (RF),

decision trees (DT), or k-nearest neighbors (KNN; Trabassi et al.,

2022), have been used to classify the severity of Parkinson’s disease

with an accuracy around 80 and 90%.

Although discrete variables-based methods have shown good

results, they have a significant disadvantage of requiring prior

feature selection and signal parametrization. This process is time-

consuming and may lead to the loss of valuable information. These

drawbacks may be overcome using the sensor raw data as the input

to an artificial neural network (ANN), letting the ANN itself to

identify the relevant information and extract the features to build

the model. This approach has already shown very good results in

the classification of PD severity, with an accuracy between 95 and

98%, using convolutional neural networks (CNN; El Maachi et al.,

2020), long short-term memory (LSTM; Zhao et al., 2018a; Butt

et al., 2020), or a combination of both (Zhao et al., 2018b; Xia et al.,

2020).

Some authors have explored the analysis in the frequency

domain instead of the time domain (Kim et al., 2018). The

processed the spectrogram image of inertial sensors recordings

using CNN, hypothesizing that the frequency components of

involuntary movements could aid in identifying the level of

severity of the disease. Although the accuracy rate in classifying

PD stages was lower with this frequency analysis approach (83–

85%) compared to the time domain approach, it may provide

complementary information valuable for clinical evaluation of PD.

Considering the aforementioned findings, we hypothesize

that a mixed input model comprising all three types of data

(biomechanical variables, time domain, and frequency domain)

would be capable of extracting all the relevant clinical features,

outperforming the accuracy of simpler models.

The main objective of this study is to assess the accuracy of

a mixed input model for classifying the early stages of PD using

an instrumented functional assessment test. To achieve this, we

developed a two-stagemodel that employs biomechanical variables,

sensor raw data, and frequency analysis as inputs. We compared

the performance of the proposed model was with that of simpler

models that only utilized a subset of the inputs (raw signals only,

frequency analysis only, and biomechanical variables only). As a

secondary objective, we tested the accuracy of a CNN in automating

the process of signal semantic segmentation and biomechanical

variables calculation from the sensor raw data.

2. Materials and methods

2.1. Participants

Eighty-seven participants with PD distributed according to

the Hoehn and Yahr (HY) scale (21 stage I, 30 stage II, and

36 stage III) agreed to participate in this cross-sectional study.

Inclusion criteria for participation in the study has been as follows:

(i) PD diagnosed by a neurologist [HY I, II, and III] (Hoehn

and Yahr, 1967), (ii) have optimized and stable medical therapy

at least one month before enrolment; (iii) have good cognitive

status, defined as a score higher than 23 on the Mini-Mental State

Exam (Folstein et al., 1975), (iv) ability to perform a modified

Timed up & go (TUG) independently.

Exclusion criteria has been: (i) medical contraindications to

physical activity, (ii) neurological or orthopedic injuries limiting

independent walking and sitting or standing up from a chair,

(iii) deafness or hearing problems, (iv) vestibular impairment, (v)

blindness or a visual impairment, (vi) mental illness, (vii) any

surgical procedure within the past 6 months before enrolment;

(viii) people with IV and V stages of PD.

Participants were prospectively classified using the HY scale by

their referring neurologist. Then, a physiotherapist conducted the

functional assessment proposed, and scored the participant again

on the HY scale. Stages IV and V were excluded from the study

due to the implied severe disability that made it difficult to perform

the test independently without the use of assistive products (Giladi

et al., 2001; Goetz et al., 2004; Lescano et al., 2016).

All procedures were conducted in agreement with the World

Medical Association Declaration of Helsinki principles. Ethical

approval for the study was granted by the Ethics Committee of

Universitat de València (H1517239006520), and all volunteers that

participated in the study provided written informed consent.

2.2. Functional assessment

The functional assessment test is based on a modification

of the TUG test already used and validated in this type of

population (Serra-Añó et al., 2020; Mollà-Casanova et al., 2022).

The modification to the TUG consists on: the inclusion of a pre-

balance phase, the assessment of the reaction time to an external

sound stimulus (Serra-Añó et al., 2019). The assessment of sitting-

up and standing-up from a chair. The test consists of the following

four phases (Figure 1):

• Phase 1: bipodal balance for 30 s with arms alongside the body.

• Phase 2: walking in a straight line toward a chair 3 m away

when the external sound stimulus is produced.
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FIGURE 1

Functional assessment test execution sequence. 1. Balance standing upright for 30 s until the sound stimulus sounds; 2. Walk in a straight line toward

the chair located 3 m away; 3. Turn around and sit in the chair; 4. Walk 3 m to the starting area and end the recording of the functional test.

FIGURE 2

Structure of the two-stage Parkinson classifier model.

• Phase 3: turn around and sit on the chair, get up from the

chair.

• Phase 4: walk 3 m back to the starting area.

The participants were asked to perform the protocol as

quickly as possible while staying within their safety margins

to avoid any possible harm. The test was conducted using an

inertial sensor embedded in an Android smartphone (High

Performance 6-Axis MEMS MotionTrackingTM composed

of 3-axis gyroscope; 3-axis accelerometer at 100 Hz) attached

to the back of the waist (L4-L5 vertebrae) with a strap.

Throughout the study, the sensor signals were recorded

using the Fallskipr system app. FallSkipr is a commercial

system developed by the IBV (Instituto de Biomecánica

de Valencia). This system was solely used in our study for

recording the measurements and controlling the testing

times. No calculations or analysis were performed by the

FallSkipr application. Instead, all the calculations and analysis

were performed offline on dedicated scripts for the analysis

of the data.
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FIGURE 3

Structure of the Unet model for semantic segmentation of functional assessment. It is composed of four encoder blocks and four decoder blocks

interconnected with a bridge in the central part where all the characteristics of the input signals are encoded. Each encoder/decoder block is

composed of a series of 1D convolutional layers and a normalization (blue arrows). The outputs of these blocks (Sn and Pn) are interconnected with

the next encoder block (red arrows) and with the analog decoder (gray arrows). The output of the model is the probability of each timestamp (64

input timestamps) of the activity of the functional test.

FIGURE 4

Structure of the Parkinson level classification model with mixed input data. The temporal input data (upper branch) is a moving window of 64

timestamps with the three axes of each sensor (accelerometer and gyroscope); this branch of the model is composed with a series of convolutional

layers and LSTM to automatically extract the temporal characteristics of the signals. The branch with the frequency information (center branch) is the

spectrogram image of the temporal signal, this branch is composed of convolutional layers to extract the information contained in the images. The

branch with biomechanical variables (the lower branch) is composed of densely connected layers. All these branches are joined before the Top

Model with a linear output layer between 0 and 1 with the points of 0.33 and 0.66 for the di�erent levels.
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TABLE 1 Demographic characteristics and biomechanical variables of the participants.

All participants HY-I HY-II HY-III ANOVA

(n = 87) (n = 21) (n = 30) (n = 36) (p-value)

Age (years) 69.09 (8.71) 67.14 (8.20)∗ 66.10 (9.40)∗∗ 72.58 (7.22) 0.005

Weight (Kg) 74.41 (15.97) 72.36 (11.88)∗∗∗ 85.03 (18.72)∗∗ 66.75 (9.80) <0.001

Height (cm) 166.14 (8.31) 166.81 (6.92) 170.57 (7.34)∗∗ 162.06 (7.97) <0.001

Sex (n, %)

Women 30, 34.48 8, 38.10 5, 16.67 17, 47.22 –

Men 57, 65.52 13, 61.90 25, 93.33 19, 52.78 –

MLDisp (mm) 9.29 (7.95) 5.43 (2.65) 8.86 (8.34) 11.89 (8.81) 0.01

APDisp (mm) 22.90 (11.56) 18.44 (9.52) 21.02 (8.57) 27.07 (13.52) 0.012

DispA (mm2) 773.63 (1191.73) 294.41 (258.85) 717.18 (1251.94) 1100.22 (1379.32) 0.044

VRange (mm) 24.34 (7.08) 28.34 (6.84) 25.27 (6.58) 21.22 (6.36) <0.001

MLRange (mm) 47.71 (23.75) 49.03 (16.81) 45.12 (24.77) 49.09 (26.60) 0.766

PTurnSit (W) 87.41 (42.33) 111.66 (29.56) 96.93 (50.27) 65.33 (29.64) <0.001

PStand (W) 271.03 (86.50) 252.65 (97.75) 236.76 (74.02) 179.81 (76.59) 0.002

JerkSit (m/s3) 16.99 (7.40) 16.91 (4.14) 18.34 (7.96) 15.90 (8.35) 0.419

JerkStand (m/s3) 21.66 (11.42) 21.08 (5.90) 24.66 (16.22) 19.51 (8.36) 0.184

TTime (s) 14.74 (3.75) 11.83 (1.52) 14.34 (2.66) 16.76 (4.24) <0.001

RTime (s) 1.18 (0.42) 1.03 (0.41) 1.23 (0.49) 1.23 (0.34) 0.147

HY-I, participant in stage according to Hoehn & Yahr; HY-II, participant in stage according to Hoehn & Yahr; HY-III, participant in stage according to Hoehn & Yahr.

MLDisp, range of the Medial-lateral displacement of center of mass (COM); APDisp, range of the Anterior-posterior displacement of COM; DispA, Displacement Area; VRange, range of the

Vertical displacement of COM; MLRange, range of the Medial-lateral displacement of COM; PTurnSit, Turn-to-sit power; PStand, Sit-to- stand power; TTime, total time; RTime, reaction time.

Data are expressed as mean (standard deviation).
∗p < 0.05 between participants with level I and III.
∗∗p < 0.05 between participants with level II and III.
∗∗∗p < 0.05 between participants with level I and II.

Bold < 0.05 ANOVA between levels I, II, and III.

Table adapted fromMollà-Casanova et al. (2022).

2.3. Model data flow

A two-stage model has been designed (Figure 2). The raw

sensor signals are the input of Stage 1, where are filtered

and normalized in a first step (Step 1) before running the

automatic segmentation of the test phases at step 2 (Step 2)

which delivers the start and end times of each phase. Finally, the

biomechanical variables are computed in step 3 (Step 3; Mollà-

Casanova et al., 2022). The classification model based on neural

networks ofmixed input data is implemented in Stage 2. Each input

branch of the model characterizes one aspect of the input signal:

(Input 1) time-domain analysis, (Input 2) frequency-domain

analysis (from the spectrogram), and (Input 3) biomechanical

variables selected from literature (Serra-Añó et al., 2020; Mollà-

Casanova et al., 2022). All this information is concatenated

into a model (Stage 2) that classifies into the first three

Parkinson’s stages.

In the following sections, each of the processes that comprise

the proposed two-stage model are described. All data processing

were written in Python (v3.X).

2.4. Stage 1

2.4.1. Step 1—Signal preprocessing
Signal processing was carried out following the methodology

proposed in Pedrero-Sánchez et al. (2022) which builds on the work

of Zijlstra (2004) and Nishiguchi et al. (2012) for analyzing the

data from inertial sensors. First, a linear interpolation was applied

to standardize the sampling frequency of all signals to 100 Hz.

Next, a 4th-order zero-lag Butterworth low-pass filter with a cutoff

frequency of 20 Hz was applied. Then, we used the MinMaxScaler

preprocessing function from the SciKitLearn library (Pedregosa

et al., 2011) to normalize each signal between−1 and 1.

Before segmenting the functional test with the model, we

employed a sliding window process because the segmentation

model uses convolutional layers that require input data of uniform

shape. Specifically, we applied a 64-sample moving window to the

six sensor signals (three axes of accelerometer and three axes of

gyroscope) to produce a matrix of shape 64 timestamps by six

signals. The sliding window was then shifted through the entire

signal, overlapping by 63 samples.
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FIGURE 5

Results of segmentation assessment. (Top) Acceleration signal. (Middle) Gyroscope signal. (Bottom) Result of classification phases of the assessment.

Shaded colors are the ground truth segmentation; Green, phase 2 gait; Red, phase 3 turn to sit; Blue, stand from the chair; Yellow, phase 4 gait.

2.4.2. Step 2—Functional test segmentation
To automatically segment the different phases of the functional

test, a 1D Unet model was set up. This model is necessary

to calculate the features of the sensor signals before passing

them as input to the classification model. Typically, semantic

segmentation RNN models have an Encoder-Decoder structure,

where the input and output have the same shape. A forward

feedback is performed between the layers forming a Unet

structure (Ronneberger et al., 2015). The segmentation model

proposed by Ronneberger was originally designed to segment

images, but for this study, the internal structure of each

encoding and decoding block has been modified to work with

1D vectors.

The structure of the model is depicted in Figure 3, where

the input consists of the sliding windows from Step 1 (Section

2.4.1). The output has a shape 64 samples by 6 possible categories,

corresponding to each of the possible phases of the test: balance,

walking, turning and sitting, sitting, getting up, and a noise

category.

Given that the model outputs an activity type for each sample

in the window, we opted to identify the activity within the window

by choosing the activity with the highest frequency as the identified

activity. Then, once we identified all the activities in each sample of

the complete functional test, we proceeded to detect the start and

end instants of each phase of the test where the changes in activity

occurred.

The model was developed from scratch, with the Adam

optimizer, a learning rate of 0.001, and “categorical crossentropy”

as the loss function. The Adam optimizer (Bock and

Weiss, 2019) is the most widely used variation of gradient

descent algorithms.

2.4.3. Step 3—Signal features
The input features calculated for the model (Step 3) have been

previously validated in studies such as Ribeiro et al. (2003), Zijlstra

(2004), Esser et al. (2009), and Nishiguchi et al. (2012). The features

included are:

• Phase 1, balance: range of the Medial-Lateral Displacement

(MLDisp) of the Center Of Mass (COM); range of Anterior-

Posterior Displacement (APDisp) of the COM; and Swept

Area (DispA).

• Phase 2 and 4, gait: range of the Vertical displacement

(Vrange) of the COM; range of the Medial-Lateral

displacement (MLRange) of the COM.

• Phase 3, turn-to-sit-to-stand: Turn-to-sit power (PTurnSit);

Sit-to-stand power (PStand) (Lindemann et al., 2003); range

of jerk to sit (JerkSit); range of jerk to stand (JerkStand; Weiss

et al., 2011).

• Complete assessment: Reaction time (Reaction Time); Total

time (Total Time).

The variables have been transformed with the MinMaxScaler

from SciKitLearn library (Pedregosa et al., 2011) to the range

between 0 and 1.

2.5. Stage 2

2.5.1. Windowing
This windowing differs from the previously performed for

segmentation and it was intended to feed the time domain and

frequency domain analysis (Section 2.4.1). The size of the window
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TABLE 2 Validation and comparison of the classification models.

Three-fold
cross (%)
validation

F1-score
(%)

G-
mean
(%)

CNN+LSTM 86.46 79.00 84.00

CNN+

Biomechanical

variables

92.23 81.00 84.00

Proposed two-stage

model

99.64 100.00 100.00

TABLE 3 Sensibility of Stratified three-folds Cross Validation forcing one

of the inputs to be all zeros then making the inference with the other two

inputs.

Mean accuracy Di�erence with all
inputs

Time-domain

analysis

68.97 30.67

Frequency-domain

analysis

65.85 33.79

Biomechanics

variables

71.23 28.41

Mean accuracy is the accuracy in cross validation when the input is set to zero. Difference

with all inputs is the difference in the mean accuracy obtained with the full input substracting

the mean accuracy when the input is set to zero.

was 64 timestamps with a 50% overlap. The size and overlap

were chosen based on the literature recommendations for human

activities to capture the temporal dynamics of the signal while

ensuring that the data had sufficient resolution for analysis (Banos

et al., 2014; Dehghani et al., 2019).

2.5.2. Model inputs
2.5.2.1. Input 1—Time-domain analysis

The Input 1 of the classificator is the time-domain analysis

branch. This branch was feeded with the 64-sample moving

window (Section 2.5.1) made with the six sensor signals (three

accelerometer axes and three gyroscope axes).

2.5.2.2. Input 2—Frequency-domain analysis

The Input 2 is the branch for frequency-domain analysis. The

input are the windowing signals (Section 2.5.1). We applied the

short-time Fourier Transform (STFT) provided by the TensorFlow

2.9.1 framework. All the signals are concatenated as if they were a

single signal of 384 samples (6 signals × 64 samples). The STFT

is then performed on this new signal with frame length = 20 and

frame step = 2 to obtain a spectrogram. Then we applied the

logarithm of the magnitude of the Fourier transform.

2.5.2.3. Input 3—Biomechanics variables

The biomechanical variables used were those described in

Section 2.4.3.

2.5.3. Classification model
Keras API (Chollet et al., 2015) and Tensor Flow (Abadi

et al., 2015) 2.0 in Python 3.7.x were used for classification model

development (Figure 4).

For Input 1, the accelerometer and gyroscope signals were

used with a series of 1D convolutional layer concatenations with

ReLu activation functions (Rectified Linear Unit), which can extract

the features automatically. ReLu is preferred over other activation

functions like sigmoid or tanh because it is computationally

efficient and avoids the vanishing gradient problem, which can

occur when the derivative of the activation function becomes very

small (Szandała, 2021). The extracted features were then passed

through two Long-Short-Term Memory (LSTM) layers to obtain

the signals sequential properties (Matias et al., 2021). Finally, three

dense layers with ReLu activation functions were concatenated with

the other two input branches.

The Input 2 the spectrogram image of the signals was used

(Ronneberger et al., 2015; Demir et al., 2019), where three 2D

convolutional layers with a kernel size of 3× 3 and ReLu activation

functions were concatenated.

For Input 3 the biomechanical variables were used, and dense

layers with ReLu activation function were employed.

Finally, on top of the above networks, two dense layers are used

with 128 and 64 neurons with Relu activation function and one

output layer with one neuron were used for regression, with a linear

activation, to produce a continuous output in the range [0, 1]. The

cut-off points for each Parkinson’s level were at 0.33 and 0.66.

To compile the model, mean square error was used as the loss

measure for the regression problem, and the Adam optimizer.was

employed. The evaluation metrics used was “mean square error”

which considers the distance between the various categories

and imposes a higher error penalty on the categories that are

further away from the true value. An iterative design process was

performed to fit the model, and the best results were obtained for a

configuration with a batch size of 32 for 50 training epochs.

A grid search approach was used to systematically explore

different combinations of hyperparameters, such as learning rate,

batch size, and number of epochs, and evaluated the model’s

performance on the training and validation sets. Based on the

results of each experiment, the hyperparameters were adjusted, and

the process was repeated until the best performance was achieved.

2.6. Training, validation, and testing of the
classification model

For training and validation the sample has been divided in

different dataset:

Firstly, the sample has been divided in two separated datasets.

Fifteen participants (five subjects from each group) have been

reserved as test dataset for testing the classifier. This dataset did

not intervened in the training, neither in the validation process. It

was just kept apart for the final assessment of performance of the

classifier.

The remaining 72 participants composed the training and

validation dataset. This dataset was itself divided into three

independent folds to perform a stratified three-fold cross-validation
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FIGURE 6

Confusion matrices comparison: Convolutional with Long short-term memory classification Parkinson disease model (left); Convolutional with

biomechanical parameters classification Parkinson disease model (center); Proposed two-stage classification Parkinson disease model (right).

(Xia et al., 2020). Two of the three-folds were combined and used

in the model training, while the remaining fold was used for model

validation. Each training set was resampled and resized using the

SMOTE algorithm (Chawla et al., 2002) for the biomechanical

variables and with data augmentation (rotating the axes of the

sensors artificially 90 and 180◦; Pedrero-Sánchez et al., 2022) for

the signals, so that the number of instances of each class was

approximately balanced. The accuracy and loss evolution plots over

the training epochs were obtained.

Once the training was complete, the test dataset was used to

evaluate the model performance using a confusion matrix and the

geometric mean (G-mean; Kubat and Matwin, 1997).

2.7. Sensitivity analysis and comparison
with simpler models

To assess the effectiveness of the model topologies identified

in the literature and to perform a sensitivity analysis, it

is important to evaluate the model’s explainability in a

clinical setting. Understanding the deep learning model’s

explainability aids in accurately interpreting the results it

generates. To this end, we conducted a sensitivity analysis of

the classifier to determine the impact of each input on the

model’s output.

The sensitivity analysis was performed by making alterations

to the inputs and forcing one input to be all zeros when making

the inference. This process was repeated for each input. Finally,

we compared the outputs obtained for each input variation and

analyzed their influence on the output.

Additionally, we used the same training and validation data

to train two simplified models based on previous literature:

(i) a simplified model that uses only input 1 (which includes

convolutional layers and LSTM) called CNN+LSTM (Butt et al.,

2020; Xia et al., 2020), and (ii) a simplified model that uses input

1 (including convolutional layers) and input 3 (including dense

connected layers) called CNN+biomechanical variables (Pedrero-

Sánchez et al., 2022). Input 2 was excluded because no models were

found in the literature that used only the spectrogram image as

input for Parkinson’s disease classification.

We also obtained confusion matrices and mean accuracy for

the training and validation folds of these models using the same

test dataset.

3. Results

3.1. Participants

A description of the demographic characteristics and

biomechanical variables of the participants, as well as the

differences among the HY groups (Table 1).

3.2. Validation of the segmentation model

From the second epoch on, the segmentation model achieved

an accuracy of 90% and a loss below 0.1. The comparison between

the segmentation of the model and a manual segmentation from an

expert shows a good agreement (Figure 5).

Therefore, we have used this automatic segmentation to

calculate the biomechanical variables and use them as input for the

classifier model.

3.3. Validation and comparison of the
classification models

The accuracy evolution curve during the training of the two-

stage classification stabilized at 100% after 5th epoch. The mean of

the accuracy results obtained from the three-fold stratified cross-

validation for each model in the training and validation phases

shown in Table 2.
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• CNN + LSTM: 86.42%

• CNN + biomechanical variables: 92.23%

• Proposed Two-stage: 99.64%

The two-stage classification model performed an accurate

classification of all the 15 participants of the test sample (Figure 6)

and the G-mean obtained was 1.00. Both, the CNN + LSTM and

CNN+ biomechanical variables achieved a G-mean of 0.84. For, the

f1-score, was 0.79 for CNN+ LSTM, 0.81 for CNN+Biomechanical

variables, and 1.0 for two-stage.

The sensitivity analysis results shows that the major

contributions to the model were the image of spectrogram

with an accuracy decay of 33.79% (Table 3).

For a better understanding of the influence of the

anthropometric data in the results, a separate analysis using

a standard classifier with only the subject parameters (age, weight,

height) as input variables was conducted. The results are presented

as Supplementary material.

4. Discussion

This paper proposes a two-stage model to classify the early

stages of PD (HY-I, HY-II, and HY-III) using a functional

assessment test. The test involves the assessment of static balance,

gait and lower limb power while sitting and rising from a chair, all

within a 2 min timeframe using a single inertial sensor embedded

in an Android smartphone (Serra-Añó et al., 2020; Mollà-Casanova

et al., 2022).

As already shown in the previous study (Mollà-Casanova et al.,

2022), the biomechanical variables obtained from the test are

already indicators of disease progression, such as the total time (i.e.,

Ttime) that increases proportionally. The proposed test provides

information on the state of balance MLDisp (p < 0.05), APDisp (p

< 0.05), DispA (p< 0.05), gait Vrange (p< 0.05), and power in the

lower limbs during sit to stand from a chair. There are significant

differences (p < 0.05) in the biomechanical variables PTurnSit and

PStand between the three groups.

The proposed model has been built on two Stages. Regarding

Stage 1, the model is able to classify the activity on an instant-

by-instant basis, reaching 90% of accuracy from the third epoch

onwards. This has been accomplished by utilizing the signals from

the inertial sensors and employing semantic segmentation models

that have been validated in previous studies for pixel classification

in images (Ronneberger et al., 2015) and for electrocardiogram

(ECG) analysis (Matias et al., 2021). This semantic segmentation

allowed to obtain the signal features that will later be used as

input in the classification models. This automatic segmentation

has a direct impact on the accuracy of the model. On the other

hand, to ensure that all relevant characteristics of the signal in

the time domain are captured, one of the input branches of the

neural network includes the raw signals themselves, combined with

convolutional and LSTM layers of the neural network as Zhao et al.

(2018b) and El Maachi et al. (2020), respectively.

With respect to the Stage 2, the proposed model demonstrates

a significant improvement in accuracy compared to variables

based models in previous studies: 99.64% accuracy using the

proposed model, compared to 80% accuracy using SVM, KNN,

DT, and RF models (Trabassi et al., 2022). These classifiers have

the limitation of using only signal-derived variables, which are

clinically relevant for assessing Parkinson’s grades, but still have

potential for improvement.

When comparing neural network-based classifiers, such as

CNN or LSTM, the results are similar, 98% accuracy with CNN

(El Maachi et al., 2020) and 92.3% accuracy with LSTM (Butt

et al., 2020) and 99% with the combination of CNN and LSTM

(Zhao et al., 2018a). Although these results are already very good

at classifying PD stages, they have the limitation of only focusing

on the time domain. However, it should be noted that in more

advanced stages of the disease, certain involuntary tremors may

appear, which should be taken into account (Xing et al., 2022).

Although some authors have found interesting results analyzing the

consequences of tremors using variables in the time domain (e.g.,

sample entropy; di Biase et al., 2017; Su et al., 2021), the most direct

approach would be to consider studying the frequency domain.

Despite the unbalanced training sample, the model responds

correctly. To address this issue, training and validation have been

carried out using stratified k-fold with artificially augmented data,

which allowed balancing and data augmentation to fine-tune the

model following the process used in Xia et al. (2020).

Another benefit presented in this paper is the combination

of time domain and signal frequency information, along with

clinically relevant biomechanical variables selected from the

literature. It is worth noting that anthropometric variables of the

subjects such as age, sex, height, and weight which have been shown

to be important in determining the severity of the diseases (Joshi

et al., 2010) have not been used in the classification model. This

is because a comparative analysis by group was carried out and

there were differences. These variables have been excluded in order

to avoid bias in the classification, even though we know that they

are important. In this way, the classification model only takes into

account the functional test itself (Supplementary material).

The results of our study provide to the scientific community

a new model to classify the early stages of PD. The model

automatically processes the data recorded by a portable inertial

sensor during the execution of a fast an easy functional assessment.

Although we do not intend to substitute clinical assessment, we

hypothesize that this model may be of interest in the future

to better extract functional features in this population, beyond

the instability, asymmetry or independence reported in the HY

scale. This could lead to more accurate classifications and patient

monitoring related to functional capability. To achieve this, further

research is needed to validate this new method by comparing it

to other clinical scales, such as the PD Questionnaire-8 or the

Unified Parkinson’s Disease Rating Scale (UPDRS). We believe

that detecting different Parkinson’s profiles may redefine the

stages of Parkinson’s and enable anticipation and prevention of

its deleterious effects. Additionally, this approach provides a first

step toward the development of automated, continuous, and non-

invasive monitoring of functionality.

It is important to cautiously interpret the results of this study

due to the limitations related to the small sample size. Although

the anthropometric parameters were excluded from the model, the

differences found between the HY groups could have biased the
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results. It would be important in future research to consider the use

of the modified HY scale, including the intermediate stages (i.e.,

0.5, 1.5, and 2.5) to explore the capability of the model to classify

all the early-to-moderate stages of the disease. A wider validation

including multicentric data, homogeneous samples (regarding

anthropometric variables) and additional diagnostic tools would be

needed to confirm future clinical applications.

5. Conclusion

We show that our two-stage deep learningmodel can accurately

classify people suffering from the first stages of PD. This CNN and

LSTM-based technique is more accurate than another parametric

technique of machine learning. These results demonstrated that

the use of techniques managing raw data, combine with frequency

analysis and biomechanical variables, prevents unexpected loss of

information. Further, these classification models have been based

on the information of a single sensor easily placed on the waist

region of the participants in 2 min assessment test. The easy

instrumentation required and the short duration of the test make

its use feasible in the clinical context.
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