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Objective: Elevated cortisol levels have been frequently reported in Alzheimer’s 
disease (AD) and linked to brain atrophy, especially of the hippocampus. Besides, 
high cortisol levels have been shown to impair memory performance and increase 
the risk of developing AD in healthy individuals. We investigated the associations 
between serum cortisol levels, hippocampal volume, gray matter volume and 
memory performance in healthy aging and AD.

Methods: In our cross-sectional study, we analyzed the relationships between 
morning serum cortisol levels, verbal memory performance, hippocampal volume, 
and whole-brain voxel-wise gray matter volume in an independent sample of 29 
healthy seniors (HS) and 29 patients along the spectrum of biomarker-based AD.

Results: Cortisol levels were significantly elevated in patients with AD as compared 
to HS, and higher cortisol levels were correlated with worse memory performance 
in AD. Furthermore, higher cortisol levels were significantly associated with smaller 
left hippocampal volumes in HS and indirectly negatively correlated to memory 
function through hippocampal volume. Higher cortisol levels were further related 
to lower gray matter volume in the hippocampus and temporal and parietal areas 
in the left hemisphere in both groups. The strength of this association was similar 
in HS and AD.

Conclusion: In AD, cortisol levels are elevated and associated with worse 
memory performance. Furthermore, in healthy seniors, higher cortisol levels 
show a detrimental relationship with brain regions typically affected by AD. Thus, 
increased cortisol levels seem to be indirectly linked to worse memory function 
even in otherwise healthy individuals. Cortisol may therefore not only serve as a 
biomarker of increased risk for AD, but maybe even more importantly, as an early 
target for preventive and therapeutic interventions.
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1. Introduction

With the repeated rather disappointing outcome of symptomatic 
and causal treatments, a large body of Alzheimer’s disease (AD) 
research has focused on early prediction, preventive treatments, and 
modifiable lifestyle factors. One of these factors is stress [for recent 
reviews see (Justice, 2018; Canet et al., 2019; Ouanes and Popp, 2019)]. 
One of the many neurobiological correlates of stress is the excretion 
of cortisol from the adrenal glands, regulated via a complex cascade 
of feedback mechanisms termed the hypothalamus-pituitary–adrenal 
(HPA) axis (Smith and Vale, 2006). Damage to hippocampal neurons 
after elevated glucocorticoid exposure was first reported in guinea pigs 
(der Mühlen and Ockenfels, 1968) and has since been replicated in 
other rodents (Sapolsky, 1985) and primates (Sapolsky et al., 1990). 
Notably, the hippocampus contains the highest number of 
glucocorticoid receptors in the rodent brain (McEwen et al., 1968) and 
is involved in a negative feedback loop to the HPA axis (Jacobson and 
Sapolsky, 1991). The latter findings led to the so-called ‘glucocorticoid 
cascade hypothesis’ (Sapolsky et al., 1986), which posits that elevated 
levels of glucocorticoids damage the hippocampus, resulting in a lack 
of inhibitory control over the HPA axis, consecutively leading to even 
higher glucocorticoid levels and further hippocampal damage. 
Consistent with this hypothesis, more than 30 years ago, cortisol levels 
in AD were found to be elevated and linked to hippocampal atrophy, 
reductions in cerebral metabolism, and dementia severity (Davis et al., 
1986; de Leon et  al., 1988). Since then, elevated cortisol levels in 
patients with AD have been confirmed in various biofluids, including 
cerebrospinal fluid (CSF) in vivo (Popp et  al., 2009, 2015) and 
postmortem (Swaab et al., 1994; Hoogendijk et al., 2006), plasma 
(Umegaki et al., 2000), serum (Lara et al., 2013), urine (Ennis et al., 
2017), and saliva (Giubilei et al., 2001).

As a possible factor in AD etiology, cortisol levels have been 
linked to amyloid-β (Aβ) – the main pathological hallmark of AD – as 
assessed by [11C]Pittsburgh Compound-B (PIB)-PET (Toledo et al., 
2012) and serum Aβ 1–42 (Ishijima et al., 2018), and have also been 
shown to mediate adverse effects of amyloid-β on cognition in healthy 
older subjects (Pietrzak et  al., 2017). Animal models have 
demonstrated that glucocorticoids increase Aβ and tau accumulation 
(Green et al., 2006) and the proportion of the more toxic Aβ 1–42 
relative to Aβ 1–40 (Kulstad et al., 2005). Also, Aβ injection leads to 
progressive HPA-axis-dysregulation in rats (Brureau et  al., 2013). 
Ultimately, high cortisol levels have been linked to smaller global and 
regional gray matter volumes and impaired cognitive functioning 
(Geerlings et  al., 2015; Echouffo-Tcheugui et  al., 2018), cognitive 
decline (Lupien et al., 1994), and progressive hippocampal atrophy 
(Lupien et al., 1998), as well as to the future onset of AD in otherwise 
healthy individuals (Hinterberger et al., 2013; Ennis et al., 2017), and 
the clinical progression of established AD (Csernansky et al., 2006; 
Huang et al., 2009; Popp et al., 2015).

While some data indicate that these associations are specific to the 
hippocampus – i.e., not significantly affecting whole brain atrophy 

(Lawlor et al., 1994), frontal atrophy (Huang et al., 2009), or other 
temporal areas (Lupien et  al., 1998) – there also have been 
contradictory results with no significant hippocampal involvement 
(Kremen et  al., 2010; Echouffo-Tcheugui et  al., 2018). Also, null-
findings have been reported showing no relationship between cortisol, 
cognitive functioning, and dementia (Schrijvers et al., 2011; Singh-
Manoux et al., 2014).

Reasons for these discrepancies may be that most previous studies 
relied on clinical criteria and did not use biomarker-based AD 
diagnosis – possibly including AD mimics – with some only 
describing the broad syndrome of etiologically unspecified dementia. 
Further, while most studies examining stress-related atrophy or 
hippocampal volume used CT-based imaging and visual inspection, 
to the best of our knowledge, only three other recent studies have used 
voxel-wise MRI analysis to allow for a more objective and detailed 
assessment (Toledo et al., 2013; Echouffo-Tcheugui et al., 2018; Wirth 
et al., 2019) and none have jointly analyzed ROI volumes, voxel-wise 
MRI data and memory performance.

Accordingly, we aimed to determine the associations of serum 
cortisol levels with gray matter volume and memory performance in 
a sample of healthy older subjects and a patient group representing the 
entire AD spectrum as confirmed by CSF and PET biomarkers. To 
allow for a comprehensive assessment of cortisol effects on gray matter 
structure, we used voxel-wise whole-brain structural MRI analyses, as 
well as automated region of interest (ROI)-based techniques focusing 
on the hippocampus as a critical ROI.

2. Methods and materials

2.1. Participants

The sample used for the current analysis was part of a larger study 
in which a total of 171 healthy young subjects, healthy seniors (HS), 
subjects with subjective cognitive decline, and patients with prodromal 
AD (i.e., mild cognitive impairment due to AD) and AD dementia 
underwent a multimodal imaging protocol, a comprehensive 
neuropsychological assessment, and blood sampling. We  selected 
healthy seniors and patients with AD with serum cortisol values and 
structural MRI available for the current analysis.

Healthy seniors were recruited from the general population and the 
local research facility (Jülich Research Centre) via online study 
advertisements. Patients were recruited from the memory clinic of the 
University Hospital of Cologne and data collection was part of their 
diagnostic workup. Participants were recruited between 50 and 80 years 
of age (current sample: 50–73 years, mean 64.6 years, SD 6.2 years), 39.7% 
of subjects were female (31% of healthy seniors and 48.3% of patients 
with AD). Healthy seniors had no deficits on neuropsychological testing 
according to normative data and no signs of depression according to the 
Hamilton Depression Rating Scale (HAM-D) (Hamilton, 1960). 
Prodromal AD and AD dementia were defined by the presence of 
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objective memory impairment [using the delayed recall run of the Verbal 
Learning and Memory Test (Helmstaedter and Durwen, 1990)] at least 
1.5 standard deviations below the mean of normative scores of a healthy 
older sample. Prodromal patients with AD had a mini-mental state 
examination (MMSE) score > 23 (Folstein et  al., 1975) and intact 
activities of daily living as verified by an informant. The MMSE of AD 
dementia patients ranged between 15 and 22, and activities of daily living 
were compromised. Based on the recent notion that “prodromal AD” 
and “AD dementia” do not represent distinct entities, but two stages on 
a continuum of AD (Jack et  al., 2018), both patient groups were 
combined for all analyses and are from here on referred to as “patients” 
or “AD group.”

The diagnosis was made according to standard diagnostic criteria 
(Albert et al., 2011; Dubois et al., 2014) and after interdisciplinary 
discussion (neurologists specialized in dementia care, clinical 
neuropsychologists, neuroradiologists, and nuclear medicine 
specialists). All patients had a biomarker profile indicative of AD 
(assessed by CSF analysis or PET), which was part of their clinical 
workup. CSF biomarker positivity was determined using a cut-off on 
the tau/Aβ 1–42 ratio of >0.52 (Duits et al., 2014). Thirteen patients 
received [11C]PIB or [18F]Florbetapir amyloid PET and [18F]AV-1451 
tau PET additionally to (12 patients) or instead of (1 patient) CSF 
analysis. Patients had a pattern of amyloid and tau deposition typical 
of AD as determined by a nuclear medicine specialist. Two patients 
had a CSF tau/Aβ 1–42 ratio < 0.52 but typical AD patterns on tau 
and amyloid PET and were, therefore, included in the study. General 
exclusion criteria were contraindications for undergoing MRI, a 
history of (other) neurological or psychiatric disorders (apart from 
mild depression in the patient group, see below), less than full 
proficiency in speaking, reading, and writing German, and active 
medications known to affect the central nervous system or cognitive 
abilities except for acetylcholinesterase (AchE) inhibitors (11 
subjects), memantine (1 subject + AchE inhibitor) or antidepressants 
(5 subjects, 4 + AchE-Inhibitor) in the patient group. Three subjects 
were excluded because of active corticoid-containing medications. 
Mild depression, a well-known comorbidity of AD, was not an 
exclusion criterion and was assessed using different scales: Geriatric 
Depression Scale (GDS) in 13 subjects (Yesavage et al., 1983), Rasch-
based Depression Screening (DESC) I and II in 1 subject (Forkmann 
et al., 2009), and HAM-D in the remaining subjects. According to the 
test-specific cut-off values, 3 subjects in the AD group reported mild 
depressive symptoms (16 points on the HAM-D, 6 points and 8 
points on the GDS).

Structural images (FLAIR and T1 sequences) were visually 
inspected by an interdisciplinary team of neurologists and 
neuroscientists experienced in dementia care and research. Subjects 
with extensive white matter lesions (Fazekas Score > 2 (Fazekas et al., 
1987), 6 subjects) or relevant structural abnormalities (3 subjects: 1 
large arachnoid cyst, 1 large post-ischemic lesion, 1 severe 
hydrocephalus) were excluded from further analyses.

A total of 66 subjects (29 healthy seniors, 37 patients with AD) 
were eligible for further analysis. To account for a significant age 
difference and uneven sample sizes, patients with AD were matched 
to HS for age using propensity score matching via an R-based custom 
dialog for SPSS 25 (Thoemmes, 2012), resulting in a final sample of 58 
subjects (29 HS, 29 patients with AD).

For detailed demographics see Table 1, and for a flowchart of 
subject selection Figure 1.

TABLE 1 Demographics.

HS (n = 29) AD (n = 29)

Age (years) 63.17 (6.5) 66.07 (5.65) p = 0.09

Sex (f/m) 9/20 14/15 p = 0.18

Education (years) 15.17 (4.27) 14.17 (3.47) p = 0.332

Serum cortisol level 

(μg/L)

130.00 (43.36) 185.97 (61.48) p < 0.001*

BMI (kg/m2) 25.46 (3.84) 23.17 (2.60) p = 0.011*

Subjects with mild 

depression

0 3 p = 0.075

Verbal memory 

recall score (z-score)

0.85 (0.58) −0.85 (0.4) p < 0.001*

MMSE (/30) 29.52 (0.95) 24.10 (3.1) p < 0.001*

Left Hippocampus 

(% TIV)

0.2730 (0.0278) 0.2032 (0.0295) p < 0.001*

Right Hippocampus 

(% TIV)

0.2622 (0.0262) 0.2039 (0.03) p < 0.001*

ApoE (% of at least 

one ε4 allele)

17.2 65.5 p < 0.001*

Handedness (% 

right)

89.7 96.6 p = 0.611

Mean and standard deviation, if applicable. HS, healthy seniors; AD, Alzheimer’s disease; 
BMI, Body-mass-index; MMSE, Mini-mental state examination score; TIV, Total intracranial 
volume; ApoE, Apolipoprotein E. * denotes significant results.

FIGURE 1

Flowchart of subject selection. HS, healthy seniors; AD, Alzheimer’s 
patients.
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2.2. Standard protocol, approval, and 
consent

Every participant and, if applicable, a knowledgeable informant 
gave their written informed consent. Participants received 
compensation for participating, except for patients whose 
participation in the study was part of their diagnostic workup. In that 
case, we bore all costs related to the study including traveling costs 
and food.

All study procedures took place at the outpatient memory clinic, 
during an inpatient stay at the Department of Neurology, University 
Hospital Cologne or at the Jülich Research Centre. Except for one 
subject, in which neuropsychological evaluation was performed last, 
all subjects were evaluated in following order: neuropsychological 
evaluation, blood sampling, MR imaging. All MR scans were 
performed at the Jülich Research Centre.

Patients underwent a clinical examination by a trained neurologist 
at the University Hospital Cologne. A comprehensive 
neuropsychological examination partly used in this study was either 
performed during a visit at our outpatient memory clinic or during 
the inpatient diagnostic workup (the neuropsychological data used in 
this study was assessed not longer than 3 months apart from MR 
imaging). The inpatient workup consisted of a 2-day overnight stay at 
the Department of Neurology and included a lumbar puncture, a 
comprehensive neuropsychological evaluation, and blood sampling. 
Patients were transported to the Jülich Research Centre for the MR 
scan, at the end of their inpatient stay.

Healthy seniors were fully evaluated at the Jülich Research Centre 
(exceptionally neuropsychological evaluation was performed at the 
University Hospital Cologne due to subject preference).

Blood was drawn in the morning not later than noon on the same 
day as MR imaging took place in most of the cases (62.1% of subjects). 
In the remaining cases blood draw took place 1–19 days prior to MR 
imaging (mean = 4.86, SD 4.84).

Neuropsychological evaluation was performed at various times 
during normal working hours on the same day as MR scanning in 
44.8% of subjects and 1–85 days prior in the remaining cases (mean 
12.91, SD = 20.96). Neuropsychological evaluation and sampling of 
serum cortisol were performed on the same day in 79.3% of cases and 
1–85 days apart in the remaining cases (mean = 25.67, SD = 30.2).

MR imaging took place from late morning to early afternoon.
The study was part of a more extensive study, approved by the 

local ethics committee (ref. no. 12–073), and carried out following the 
declaration of Helsinki.

2.3. Neuropsychology and behavioral 
analyses

All subjects underwent a comprehensive neuropsychological 
assessment previously described in detail (Dillen et al., 2016, 2017). 
We focused our analysis on the Verbal Learning and Memory Test 
(VLMT), the German version of the Rey Auditory Verbal Learning 
Test. More specifically, we narrowed our analyses to the recall after 
interference (run 6, R6) and the delayed recall (run 7, R7), as impaired 
memory recall is one of the initial and most prominent symptoms of 
AD (Tierney et al., 1996; Artero et al., 2003; Perri et al., 2007). In one 
AD subject, neuropsychological testing had to be aborted before the 

assessment of R7 due to exhaustion. The subject was subsequently 
assigned 0 points for the delayed recall (in line with the expected 
performance). Another AD subject was missing the values for R6 due 
to technical issues while recording the values. Little’s MCAR Test 
(Little, 1988) was performed to check if the data were missing 
completely at random and was not significant (p = 0.72). Completion 
via expectation–maximization was performed in the SPSS missing 
values module, and the estimated value was consistent with 
expectations based on other test results.

To increase variability and avoid ceiling and floor effects, a 
composite “verbal memory recall score” was created by averaging of 
the z-transformed values of R6 and R7.

All analyses were conducted using SPSS 25 (IBM Corp. Released 
2017. IBM SPSS Statistics for Macintosh, Version 25.0. Armonk, NY: 
IBM Corp.). Data were checked for normality using the Shapiro–Wilk 
test. Accordingly, education, serum cortisol levels and body mass 
index (BMI) were compared by two-sample t-tests. Group differences 
in age, verbal memory performance, and MMSE scores were assessed 
using Mann–Whitney U tests. Chi-square tests (Fisher’s Exact tests 
when necessary) compared Apolipoprotein E (ApoE) status, 
handedness, sex, and depression. Results can be found in Table 1.

2.4. Cortisol

Morning serum cortisol levels were assessed via whole blood 
sampling (Sarstedt S-Monovette®, Serum Gel with Clotting Activator). 
Samples were refrigerated at the Jülich Research Centre before analysis 
in the central laboratory of the University Hospital Cologne, usually 
on the same day, if not analyzed directly on site in patients whose 
blood draw was part of their inpatient care at the University Hospital. 
Samples were analyzed using a commercially available competitive 
electrochemiluminescence immunoassay (Elecsys® Cortisol II, Roche 
Diagnostics). The Elecsys® Cortisol II assay makes use of a 
competition test principle using a monoclonal antibody explicitly 
directed against cortisol. Endogenous cortisol, liberated from binding 
proteins with danazol, competes with exogenous cortisol derivatives, 
labeled with ruthenium complex, for the binding sites on the 
biotinylated antibody. The measuring range as per the manufacturer’s 
information is 0.54–633.5 μg/L. All values for healthy seniors in our 
study fell within the normal range for morning values issued by the 
manufacturer (5th–95th percentile: 60.1–183.53 μg/L). The monthly 
inter-assay variation coefficients as assessed by the laboratory as part 
of their routine quality control measures were between 1.42–4.99% 
during the time of the study.

2.5. Structural imaging

2.5.1. Data acquisition
Structural imaging was performed on a Siemens 3 T MAGNETOM 

Trio (Siemens, Erlangen, Germany). High-resolution T1-weighted 
structural images were acquired using a magnetization-prepared rapid 
gradient-echo sequence with the following parameters: Repetition 
time = 2,250 ms, echo time = 3.03 ms, flip angle = 9°, field of view = 256 
× 256 mm2, matrix = 256 × 256, voxel resolution = 1 mm isotropic, 176 
or 192 sagittal slices, no gap, slice order interleaved. A vacuum cushion 
was used to reduce head motion.
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2.5.2. Data preprocessing
Preprocessing of structural images was performed using the 

Computational Anatomy Toolbox (CAT12, Version 12.1, http://dbm.
neuro.uni-jena.de/cat/), an extension of the Statistical Parametric 
Mapping software (SPM12, https://www.fil.ion.ucl.ac.uk/spm/
software/spm12). CAT12 was used with default settings, described in 
detail in the CAT12 manual.1 In short, individual steps included bias 
correction, skull stripping, segmentation of brain tissue into gray 
matter (GM), white matter and CSF, spatial normalization of gray 
matter maps to the Montreal Neurological Institute (MNI) space using 
the Diffeomorphic Anatomical Registration Through Lie Algebra 
(DARTEL) (Ashburner, 2007), resampling to an isotropic resolution 
of 1.5 mm, and modulation of normalized gray matter images by their 
Jacobian determinants to preserve tissue volume. Finally, normalized 
gray matter maps were spatially smoothed using an isotropic gaussian 
kernel of 6 mm full width at half-maximum.

2.5.3. Data analysis
Our analysis consisted of two parts: Analysis of hippocampal 

volumes in predefined atlas ROIs and whole-brain voxel-wise analysis.
The relationship between variables of interest (serum cortisol 

level, gray matter volume, and memory performance) and covariates 
(age, education, sex, presence of depression, and BMI) was evaluated 
beforehand, and covariates were chosen accordingly. BMI (Weiner 
et al., 1987; Fraser et al., 1999; Stalder et al., 2012) and depression 
(Keller et al., 2016; Høifødt et al., 2019) have previously been reported 
to relate to cortisol levels. However, in our sample, neither BMI nor 
the presence of mild depression (relevant only in the AD group) 
showed any significant relationship with serum cortisol levels and 
were thus disregarded in all further analyses.

To avoid any assumptions about the distribution of normality in 
the correlation analysis, we used Pearson’s correlation analysis with 
bootstrapping (1,000 samples), and bias-corrected accelerated 95% 
confidence intervals (BCa CI) are reported throughout. Significance 
was assumed if BCa CI did not include 0.

2.5.3.1. Analysis of hippocampal volumes
CAT12 offers the possibility to estimate raw tissue volumes (in 

mm3) for different volume-based atlas maps implemented into the 
toolbox in native subject space before any spatial normalization. 
We chose the Automated Anatomical Labeling (AAL) atlas for all 
ROI-based analysis (Tzourio-Mazoyer et al., 2002). Left and right 
hippocampal volumes were extracted and corrected for total 
intracranial volume (TIV, as output by CAT12 Toolbox) using a simple 
ratio method (hippocampal volume/TIV*100). As a result, volumes 
were expressed as a percentage of TIV (%TIV). Left and right 
hippocampal volumes were correlated separately with cortisol levels 
across the whole sample and individual groups.

2.5.3.2. Voxel-wise whole-brain analysis
All voxel-wise analyses were performed in SPM12 and conducted 

across the whole sample and both groups individually. Significant 
results are reported at an FWE-corrected cluster threshold of p < 0.05 
(cluster forming threshold p < 0.001 uncorrected).

1 http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf

A multiple regression model was used to evaluate the relationship 
between serum cortisol levels and gray matter volume. Age, education, 
and TIV were included as covariates of no interest based on their 
significant relationships with serum cortisol levels (age and education) 
and gray matter volume (age). The creators of the CAT12 Toolbox 
generally recommend the inclusion of TIV as a covariate. Gray matter 
volume in mm3 was extracted from significant clusters for further 
analysis using a publicly available MATLAB script2 and corrected for 
TIV, using a simple ratio method (GM volume/TIV*100), 
subsequently expressing cluster values as a percentage of TIV (%TIV). 
The anatomical locations of significant clusters were determined via 
the SPM Anatomy Toolbox Version 2.2b (Eickhoff et al., 2005).

The relationship between cortisol levels and gray matter volume, 
as well as the correlation of gray matter volume and memory 
performance in the whole sample and in the individual groups, was 
further evaluated using correlation and partial correlation analysis 
in SPSS.

3. Results

3.1. Sample characteristics: cortisol, 
memory performance, hippocampus 
volume

Serum cortisol levels (μg/L) were significantly higher in the AD 
group (M = 185.97, SD = 61.48) than the HS group (M = 130, 
SD = 43.36), t(56) = 4.01, p < 0.001 (Figure  2). Group differences 
remained highly significant even when controlling for age, sex, BMI, 
education (though groups did not differ significantly in these 
covariates) and ApoE status [ANCOVA, F(1, 51) = 10.199, p = 0.002].

Across the whole sample, serum cortisol levels were correlated 
with age (r = 0.348, p = 0.007, BCa 95% CI [0.143, 0.524]) and 
education (r = −0.319, p = 0.015, BCa 95% CI [−0.493, −0.120]) but 
not with sex, in line with previous findings from subjects over 50 years 
of age (Roelfsema et al., 2017).

Verbal memory performance was significantly lower in patients 
with AD than HS (p < 0.001). Verbal memory performance was also 
significantly correlated with age (r = −0.407, p = 0.002, BCa 95% CI 
[−0.599, −0.152]), so that age and education were used as covariates 
of interest in subsequent analyses involving cortisol levels or 
memory performance.

As expected, right and left hippocampal volumes were significantly 
lower in patients with AD compared to HS [t(56) = −7.88 (right) / 
-9.27 (left), p < 0.001 respectively] and highly correlated with age 
(right: r = −0.448, p < 0.001, BCa 95% CI [−0.64, −0.216]; left: 
r = −0.439, p = 0.001, BCa 95% CI [−0.623, −0.196]).

3.2. Cortisol and memory performance

Verbal memory performance was negatively correlated with 
cortisol levels across the whole sample (r = −0.578, p < 0.001, BCa 95% 
CI [−0.720, −0.409]) and in the AD group considered separately 

2 http://www0.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m
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(r = −0.502, p = 0.006, BCa 95% CI [−0.780, −0.165]), even when 
controlling for age and education (r = −0.479, p = 0.013, BCa 95% CI 
[−0.764, −0.137]). Results remained unchanged when additionally 
controlling for ApoE carrier type. In the HS group there was a 
negative, albeit non-significant, trend (r = −0.323, p = 0.087, BCa 95% 
CI [−0.616, 0.054]) that did not survive correction for age and 
education (r = −0.145, p = 0.471, BCa 95% CI [−0.486, 0.193]) See 
Figure 2.

Interestingly, in the AD group, cortisol levels and memory 
performance were significantly correlated independent of 
hippocampal volumes (partial correlation, corrected for age, 
education, and left and right hippocampal volumes, r = −0.45, 
p = 0.024, BCa 95% CI [−0.775, −0.041]), suggesting detrimental 
associations of higher cortisol with memory function independent or 
not wholly dependent on hippocampal involvement.

3.3. Analysis of hippocampal volumes

Across the whole sample right and left hippocampal volumes were 
negatively correlated with cortisol levels (right: r = −0.462, p < 0.001, 
BCa 95% CI [−0.632, −0.264]; left: r = −0.573, p < 0.001, BCa 95% CI 
[−0.723, −0.394]), even after correction for age and education (right; 
r = −0.359, p = 0.007, BCa 95% CI [−0.55, −0.184]; left: r = −0.513, 
p < 0.001, BCa 95% CI [−0.679, −0.349]).

A similar relationship could be observed in HS, but with only the 
left hippocampus significantly associated with cortisol levels 
(r = −0.444, p = 0.016, BCa 95% CI [−0.695, −0.158]) and the right side 
showing a non-significant trend (r = −0.328, p = 0.082, BCa 95% CI 
[−0.628, 0.043]). After adding age and education as covariates, only 
the left hippocampal volume remained negatively related to cortisol 
levels (r = −0.398, p = 0.04, BCa 95% CI [−0.597, −0.204]; right: 
r = 0.204, p = 0.307, BCa 95% CI [−0.495, 0.069]). Results remained 
significant also after correcting for sex, handedness and 
ApoE genotype.

In the AD group, the relationship between cortisol level and left 
hippocampal volume only showed a negative, albeit non-significant 
trend (r = −0.329, p = 0.082, BCa 95% CI [−0.612, 0.008]). Conversely, 
there was no significant relationship with the right hippocampal 
volume (r = −0.118, p = 0.541, BCa 95% CI [−0.465, 0.236]) See 
Figure 3.

In HS, left but not right hippocampal volume was positively 
correlated with memory performance (r = 0.458, p = 0.016, BCa 95% 
CI [0.112, 0.730], adjusted for age and education). No significant 
relationship could be detected in the AD group.

3.4. Mediation analysis – indirect effects of 
cortisol on memory performance in HS

As both cortisol level and memory performance were significantly 
associated with left hippocampal volume in HS and given a negative 
trend (though not statistically significant) for the relationship between 
serum cortisol and memory performance, we tested whether the left 
hippocampal volume was possibly mediating the effect of serum 
cortisol on memory performance (Figure 4). We tested the significance 
of this indirect effect using the PROCESS macro for SPSS version 3.2 
(Hayes, 2013) with model 4 (simple mediation). The bootstrapped 
standardized indirect effect (5,000 samples) was −0.219, 95% CI 
[−0.469, −0.048]. Thus, the indirect serum cortisol effect on verbal 
memory performance via the left hippocampus volume was 
statistically significant. To corroborate this analysis, we performed a 
median split of left hippocampus volume (“low volume,” < 0.2707%/
TIV, n = 14, “high volume,” > 0.2707%/TIV, n = 15). Subjects with 
lower hippocampal volume were significantly older than those with 
higher volume (on average by 5.88 years, two-sample t-test p = 0.012), 
but otherwise did not significantly differ in variables of interest 
(cortisol level, BMI, sex, memory performance). When analyzing the 
low and high volume groups separately, we  found a significant 
negative relationship between cortisol level and memory performance 

FIGURE 2

Cortisol levels and memory performance. Left side depicts unadjusted relationship of serum cortisol levels and memory performance, right side shows 
serum cortisol levels in the two groups. HS, healthy seniors; AD, Alzheimer’s patients, * = significant correlation, corrected for age and education.
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FIGURE 3

Hippocampus volume and cortisol levels. Scatterplots depict total intracranial volume (TIV)-corrected hippocampus volumes from AAL atlas region of 
interest (ROI) and unadjusted relationships with serum cortisol level. * = significant correlation, corrected for age and education. HS, healthy seniors, AD, 
Alzheimer’s patients.

FIGURE 4

Left hippocampal volume mediating effect of cortisol on memory performance in healthy seniors. Standardized coefficients are reported. CI = 95% 
confidence interval.
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in the low hippocampus volume group (corrected for age, r = −0.484, 
p = 0.094, BCa 95% CI [−0.817, −0.116]), but not in the high volume 
subjects (r = −0.056, p = 0.848, BCa 95% CI [−0.411, 0.435]) See 
Figure 5.

This further strengthens our results from the mediation analysis, 
that the negative association of cortisol levels with memory 
performance in healthy individuals is dependent on 
hippocampus volume.

3.5. Whole brain voxel-wise analysis

Across the whole sample, serum cortisol levels were negatively 
correlated with gray matter volume in the hippocampus, the fusiform 
gyrus, the temporal pole, and the angular gyrus, and the middle 
temporal gyrus on the left hemisphere (cluster-forming threshold 
p < 0.001, pFWE < 0.05 at cluster-level, corrected for TIV, age and 
education, Figure  6, Table  2). No significant positive correlations 
between serum cortisol levels and gray matter volume were detected. 
Under the thresholds mentioned above, no significant voxel-wise 
results were found in the individual groups. Results remained largely 
unchanged when also correcting for sex, handedness and 
ApoE genotype.

The extracted and TIV adjusted GM volumes were correlated 
with serum cortisol levels in the individual groups, correcting for 
age and education. Significant negative correlations were detected 
in both groups (HS: r = −0.674, p < 0.001, BCa 95% CI [−0.838, 
−0.43]; AD: r = −0.418, p = 0.03, BCa 95% CI [−0.677, −0.035]). The 
correlation strengths (corrected for age and education) did not 
differ significantly between groups (Fisher r-to-z transformation, 
z = −1.344, p = 0.089).

4. Discussion

Our present study investigated the relationships of serum cortisol 
levels, memory performance, hippocampal volume, and whole-brain 
voxel-wise gray matter volume in a sample of healthy seniors and 
patients along the AD spectrum.

Our main findings were that 1) cortisol levels were significantly 
elevated in patients with AD as compared to HS, 2) higher cortisol 
levels were associated with worse memory performance in patients 
with AD, 3) higher cortisol levels were associated with smaller left 
hippocampal volume in HS and there was an indirect negative effect 
of higher cortisol levels on memory performance mediated by left 
hippocampal volume – i.e., worse memory performance in subjects 
with higher cortisol levels and smaller hippocampi, and 4) higher 
cortisol levels were associated with lower gray matter volume not only 
in the hippocampus but also in temporal and parietal areas in the left 
hemisphere in both groups.

4.1. Serum cortisol

Serum cortisol levels were significantly higher in patients with AD 
than HS, a finding in line with previous publications [for a recent 
meta-analysis and review see (Zheng et al., 2020)]. Along with the 
glucocorticoid cascade hypothesis, this could be explained by loss of 
inhibitory control of the hippocampus over the HPA-axis due to 
hippocampal damage and atrophy caused by AD pathology, a process 
accelerated over time by glucocorticoid toxicity on the hippocampus, 
i.e., a vicious circle (Sapolsky et al., 1986).

Due to the cross-sectional design of our study, our findings do 
not allow for the assumption of any causal relationship between 
elevated cortisol levels and disease, a common problem among 

FIGURE 5

Cortisol levels and memory performance in healthy seniors split by hippocampal volume. Scatterplots depict unadjusted relationships between serum 
cortisol levels and verbal memory performance in healthy seniors split at the median into subjects with “low” and “high” hippocampus volume. 
* = significant correlation, corrected for age.
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comparable studies. Due to cognitive impairment and consecutively 
higher stress and anxiety levels, higher cortisol levels in the AD group 
may have been caused by study-related procedures, an effect 
previously reported for MRI scanning (Tessner et  al., 2006) and 
neuropsychological testing (Sindi et  al., 2013), and which may 
be especially pronounced in older subjects (Lupien et al., 2007). Many 
other aspects such as different sleeping patterns have been shown to 
influence cortisol levels (Petrowski et al., 2020) and may have been 
an issue not accounted for. Though this also holds true for healthy 
elderly controls, the effect might have been more substantial in the 
AD group. However, other recent studies demonstrated longitudinal 
associations between higher cortisol levels and the future onset of AD 
(Hinterberger et al., 2013; Ennis et al., 2017), thereby corroborating 
the notion of a disease-related process and not just a stress-induced 
epiphenomenon. Furthermore, our findings of negative associations 
between cortisol levels and brain structure (see the following 
paragraphs) in both healthy seniors and patients with AD strengthen 
this point and argue for an observation not solely ascribable to stress 
or anxiety, making the notion of a pure epiphenomenon even 
more unlikely.

4.2. Serum cortisol, hippocampal volume, 
and memory performance

Cortisol levels have frequently been found to be  inversely 
correlated with memory performance in healthy older adults (Li et al., 
2006; Kukolja et al., 2008; Geerlings et al., 2015; Ouanes et al., 2017; 
Echouffo-Tcheugui et  al., 2018), individuals with mild cognitive 
impairment (Wolf et al., 2002; Popp et al., 2015), and patients with AD 
(Csernansky et al., 2006). Also, glucocorticoid administration has 
been shown to impair declarative memory in healthy adults 
(Newcomer et al., 1994, 1999). However, these effects seem to be dose-
dependent with higher cortisol levels (in comparison to a control 
group or condition and thereby probably often “medium” levels) even 
supporting better memory performance under certain circumstances 
(Kukolja et al., 2008, 2011), presumably reflecting an inverse U-shaped 
relationship between cortisol levels and memory performance 
(Schilling et  al., 2013). This effect could be  due to a differential 
occupancy of two types of cortisol receptors in the brain (i.e., Type 
I  mineralocorticoid receptors, MR, and Type II glucocorticoid 
receptors, GR) (Lupien et al., 2007).

FIGURE 6

Voxel-wise correlation of serum cortisol levels and gray matter volume. (A) Glass brain showing clusters of significant negative correlation of serum 
cortisol levels and gray matter (GM) volume across the whole sample, corrected for age, education, and total intracranial volume (TIV) at p < 0.05 FWE-
corrected (cluster-forming threshold p < 0.001). Colorbar represents t-values. (B) Scatterplot depicts unadjusted relationship between serum cortisol 
levels and GM volume (adjusted for TIV and expressed as %TIV) in individual groups. * = significant correlation at p < 0.05, ** = significant correlation at 
p < 0.001, corrected for age and education, respectively. HS, healthy seniors; AD, Alzheimer’s patients; FWE, family-wise error.

TABLE 2 Significant clusters in voxel-wise analysis.

MNI Coordinates  
(x, y, z)

Cluster size 
(voxels)

Localization (all on left 
hemisphere)

peak T-value pFWE (cluster-level)

−46, −48, 18 633 Angular gyrus, middle temporal 

gyrus

5.45 0.002

−42, −26, −10 2,248 Hippocampus 5.76 <0.001

−36, −4, −32 927 Fusiform gyrus, temporal pole 4.89 <0.001

MNI, Montreal Neurological Institute; FWE, family-wise error.
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While we  could only detect a significant direct association 
between cortisol levels and memory performance in the AD group 
but not in the HS sample, higher cortisol levels seem to be linked to 
worse memory function in HS indirectly via hippocampal volume. 
Also, in those subjects with smaller left hippocampi considered 
separately, we observed significant associations between cortisol 
levels and memory performance. This finding is remarkable, as 
hippocampal atrophy is a significant hallmark of AD and smaller 
hippocampus volumes serve as a risk factor for AD (Walhovd et al., 
2020). Therefore, apparently healthy subjects with smaller left 
hippocampal volume seem to exhibit similar associations between 
serum cortisol and memory function as patients with AD do. It 
could be  argued that the deleterious effects of cortisol on 
hippocampal architecture and, subsequently, memory performance 
will lead these individuals towards AD, a process that, at the 
moment, is still asymptomatic, but could be  the start of the 
“glucocorticoid cascade” according to the hypothesis (Sapolsky 
et  al., 1986). However, due to the cross-sectional design of this 
study, we could not further elaborate on this issue. In addition, no 
biomarker data were available for healthy subjects. Therefore, it 
cannot be excluded that HS with smaller hippocampal volumes 
were already harboring Alzheimer’s pathology.

Of note, in the AD group, there was no significant correlation 
between serum cortisol and hippocampal volume in the ROI analysis, 
and the negative association between cortisol levels and memory 
performance was independent of hippocampal volumes, suggesting 
that the hippocampus is not necessarily the central structure 
mediating adverse effects of cortisol levels on memory performance 
in the disease state. As mentioned above, different states of receptor 
occupancy concomitant with different involvement of limbic and 
prefrontal areas may play an essential part here: Under the condition 
of saturated MR receptors, a more substantial involvement of GR 
receptors will be in place, not only affecting the hippocampus, but also 
prefrontal regions that contain only GR receptors (Lupien et al., 2007). 
This effect may have been more pronounced in AD than HS due to the 
overall higher cortisol levels in patients. Also, our voxel-wise analysis 
demonstrated negative associations between cortisol levels and gray 
matter volume in left-hemispheric regions extending beyond the 
hippocampus, impairment of which may have also contributed to 
cognitive dysfunction. Interestingly, none of these included 
prefrontal areas.

It is also possible that the association between glucocorticoids 
and hippocampal structure is only relevant in earlier stages of 
toxicity and damage (Kulstad et  al., 2005; Green et  al., 2006). 
However, this seems somewhat contradictory to our voxel-wise 
analysis, which (still) demonstrated negative associations between 
cortisol levels and hippocampal gray matter volume in patients with 
AD. The higher spatial specificity of voxel-wise analysis may have 
played a role here.

4.3. Serum cortisol and voxel-wise gray 
matter volume

Our findings from the voxel-wise analyses not only corroborate 
the results from the ROI-based analysis – a negative relationship 
between cortisol levels and hippocampal architecture – but further 
extend them by also demonstrating negative associations between 

cortisol levels and gray matter volume in structures extending beyond 
the mesial temporal lobe, i.e., temporal and parietal cortex.

While some studies have also found negative relationships 
between cortisol levels and gray matter volume in parietal (Toledo 
et al., 2013; Lebedeva et al., 2018; Wirth et al., 2019), (pre)frontal 
(Toledo et al., 2013; Echouffo-Tcheugui et al., 2018), and occipital 
areas as well as with total brain volume (Echouffo-Tcheugui et al., 
2018), others could not demonstrate such effects beyond the 
hippocampus (Lawlor et al., 1994; Lupien et al., 1998; Huang et al., 
2009). A limiting factor in the latter and other similar studies may 
have been the a priori selection of regions of interest precluding more 
widespread findings, while the former – including our own present 
study – used a whole-brain approach.

Two aspects of our results are especially noteworthy: Firstly, the 
negative associations between cortisol levels and gray matter volume 
were found in brain regions strongly implicated in AD, i.e., (medial) 
temporal and parietal cortex (Whitwell et al., 2012; Ferreira et al., 
2020). While for the AD group it could be argued that these areas are 
already incapacitated and prone to further damage through 
glucocorticoid toxicity, this cannot be argued for HS, showing no signs 
of the disease. Secondly, the correlation strength did not differ 
significantly between groups, suggesting that detrimental effects of 
cortisol on gray matter volume in otherwise apparently healthy elderly 
adults are similar if not equal to the corresponding mechanisms in 
AD. Taken together, this argues for a relationship independent of the 
presence of symptomatic AD.

One can only speculate whether molecular aspects such as tau and 
amyloid depositions are a common denominator, e.g., if higher 
cortisol levels accelerate the accumulation of toxic proteins and 
thereby gray matter atrophy in symptomatic and healthy or 
asymptomatic subjects alike. Advanced imaging methods such as 
amyloid and tau PET (Villemagne et  al., 2021) might be  able to 
unravel the role of cortisol levels on the complicated interrelationship 
of age, protein deposition, and clinical phenotype and offer a 
promising field for further studies.

4.4. Lateralization of association between 
serum cortisol and measures of brain 
structure

Notably, in both our ROI-based and voxel-wise analysis, 
significant associations between serum cortisol, memory performance, 
and brain structure were detected on the left hemisphere only, 
suggesting a left-lateralized vulnerability of the implicated structures 
and mechanisms.

While the mediating effect of left hippocampal volume on the 
association between cortisol levels and memory performance could 
be explained by the verbal nature of the task and thereby the primary 
involvement of the left hemisphere, this does not explain the “task-
free” association between cortisol levels and gray matter volume. 
Another possibility may have been a patient selection bias by only 
including patients with AD with attested verbal memory impairment 
and thereby, indirectly, predominantly left hemispheric alterations. 
However, the same lateralized associations could be  detected in 
healthy seniors without memory impairment.

Left and right hemispheric lateralization in the context of stress 
and cortisol effects has been discussed before. However, these findings 
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are far from clear [for a recent review, see (Ocklenburg et al., 2016)]. 
Considering hippocampal volume in particular, studies are reporting 
negative associations of cortisol levels with both left (Wirth et al., 
2019), right (Rajagopalan et  al., 2020), and bilateral hippocampi 
(Toledo et al., 2013; Nguyen et al., 2019; Rajagopalan et al., 2020). 
Furthermore, the role of lateralization remains uncertain, as not all 
studies report associations with individual hippocampal volumes, but 
instead used a combined bilateral approach, e.g., (Starkman et al., 
1992; O’Brien et al., 1996; Lupien et al., 1998; Huang et al., 2009; 
Knoops et al., 2010). To gain deeper insights into the question of 
possibly lateralized effects, further studies with separate inclusion of 
the left and right hippocampi are warranted. However, it is noteworthy 
that the lateralization of negative associations between serum cortisol 
and brain structure in our study further strengthens the hypothesis 
that elevated cortisol levels are a disease-specific marker rather than 
an epiphenomenon caused by, e.g., study-related procedures. If 
we assume that AD causes anxiety, stress, and thereby elevated cortisol 
levels (which in turn would only represent the AD pathology 
underlying anxiety and stress), one would expect a more generalized 
and bilateral pattern of cortical associations, resembling the one 
typically found in AD compared to healthy subjects.

4.5. Strengths and limitations

One of the significant strengths of our study is the thorough 
diagnosis of AD based on biomarkers (CSF and PET). However, no 
biomarkers were available for HS. Therefore, it cannot be excluded 
that some subjects – though cognitively unimpaired – were harboring 
preclinical Alzheimer’s disease with incipient changes in cortisol levels 
and gray matter structure.

Only three other studies used voxel-wise analyses (Toledo et al., 
2013; Echouffo-Tcheugui et al., 2018; Wirth et al., 2019) with our 
study being the only one combining ROI-based analyses, voxel-wise 
analyses, and assessment of memory performance.

Some of the more recent studies included larger samples of a few 
hundred to a few thousand subjects, analyzing data from large cohort 
studies such as ADNI (Toledo et al., 2012, 2013; Wirth et al., 2019) the 
Framingham Heart Study (Echouffo-Tcheugui et  al., 2018), BLSA 
(Ennis et  al., 2017) or AGES-Reykjavik (Geerlings et  al., 2015). 
We were able to confirm findings from these studies in a smaller, yet 
independent sample. Sex distribution in the studies cited above was 
comparable to our own female study population of ~40%, ranging 
from ~40–60%. Compared to our study with a mean participant age 
of ~65 years the studies based on the ADNI and AGES dataset had a 
higher mean age of ~75 years, while in the Framingham Heart Study 
analysis (including only healthy participants, mean age 48.5 years) and 
the BLSA sample (~60 years) participants were younger.

However, we only evaluated cortisol levels at one time point in a 
cross-sectional manner. Therefore, no conclusion about the temporal 
sequence of events is possible (especially concerning higher cortisol 
levels in patients with AD in the setting of study-related procedures) 
and diurnal variations of cortisol secretion cannot be accounted for. 
Also, it would be helpful to assess different measures of cortisol (e.g., 
plasma, serum, urine, CSF, saliva, hair) to account for method-
associated differences – in our case because the major portion of serum 
cortisol is bound to cortisol-binding globulin and albumin and only a 
fraction represents unbound free cortisol assumed to be biologically 

active (Slaunwhite et al., 1962; Coolens et al., 1987) – and to investigate 
acute versus chronic effects (e.g., hair cortisol is assumed to reflect 
chronic stress). Also, it would be useful to include other AD phenotypes 
(e.g., logopenic variant, posterior cortical atrophy) to study associations 
not only attributable to verbal memory impairment.

5. Conclusion

Our study offers further insight into the relationships between 
serum cortisol, brain structure, and memory function by not only 
demonstrating negative associations of higher cortisol levels with gray 
matter volume and verbal memory performance in patients with AD 
but also showing similar adverse effects in apparently healthy elderly 
subjects, especially in those with smaller hippocampal volume.

By possibly acting as a common denominator among associations 
between AD, memory, sleep, depression, and physical activity – all of 
which were been shown to have some association with glucocorticoids 
– the study of cortisol offers a promising field for future research and 
therapeutic opportunities in healthy aging and disease.
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