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Introduction: Alzheimer’s disease (AD) is a complex and progressive

neurodegenerative disorder that primarily affects older individuals. N7-

methylguanosine (m7G) is a common RNA chemical modification that impacts

the development of numerous diseases. Thus, our work investigated m7G-related

AD subtypes and established a predictive model.

Methods: The datasets for AD patients, including GSE33000 and GSE44770, were

obtained from the Gene Expression Omnibus (GEO) database, which were derived

from the prefrontal cortex of the brain. We performed differential analysis of

m7G regulators and examined the immune signatures differences between AD

and matched-normal samples. Consensus clustering was employed to identify

AD subtypes based on m7G-related differentially expressed genes (DEGs), and

immune signatures were explored among different clusters. Furthermore, we

developed four machine learning models based on the expression profiles of

m7G-related DEGs and identified five important genes from the optimal model.

We evaluated the predictive power of the 5-gene-based model using an external

AD dataset (GSE44770).

Results: A total of 15 genes related to m7G were found to be dysregulated in

patients with AD compared to non-AD patients. This finding suggests that there

are differences in immune characteristics between these two groups. Based on

the differentially expressed m7G regulators, we categorized AD patients into two

clusters and calculated the ESTIMATE score for each cluster. Cluster 2 exhibited

a higher ImmuneScore than Cluster 1. We performed the receiver operating

characteristic (ROC) analysis to compare the performance of four models, and

we found that the Random Forest (RF) model had the highest AUC value of 1.000.

Furthermore, we tested the predictive efficacy of a 5-gene-based RF model on

an external AD dataset and obtained an AUC value of 0.968. The nomogram,

calibration curve, and decision curve analysis (DCA) confirmed the accuracy of

our model in predicting AD subtypes.

Conclusion: The present study systematically examines the biological

significance of m7G methylation modification in AD and investigates its

association with immune infiltration characteristics. Furthermore, the study
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develops potential predictive models to assess the risk of m7G subtypes and the

pathological outcomes of patients with AD, which can facilitate risk classification

and clinical management of AD patients.

KEYWORDS

Alzheimer’s disease, m7G methylation, AD subtypes, immune infiltration, machine
learning, predictive model

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that
affects the central nervous system and results in a progressive
decline in cognitive function and memory. It predominantly affects
the elderly population and significantly impacts patients’ quality
of life (Cao and Zheng, 2018; Liu et al., 2020; Qiu et al., 2022).
Recent statistics indicate that approximately 50 million individuals
worldwide suffer from AD and other forms of dementia, and the
number is increasing each year, resulting in a substantial burden on
patients, families, society, and the healthcare system (Suresh et al.,
2021). However, the pathogenesis of AD is exceedingly intricate,
and its exact causative factors remain to be fully elucidated,
impeding the development of AD drugs (Mangialasche et al.,
2010; Ballard et al., 2011). Consequently, current treatments
for AD are unsatisfactory. Nevertheless, recent advancements in
bioinformatics, particularly leveraging the GEO database, have
enabled the in-depth exploration of biomarkers that contribute
to AD development, facilitating the development of multi-factor
prediction models (Zhang T. et al., 2021; Li et al., 2022; Lin et al.,
2022; Wang et al., 2022). These models can provide new insights
into the individualized and precise treatment of AD patients.

There is mounting evidence to suggest that epigenetic
modifications participate in the development of diseases by
regulating gene expression post-transcriptionally (Zhang M. et al.,
2021; Cheng et al., 2022; Luo et al., 2022). N7-methylguanosine
(m7G) is a common RNA methylation that plays a crucial role in
maintaining RNA processing, metabolism, stability, nuclear export,
and translation (Wei et al., 2022; Zhong et al., 2022). Recent
studies have shown a strong association between m7G and various
pathological processes that affect the diagnosis and prognosis of
diseases (Chen et al., 2022; Wei et al., 2022; Xia et al., 2023).

The role of the brain’s immune system, specifically the
microglia, has been extensively investigated in the development of
Alzheimer’s disease. Microglia, a specialized type of immune cell,
play a crucial role in clearing debris and toxic substances from the
brain (Jevtic et al., 2017). Identifying the precise role of microglia
will aid researchers in developing more effective strategies to target
this system, which could potentially prevent the disease from
progressing in the early stages.

Abbreviations: AD, Alzheimer’s disease; PCA, component analysis; CM,
consensus matrix; CDF, cumulative distribution function; DCA, decision
curve analysis; DEGs, differentially expressed genes; DMRs, differentially
methylated regions; XGB, eXtreme gradient boosting; GEO, gene expression
omnibus; GLM, generalized linear model; GSVA, gene set variation
analysis; LIHC, hepatocellular carcinoma; m7G, N7-methylguanosine; PAAD,
pancreatic cancer; PAH, pulmonary arterial hypertension; RF, random forest;
ROC, receiver operating characteristic; Tregs, regulatory T cells; RMSE, root
mean square error; SVM, support vector machines.

Several studies have indicated that m7G methylation is involved
in the immune response to several diseases. RNA methylation
in the immune system influences the maturation and response
functions of immune cells (Lu et al., 2022). m7G modifications
regulate innate immunity by influencing RNA immunogenicity and
innate immune components in the body. Methylation modification
patterns mediated by m7G regulators may be associated with tumor
microenvironment infiltration in glioblastoma (Wu et al., 2022).

This study aimed to conduct a differential analysis of m7G
regulators in AD and non-AD samples and examine the differences
in immune features. Based on 15 differentially expressed m7G-
related genes (M7RGs), we identified two m7G-related subtypes
and assessed the differences in immune features between the
subtypes. To investigate the biological processes involving m7G-
related DEGs between the subtypes, we performed Gene Set
Variation Analysis (GSVA). Additionally, we constructed four
machine-learning models using m7G-related DEGs and evaluated
the diagnostic power of multiple models using ROC curves.

Materials and methods

Data collection

Two datasets related to AD were collected from the GEO
website database,1 namely GSE33000 and GSE44770. Both datasets
contained samples obtained from human prefrontal cortex brain
tissues. The GSE33000 dataset (GPL4372 platform) consisted of 157
healthy and 310 AD samples, which served as the training group.
On the other hand, the GSE44770 dataset (GPL4372 platform)
comprised 129 AD and 101 normal samples, and it was used as the
test group. The gene expression profiles of the three datasets were
normalized and processed using the "Perl" script and R package
"limma." Subsequently, 22 m7G regulators were identified from
previous publications (Luo et al., 2022; Li et al., 2023; Maimaiti
et al., 2023; Qin et al., 2023).

Immune infiltration analysis

The study utilized the CIBERSORT algorithm to evaluate the
relative abundances and infiltration scores of 22 immune cell types
in AD samples, based on gene expression profiles (Gentles et al.,
2015). To explore the relationship between M7RGs and immune
cell types, correlation analysis was employed. A significance level of

1 www.ncbi.nlm.nih.gov/geo
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P < 0.05 was used. The results were presented using the R packages
"reshape2" and "ggpubr."

Consensus clustering for AD patients

Based on the landscape of DEGs expression associated with
AD, we classified AD samples into distinct m7G-related subtypes
by utilizing the R package "Consensus Cluster Plus." The maximum
cluster number, k = 9 was selected, and the optimal cluster number
was evaluated based on the consensus matrix (CM) and CDF. To
evaluate the distribution between m7G-related clusters, we utilized
Principal Component Analysis (PCA).

GSVA

In this study, we employed GSVA, a differential analysis
approach at the pathway level, to investigate the discrepancies in
biological activities among the clusters of M7RGs. We implemented
the GSVA method using the R package "GSVA." We obtained GSVA
gene sets from the "curated gene sets" and "ontology gene sets"
modules available in the MSigDB database.

Construction of machine-learning
models and a nomogram

The cluster-specific DEGs were identified by intersecting the
AD-related hub genes and the m7G cluster-related hub genes.
Subsequently, the expression patterns of these DEGs were analyzed
to construct four machine learning models using the R package
"caret." The models included the Random Forest (RF) (Rigatti,
2017), SVM (Gold and Sollich, 2003), Generalized Linear Model
(GLM) (Nelder and Wedderburn, 1972), and eXtreme Gradient
Boosting (XGB) (Romeo and Frontoni, 2022).

The study considered the distinct clusters as the response
variable and selected the cluster-specific DEGs as explanatory
variables. A total of 310 AD samples were randomly divided into
a training set (N = 218, 70%) and a validation set (N = 92, 30%).
The R package "caret" was used to control the training process
with the parameter set to fivefold repeated cross-validation. Then,
the "randomForest," "kernlab," and "xgboost" packages were loaded
in sequence, and four machine learning algorithms, namely, RF,
SVM, GLM, and XGB, were chosen. The "explain" function in the
"DALEX" package was used to evaluate the performance of these
models and generate various indicators related to the prediction
results. The "DALEX" package was also utilized to visualize the
residual distribution and feature importance among these models,
while the "pROC" package was used to plot the area under the
ROC curves. The top five predictive genes associated with AD were
identified based on the optimal machine learning model. Finally,
the diagnostic value of the model was verified using the ROC curve
analysis in the GSE44770 dataset.

We have developed a nomogram to predict the risk of AD
patients by utilizing the five essential genes identified from the RF
model. To assess the predictive performance of the nomogram,
we utilized decision curve analysis and a calibration curve.

These methods were employed to validate the efficacy of the
predictive model.

Independent validation analysis

We opted to use the AD dataset GSE44770 to assess the
diagnostic efficiency of a 5-gene-based RF model. We presented the
outcomes in the form of ROC curves. Additionally, we developed
a nomogram employing the GSE44770 dataset to assess the risk of
m7G subtypes. The calibration curve and DCA were employed to
evaluate the predictive performance of the nomogram model.

Statistical analysis

The statistical analysis was performed using R software
(Version 4.2.1), with the Perl and "limma" packages used for
data processing. The sample classification was carried out using
the "Consensus Cluster Plus" package. For continuous variables,
normality was assessed, and either the Student’s t-test or Wilcoxon
rank-sum test was employed for analysis. The Chi-square test
was used for categorical variable differences. A two-sided adjusted
p-value of < 0.05 was considered statistically significant.

Results

Identification of differentially expressed
M7RGs

A detailed flow chart of the study process is exhibited in
Figure 1. In order to investigate the biological significance of
m7G in AD, we examined the expression profiles of 22 M7RGs
and performed differential analysis on AD and normal samples
using the GSE33000 dataset. From this analysis, we identified
15 differentially expressed M7RGs, with 4 of them (NUDT3,
CYFIP1, NCBP1, and IFIT5) being upregulated in AD patients,
while 11 of them (METTL1, DCPS, NUDT10, NUDT11, EIF4E,
EIF4E2, EIF4E3, LARP1, EIF4G3, LSM1, and NCBP2L) were
downregulated compared to non-AD patients (Figures 2A, B,
E). In addition, we conducted a correlation analysis to explore
the relationship between these differentially expressed M7RGs.
Our results indicated that EIF4E3 was significantly positively
correlated with NUDT11 and negatively correlated with CYFIP1
(Figures 2C, D).

Immune landscape analysis

The CIBERSORT analysis was utilized to assess the differences
in immune features between AD and normal samples (Figure 3A).
The results of our study revealed that AD samples had elevated
levels of infiltrating naive CD4+ T cells, resting NK cells,
monocytes, M0, M2 macrophages, and neutrophils, whereas
infiltration levels of plasma cells, CD8+ T cells, activated NK cells,
and eosinophils were decreased (Figure 3B). These findings suggest
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FIGURE 1

The study flow chart.

FIGURE 2

Identification of differentially expressed m7G-related genes. (A) Boxplots showed the expression of 22 M7RGs between AD and non-AD controls
***p < 0.001. (B) The expression patterns of 15 M7RGs were presented in the heatmap. (C) Interactions between 15 differentially expressed M7RGs at
the molecular level. (D) Correlation analysis of 15 differentially expressed M7RGs. Red and green colors represent positive and negative correlations,
respectively. The correlation coefficients were marked with the area of the pie chart. (E) The location of 22 M7RGs on chromosomes.

that alterations in the immune microenvironment play a crucial
role in the development of AD. Moreover, the correlation analysis
demonstrated that M2 macrophages exhibited a positive correlation

with CYFIP1 and a negative correlation with METTL1. In
contrast, neutrophils showed a positive association with the M7RGs
(excluding LARP1), while M0 macrophages and naive CD4+ T cells
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FIGURE 3

The analysis of immune features between AD and non-AD samples. (A) The relative abundances of 22 infiltrated immune cells between AD and
non-AD controls. (B) Boxplots showed the differences in immune infiltration between AD and non-AD controls. (C) Correlation analysis between 15
M7RGs and 22 immune cell types. *p < 0.05, **p < 0.01, ***p < 0.001.

were negatively associated with the M7RGs (excluding METTL1
and NUDT1) (Figure 3C). These results suggest that M7RGs may
participate in the onset and progression of AD by affecting immune
cell infiltration levels. Moreover, the results of the CIBERSORTx
analysis are shown in Supplementary Figure 1 and Supplementary
Table 1.

Identification of m7G clusters in AD

Based on the differential expression of M7RGs, we conducted a
consensus clustering analysis to investigate new molecular subtypes
for patients with AD. The consensus clustering algorithm classified
AD patients into two m7G-related subtypes when K was equal to
2 (Figures 4A–C). The PCA analysis revealed that the two clusters
showed distinct molecular mechanisms related to m7G (Figure 4F).

Differential analysis of m7G regulators
and immune signatures between m7G
clusters

In this study, we performed a differential analysis of 15 M7RGs
to investigate molecular signatures between two subtypes, Cluster 1

and Cluster 2. Our results showed that Cluster 1 exhibited elevated
expression levels of DCPS, NUDT11, EIF4E, EIF4E2, EIF4E3,
LARP1, EIF4G3, and NCBP2L, while Cluster 2 showed elevated
expression levels of METTL1, CYFIP1, and NCBP1, as depicted
in Figures 4D, E. Moreover, based on the CIBERSORT results,
we observed a significant difference in immune cell infiltration
between the two m7G-related subtypes, with Cluster 1 showing
higher levels of regulatory T cells (Tregs) and neutrophils and
Cluster 2 showing higher levels of naive CD4+ T cells, resting NK
cells, M0, and M1 macrophages (Figure 4H). We also conducted
ESTIMATE analysis, which revealed that Cluster 2 had a higher
StromalScore, ImmuneScore, and ESTIMATEScore, indicating
elevated immune infiltration levels (Figures 4G, I).

Enrichment analysis

The study utilized GSVA analysis to investigate the differences
in biological activities between two AD subtypes. The results
showed that Cluster 1 had reinforced cell adhesion molecules,
primary immunodeficiency, focal adhesion, and cancer-
related pathways. In contrast, Cluster 2 showed activation of
terpenoid backbone biosynthesis, regulation of autophagy,
ubiquitin-mediated proteolysis, vibrio cholerae infection,
and metabolism-related pathways (Figure 5A). Furthermore,
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FIGURE 4

Identification of m7G-related molecular subtypes in AD. Consensus clustering matrix when k = 2 (A), representative cumulative distribution function
(CDF) curves (B), CDF delta area curves (C). (D) Boxplots showed the expression of 15 M7RGs between two m7G clusters ***p < 0.001. (E) The
different analyses of 15 M7RGs between two m7G clusters were presented in the heatmap. (F) PCA analysis for cluster 1 and cluster 2. (G) The
relative abundances of 22 infiltrated immune cells between two m7G clusters. (H) Boxplots showed the differences in immune infiltration between
two m7G clusters *p < 0.05, ***p < 0.001. (I) Violin plots showed the StromalScore, ImmuneScore, and ESTIMATEScore between two m7G clusters.

functional enrichment analysis revealed that Cluster 1 was
significantly positively correlated with the secretion of lysosomal
enzymes, the liposaccharide metabolic process, the translocon
complex, the negative regulation of lipoprotein lipase activity, and
lipid kinase activity. Conversely, Cluster 2 showed enrichment

in golgi organization, nucleosome assembly, Wnt protein
secretion, response to amphetamine, and regulation of cytoplasmic
translation (Figure 5B). Thus, it was inferred that Cluster 2 may
be involved in mRNA processing, translation, and metabolic
pathways.
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FIGURE 5

Identification of biological activities between two m7G clusters. (A) The KEGG pathway analysis. (B) The GO function analysis.

Construction of machine-learning
models

To explore the m7G regulators associated with AD subtypes,
we constructed four machine-learning models, including RF, SVM,
GLM, and XGB using the 15 m7G-related DEGs in the AD
training set. The XGB and GLM models showed lower residuals
(Figures 6A, B). We identified 10 key genes from four modules,
ranked by root mean square error (RMSE) (Figure 6C). In addition,
we used the ROC curve to evaluate the diagnostic efficacy of the
four models. The RF model exhibited the strongest diagnostic
power (AUC = 1.000) (Figure 6D). Finally, we selected the top five
best factors (NCBP2L, LARP1, EIF4E, EIF4E3, and NUDT11) from
the RF model as predictor genes for further analysis.

We developed a nomogram to assess the predictive ability
of the RF model across various AD subtypes (Figure 7C). To
validate the predictive performance of the nomogram, we employed
a calibration curve and DCA. The calibration curve showed that
the predicted risk of AD clusters was nearly identical to the
actual risk (Figure 7A). Furthermore, the DCA result demonstrated
that the nomogram had a superior predictive ability, providing a
theoretical basis for the prediction of m7G-related AD subtypes
(Figure 7B). Subsequently, we classified AD patients into two
m7G subtypes using a consensus clustering algorithm based on the
GSE44770 dataset (Figures 8A–C). A nomogram was conducted
to assess the risk of AD subtypes (Figure 8F). The calibration
curve and DCA analysis were used to evaluate the diagnostic
capability of the nomogram model (Figures 8D, E). The ROC
analysis revealed an AUC of 0.968 for the 5 gene-based RF model in
the GSE44770 dataset, demonstrating the higher diagnostic efficacy
of our predictive model for AD subtypes (Figure 8G). Furthermore,
the AUC values for NCBP2L, LARP1, EIF4E, EIF4E3, and NUDT11
were 0.700, 0.633, 0.861, 0.918, and 0.962, respectively (Figure 8H).

Discussion

The etiology of AD is complex, and its diagnosis is
challenging. Consequently, AD patients often receive inadequate
treatment. The traditional classification of AD based on histology

poses a significant challenge to drug treatment due to drug
resistance. Therefore, there is an urgent need to develop effective
predictive models and molecular subtypes for risk stratification and
personalized treatment of AD patients.

RNA methylation post-transcriptionally regulates target RNA
metabolism and function, either promoting or inhibiting disease
development (Dai et al., 2021; Cui et al., 2022). One of the
most common chemical modifications is m7G, installed by
key methyltransferases such as METTL1/WDR4, RAM/RNMT,
and WBSCR22/TRMT112 (Luo et al., 2022). METTL1 has
been identified as a high-risk gene in hepatocellular carcinoma
(LIHC), contributing to tumor-associated phenotypes by inhibiting
PTEN signaling (Tian et al., 2019). WDR4 plays a crucial role
in promoting the proliferation of hepatocellular carcinoma by
mediating m7G methylation (Xia et al., 2021). In pancreatic
cancer (PAAD), the WBSCR22/TRMT112 complex downregulates
the oncogene ISG15 expression, impairing malignant phenotypes
(Khan et al., 2022).

The immune system is recognized as a crucial factor in
AD, with various components of the immune system in both
the brain and periphery interacting to contribute to the disease.
The classical immune components of the nervous system, such
as microglia and complement, as well as novel aspects of the
peripheral immune system, such as monocytes and lymphocytes,
are all implicated in AD.

Lu et al. (2022) found that most M7RGs are highly expressed
in COVID-19 patients compared with that in non-COVID-19
patients. And m7G-cluster B showed higher immune infiltration
and milder symptoms. Furthermore, m7G modification has been
shown to play an essential role in the development of cardiovascular
disease. Wei et al. (2022) indicated that m7G methylation is
involved in the progression of pulmonary arterial hypertension
(PAH) by affecting the immune microenvironment. However, the
role of m7G in AD and its relationship with immunity remain
incompletely understood.

Our objective was to investigate the biological activities of
M7RGs in AD progression and identify m7G-related clusters and
immune signatures. Additionally, we aimed to construct an optimal
machine-learning model for evaluating the risk of AD subtypes.
In this study, we obtained the expression profile of M7RGs from
the GSE33000 dataset and performed differential analysis between
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FIGURE 6

Construction and evaluation of RF, SVM, GLM, and XGB machine models. (A) Cumulative residual distribution of each machine learning model.
(B) Boxplots showed the residuals of each machine learning model. Red dot represented the root mean square of residuals (RMSE). (C) The
important features in RF, SVM, GLM, and XGB machine models. (D) ROC curves of four machine learning models based on fivefold repeated
cross-validation in the testing cohort.

AD and non-AD individuals. Our data revealed dysregulation of
15 M7RGs in AD patients. A correlation analysis between m7G
regulators was conducted to unveil the relationship between m7G
regulators and AD. Furthermore, CIBERSORT analysis showed
an immune infiltration difference between AD and non-AD
patients. Infiltration levels of naive CD4+ T cells, resting NK

cells, neutrophils, and M0 and M2 macrophages were found to be
elevated in AD patients.

The results from GSVA indicated that Cluster 1 was mainly
enriched in cell adhesion molecules, primary immunodeficiency,
focal adhesion, and cancer-related pathways. On the other hand,
Cluster 2 was characterized by metabolism-related pathways,
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FIGURE 7

Validation of the 5-gene-based RF model. Construction of the calibration curve (A) and DCA (B) for assessing the predictive efficiency of the
nomogram model. (C) Construction of a nomogram for predicting the risk of AD clusters based on the 5-gene-based RF model.

mRNA processing, and translation. Furthermore, Cluster 2
was enriched in terpenoid backbone biosynthesis, regulation
of autophagy, ubiquitin-mediated proteolysis, vibrio cholerae
infection, and metabolism-related pathways (Figure 7B).
Additionally, functional enrichment analyses indicated that
Cluster 1 was strongly associated with the secretion of lysosomal
enzymes, the liposaccharide metabolic process, the translocon
complex, the negative regulation of lipoprotein lipase activity,
and lipid kinase activity. However, Cluster 2 was enriched
in golgi organization, nucleosome assembly, Wnt protein
secretion, the response to amphetamine, and the regulation of

cytoplasmic translation (Figure 7C). Thus, we postulate that
Cluster 2 may play a role in regulating amino acid metabolism-
related pathways, mRNA processing, and translation. Notably,
previous studies have reported that taurine and glutamate
intake could improve learning and memory function and delay
the progression of Alzheimer’s disease. Consistent with these
findings, Cluster 2 showed a stronger activity of taurine- and
glutamate-related metabolism pathways. Taken together, these
results suggest that Cluster 2 may have more activated amino
acid metabolism-related pathways to halt the development of
Alzheimer’s disease.
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FIGURE 8

Independent validation analysis based on the GSE44770 dataset. Consensus clustering matrix when k = 2 (A), representative cumulative distribution
function (CDF) curves (B), CDF delta area curves (C). Construction of the calibration curve (D) and DCA (E) for assessing the predictive efficiency of
the nomogram model. (F) Construction of a nomogram for predicting the risk of AD clusters based on the 5-gene-based RF model. (G) ROC curve
of the 5-gene-based RF model. (H) ROC curves of NCBP2L, LARP1, EIF4E, EIF4E3, NUDT11.

Mining hub genes with higher diagnostic value for a
disease using multiple machine learning models is becoming
a common research method. In this study, we constructed
four machine-learning models to screen five important genes
associated with AD from 15 m7G-related DEGs. We used ROC
curves to assess the predictive power of the four models, and
the results suggested that the RF model exhibited relatively
higher diagnostic performance (AUC = 1.000) and has the
potential to distinguish between different AD subgroups. We
established a nomogram to assess the risk of AD subtypes
based on the expression profiles of five important genes,
including NCBP2L, EIF4E, EIF4E3, LARP1, and NUDT11. The
DCA and calibration curve further indicated that this model

exhibited relatively higher diagnostic value and potential for
clinical application.

Kenny et al. (2019) reported that EIF4E could serve as a specific
biomarker for diagnosing AD. The phosphorylated levels of EIF4E
were found to be significantly higher in patients with advanced
AD, which correlated positively with the phosphorylated Tau
protein levels. Therefore, the phosphorylated EIF4E protein might
promote the progression of AD by enhancing the accumulation
of phosphorylated Tau protein in neurons (Li et al., 2004).
Furthermore, the study revealed that the level of differentially
methylated regions (DMRs) was associated with various dementia-
related genes, including EIF4E, that contribute to the onset of AD
(Pérez et al., 2022).
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To further validate the diagnostic efficacy of the 5-gene-based
RF model, we selected an external AD dataset (GSE44770). The
AUC value is 0.968 in GSE44770, suggesting that the model has
potential for a wide range of applications in AD diagnosis.

Conclusion

Our study revealed that dysregulated m7G regulators are
commonly found in patients with AD, which have an impact on
the immune microenvironment. We identified two clusters of m7G
and analyzed the differences in immune features between these two
clusters. We chose a 5-gene-based RF model as the optimal machine
learning model, which can accurately assess the risk of different
subtypes of AD. Our findings elucidate the biological significance
of m7G regulators in AD and provide a valuable insight for the risk
stratification and clinical treatment of AD.
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