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To better capture the polygenic architecture of Alzheimer’s disease (AD), we

developed a joint genetic score, MetaGRS. We incorporated genetic variants for

AD and 24 other traits from two independent cohorts, NACC (n = 3,174, training

set) and UPitt (n = 2,053, validation set). One standard deviation increase in

the MetaGRS is associated with about 57% increase in the AD risk [hazard ratio

(HR) = 1.577, p = 7.17 E-56], showing little difference from the HR for AD GRS

alone (HR = 1.579, p = 1.20E-56), suggesting similar utility of both models. We

also conducted APOE-stratified analyses to assess the role of the e4 allele on risk

prediction. Similar to that of the combined model, our stratified results did not

show a considerable improvement of the MetaGRS. Our study showed that the

prediction power of the MetaGRS significantly outperformed that of the reference

model without any genetic information, but was effectively equivalent to the

prediction power of the AD GRS.
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1. Introduction

1.1. Genetic risk scores

A genetic risk score (GRS), also known as a polygenic risk score, is an estimate of an
individual’s genetic risk for a trait of interest. To calculate a simple GRS, the weighted sum
of an individual’s single nucleotide polymorphism (SNP) genotypes in the target dataset
is computed; the SNPs involved can be from the entire genome or some pre-determined
genomic locations, and the weights are the SNP effect sizes, typically obtained from a publicly
available, large scale genome-wide association study (GWAS) that are referred to as the base
dataset. The simplest way to calculate a risk score is the pruning/clumping and thresholding
(P+T or C+T) method, which selects SNPs for inclusion that pass linkage disequilibrium
(LD) pruning/clumping and p-value thresholding (Clark et al., 2022). A GRS can be used
to stratify individuals based on trait-specific genetic risk, to conduct trait prediction in an
independent dataset, and to study shared genetic basis among different traits.
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1.2. Previous development of a stroke
MetaGRS

Abraham et al. (2019) developed MetaGRS for ischemic stroke
(IS). Some previous studies (Ibrahim-Verbaas et al., 2014; Malik
et al., 2014) had indicated the limited predictive power of ischemic
stroke GRS, while others (Inouye et al., 2018; Maier et al., 2018) had
shown that GRS can be made more powerful when using summary
statistics from GWAS for multiple phenotypes. To leverage this
information, Abraham et al. (2019) calculated GRS for 19 different
traits, including IS, and incorporated them into an ischemic stroke
MetaGRS. They found that the inclusion of risk information for
multiple types of stroke and stroke-related phenotypes led to
a slightly better prediction power than the IS GRS alone. The
superiority of MetaGRS models, though marginal, has also been
shown for other traits, including type 2 diabetes and coronary
artery disease (Inouye et al., 2018; Wünnemann et al., 2019;
Chen et al., 2021).

1.3. Motivation to develop an Alzheimer’s
disease MetaGRS

Alzheimer’s disease (AD) has been previously shown to have
a polygenic architecture (Escott-Price et al., 2015; Leonenko
et al., 2021), with Escott-Price et al. (2015) indicating that an
AD polygenic risk score had increased predictive ability when
compared to a conventional logistic regression model including
only APOE genotype and relevant covariates. However, the
variance explained (R2) by these risk score models only reaches
about 0.29 whereas Alzheimer’s disease has a heritability of up to
80% (Gatz et al., 2006; Leonenko et al., 2021; Bellenguez et al.,
2022). Because of this discrepancy, we aimed to construct MetaGRS
following the procedure described by Abraham et al. (2019) in
an effort to produce a more powerful AD risk score model. The
implementation of this model will allow us to explore a more
effective tool to capture genetic risk at an earlier stage, leading to
the possibility of earlier interventions for AD.

2. Results

2.1. Derivation of MetaGRS for AD

We construct and train the MetaGRS for AD using the samples
from the National Alzheimer’s Coordinating Center (NACC;
n = 3,174, Table 1); we evaluate its predictive power in an
independent test dataset, i.e., the Alzheimer’s Disease Research
Center (ADRC) samples housed at the University of Pennsylvania
(ADRC-UPitt), which is the largest non-NACC dataset in the
Alzheimer’s Disease Genetics Consortium (ADGC) and consists
of 2,053 individuals (Table 1). The workflow is presented in
Figure 1. We obtain GWAS summary statistics for AD and 24
other phenotypes (Ripke et al., 2013; Willer et al., 2013; Locke
et al., 2015; Christophersen et al., 2017; Day et al., 2018; Elliott
et al., 2018; Evangelou et al., 2018; Lee et al., 2018; Malik et al.,
2018; Xue et al., 2018; Dashti et al., 2019; Howard et al., 2019;

Jansen et al., 2019; Kunkle et al., 2019; Liu et al., 2019; Wells et al.,
2019; Persyn et al., 2020; Shah et al., 2020; Wigmore et al., 2020)
(see Supplementary Table 1 for phenotype names, abbreviations,
and sources) to construct GRS for each phenotype in NACC. All
GRSs, including the AD GRS, are constructed using SNPs from
all autosomes. We use the P+T approach and adopt 13 p-value
thresholds (see “Materials and methods” section). Because some
phenotype data are unavailable in NACC, we do not use phenotype
data to select the optimal p-value threshold as in the original
P+T method. Instead, for each phenotype, we follow Coombes
et al. (2020) and perform principal component analysis (PCA)
on the 13 GRSs, each obtained from a p-value threshold. We
then retain the first principal component for use in the rest of
the analysis (hereafter, PCA-GRS). Figure 2 shows the correlation
among the PCA-GRS of different phenotypes — DBP, Hearing,
and SBP are among the phenotypes that are negatively associated
with AD, while CHF, LDL, SCZ, TC, and TG display positive
associations.

Of note, some PCA-GRSs are correlated (for example, SBP and
DBP, CHF and Hearing in Figure 2), and therefore contribute
overlapping information. We use regularization to account for the
correlations when constructing the MetaGRS. We used elastic net
regression with AD status as the dependent variable and the 25
PCA-GRS as predictors to determine the regression coefficients
of each PCA-GRS, adjusting for sex and the first 5 principal
components. The formula for MetaGRS is shown in the “Materials
and methods” section. We use 20-fold cross validation in NACC
data, and the model that maximizes the area under the receiver-
operating characteristic curve (AUC) us chosen as the final model.

Figure 3 displays the regression coefficients from elastic
net regression (hereafter referred to as MetaGRS weights). As
comparison, we also plot the coefficients and the associated
95% confidence interval (CI) from logistic regressions that use
AD status as the dependent variable and the corresponding
phenotype’s PCA-GRS as the predictor, adjusting for the same
covariates as in the elastic-net model. After accounting for
the effects and correlations across different phenotypes, the
majority of the non-AD phenotypes contribute a null MetaGRS
weight. Specifically, AD, which has the largest absolute weight
in the single PCA-GRS logistic regression, still contributes to
the largest weight in the MetaGRS, (1.606) and dominates
other phenotypes. In contrast, several other phenotypes
(e.g., LDL, Hearing, and Antidepressant Use) have non-trivial
regression coefficients in the single PCA-GRS logistic regression
but contribute negligibly in the MetaGRS. In the MetaGRS
Smoking Initiation contributes the second largest positive weight,
while Isolation and Education contribute the largest negative
weights.

2.2. Evaluating MetaGRS

We construct the MetaGRS for AD in the UPitt testing
data (n = 2,053) and evaluate its performance using both Cox
proportional hazard model and logistic regression. The MetaGRS
shows a significant improvement in the C-index compared to the
reference model which includes sex and the first five principal
components (C-index for MetaGRS = 0.642, C-index for the
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TABLE 1 Data summary.

NACC UPitt

All Control AD p-value2 All Control AD p-value2

Characteristic N =
3,1741

N =
1,5121

N =
1,6621

N =
2,0491

N = 8101 N =
1,2391

AD 1,662 (52%) 1,239 (60%)

Sex 1,298 (41%) 510 (34%) 788 (47%) <0.001 759 (37%) 299 (37%) 460 (37%) >0.9

Apoe type

e2e2 9 (0.3%) 8 (0.5%) 1 (<0.1%) 0.017 8 (0.4%) 5 (0.6%) 3 (0.2%) 0.3

e2e3 239 (7.5%) 175 (12%) 64 (3.9%) <0.001 152 (7.4%) 111 (14%) 41 (3.3%) <0.001

e3e3 1,499 (47%) 924 (61%) 575 (35%) <0.001 1,009 (49%) 534 (66%) 475 (38%) <0.001

e3e4 1,093 (34%) 349 (23%) 744 (45%) <0.001 693 (34%) 134 (17%) 559 (45%) <0.001

e4e4 253 (8.0%) 25 (1.7%) 228 (14%) <0.001 133 (6.5%) 9 (1.1%) 124 (10%) <0.001

e2e4 81 (2.6%) 31 (2.1%) 50 (3.0%) 0.087 54 (2.6%) 17 (2.1%) 37 (3.0%) 0.2

1n (%); Median (IQR).
2 Fisher’s exact test.
Detailed breakdown of the post-QC’ed NACC and UPitt datasets. Indicates the disease status and sex breakdown, along with the distribution of APOE genotype among samples. P-values were
obtained using Fisher’s exact test comparing AD case and control groups.

reference model = 0.529, Figure 4A). Similar patterns were seen
in Abraham et al. (2019) and Chen et al. (2021). Nevertheless the
C-index suggests the MetaGRS has a predictive power equivalent
to AD PCA-GRS (C-index for MetaGRS = 0.642, C-index for AD
PCA-GRS = 0.645, Figure 4A). This is also indicated by the hazard
ratios (HR) – one standard deviation increase in the MetaGRS
is associated with about 57% increase in the AD risk [hazard
ratio (HR) = 1.577, p = 7.17 E-56, Table 2], showing a minimal
difference from the HR for AD PCA-GRS alone (HR = 1.579,
p = 1.20E-56, Table 2). This minimal improvement of MetaGRS is
not unique to AD. The predictive power of MetaGRS for T2D is not
distinguishably better than the T2D GRS (Chen et al., 2021) alone;
the MetaGRS for stroke has a slightly better power than the IS GRS
alone, with a magnitude of less than 0.02 improvement in C-index
(Abraham et al., 2019).

To confirm that our finding is not sensitive to the model
specification, we also evaluate the MetaGRS by using logistic
regression that takes AD status (a binary variable) as the dependent
variable and adjust for age, sex, and the first 5 principal
components. When using logistic regressions, we use AUC to
compare the prediction performance. The AUC for MetaGRS is
0.7110, effectively the same as the AUC of 0.7113 for AD PCA-GRS
(Supplementary Table 2). The receiver operating characteristic
(ROC) curve for MetaGRS is also indistinguishable from the
curve for AD PCA-GRS (Supplementary Figure 1), showing very
little improvement in the prediction power in MetaGRS. Previous
studies have identified the dominant predictive power of the APOE
e4 allele (Stocker et al., 2021), thus motivating us to evaluate the
influence of APOE status on the MetaGRS.

2.3. Stratification analysis by APOE e4
status

We further evaluate the predictive power of MetaGRS in
samples split according to APOE e4 status. Not surprisingly, due to
the e4 allele’s well-known status as the main genetic driver of AD,

we do not observe any improvement of the MetaGRS in APOE e4
carriers based on the Cox hazard model estimates (C-index = 0.578
for AD PCA-GRS, C-index = 0.578 for MetaGRS in Figure 4B,
HR = 1.233 for AD PCA-GRS, HR = 1.232 for MetaGRS in Table 2).
Among the APOE e4 non-carriers, the MetaGRS does not render
a considerable improvement in the prediction power compared to
AD PCA-GRS (Figure 4C and Table 2). Validations using logistic
regression again confirm the minimal superiority of MetaGRS. The
only difference in the results from logistic regression is, among
the APOE e4 non-carriers, the odds ratio (OR) for MetaGRS is
slightly higher than the OR for AD PCA-GRS, as are the AUC
and pseudo R2.

2.4. Adding APOE e2 and e4 dosage as
covariates

As a sensitivity analysis, we additionally include APOE e2 and e4
dosage as covariates into the elastic net model in the training stage
and the Cox model in the validation stage. Compared to Figure 4A,
we see that adding APOE dosage covariates significantly improves
the performance of the reference model, AD PCA-GRS model,
and MetaGRS model (Supplementary Figure 2A). Unlike the
considerable difference in the C-index between the reference model
and MetaGRS in Figure 4A, the gap is narrowed, which echoes the
dominant role of APOE region in AD risk prediction. Despite these
changes, the MetaGRS does not exhibit a better performance of risk
prediction against the AD PCA-GRS (Supplementary Figure 2),
i.e., MetaGRS and AD PCA-GRS have near identical C-index values
in all samples and in e4-stratified samples.

2.5. Removing APOE region in
calculation of AD GRS

Lastly, we construct an additional AD-GRS by removing the
APOE region and adjusting for age, sex, and the first 5 principal
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FIGURE 1

MetaGRS workflow. The workflow we followed to derive our Alzheimer’s disease MetaGRS. The MetaGRS model was trained using the quality
controlled (QC’ed) NACC genotype data and the GWAS summary statistics files for 25 phenotypes as listed in Supplementary Table 1. The
constructed MetaGRS model is then applied to the UPitt dataset to evaluate its predictive power.

components, and replicated all the rest of the training and
validation process. Removing the APOE region leads to a slightly
smaller weight of AD PCA-GRS in the elastic net regression in
the training stage (weight = 1.499 in Supplementary Figure 3
compared to weight = 1.606 in Figure 2), while Isolation an
Education remain the two phenotypes with the largest negative
weights (Supplementary Figure 3). There are significant changes in
the magnitude of predictive risk – one standard deviation increase
in the MetaGRS is associated with about 26% increase in the
AD risk (HR = 1.259, p = 1.45E-15, Supplementary Table 3),
compared to an increase of 57% when APOE region is included in
the calculation of AD GRS (HR = 1.577, p = 7.17E-15, Table 2).
This is not surprising considering we excluded the region with the
most hazardous genetic variants for AD. Though MetaGRS still
outperforms the reference model, there is little evidence supporting
its superiority over AD PCA-GRS which is again manifested in
all individuals, individuals with APOE e4 alleles, including very

similar values in C-index (Figure 5), HR (Supplementary Table 3),
and OR, pseudo-R2, and AUC (Supplementary Table 4) between
MetaGRS and AD PCA-GRS.

3. Discussion

Our study showed that MetaGRS for AD significantly
outperformed the reference model that includes no genetic
covariates, but was almost equivalent to AD GRS in terms of
the prediction power. Our results do not stand against current
literature on Stroke (Abraham et al., 2019) and T2D (Chen
et al., 2021)−the MetaGRS does show considerable improvement
in prediction power when evaluated against the predictive
performance of the GRS of single risk factors, however, the
improvement is negligible or nonexistent when benchmarked
against the GRS of the phenotype of interest.
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FIGURE 2

Correction matrix of PCA-GRSs. Pairwise correlations between the PCA-GRSs of each phenotype. Dark red indicates a strong negative correlation
while dark blue indicates a strong positive correlation.

We explored possible reasons behind the limited superiority
of MetaGRS. Figure 3 shows that the AD GRS overwhelms the
contributions of other phenotypes in MetaGRS (e.g., Isolation,
Education). As shown in Figure 3, both AD MetaGRS weight
and AD logistic regression coefficient are significantly different
from zero while other phenotypes have their MetaGRS weights
and logistic regression coefficients either near zero or substantially
smaller than AD. By nature of the polygenic structure of AD,
one possible cause could be the dominant role of APOE variants
in AD genetic risk. We investigated the impact of APOE further
with additional analyses−stratification analysis by APOE e4 status,
including APOE e2 and e4 dosage as covariates when constructing
the AD GRS, and removing the APOE region in the calculation of
AD GRS. All of these analysis results speak to the fact that APOE
variants are not the primary cause of the minimal improvement
from MetaGRS.

We are aware that many other important explanations are
not explored in this paper, all of which could be possible
avenues for future exploration. First, most MetaGRS studies,
including ours, focus on European ancestry only, warranting
investigation of the power of MetaGRS in other ancestries. For
example, APOE e4 allele frequency varies across ethnicities, [e.g.,
37% (14%) for AD cases (controls) in Caucasian, 32% (19%)
for AD cases (controls) in African Americans, 19% (11%) for
AD cases (controls) in Hispanic, and 28% (9%) for AD cases
(controls) in Japanese] (Farrer et al., 1997). In AD studies,
the hazard ratio of APOE e4/e4 also shows discrepancy across
ancestries [OR is 12.5, 5.7, 2.2, and 33.1 in Caucasians, African
Americans, Hispanics, and Japanese, respectively (Farrer et al.,
1997)]. It is worth investigating whether MetaGRS performs
better for ethnicities with a smaller APOE e4 frequency in the
future.
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FIGURE 3

Elastic net regression coefficients and univariate logistic regression. The weights (i.e., log odd ratio) for each phenotype from elastic net regression
(red points) and from the univariate logistic regression of each phenotype (black points) with its 95% confidence intervals. The coefficients are
obtained using standardized PCA-GRS which have zero mean and unit standard deviation for each phenotype. All regression analyses adjust for sex
and the first five principal components.

FIGURE 4

MetaGRS validation using Cox proportional hazard model in UPitt. The figure shows the performance of MetaGRS in UPitt in (A) all sample; (B) APOE
e4 carriers; and (C) APOE e4 non-carriers. Cox proportional hazard model is performed in each sample, adjusting for age, sex and the first five
principal components. C-index is used to evaluate the performance of prediction.
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TABLE 2 MetaGRS validation in UPitt – Cox hazard model.

Sample N PGS Beta HR S.E. P

All sample 2052 AD PCA-GRS 0.457 1.579 0.029 1.20E-56

Meta PCA-GRS 0.456 1.577 0.029 7.17E-56

APOE e4 carrier 880 AD PCA-GRS 0.210 1.233 0.046 4.86E-06

Meta PCA-GRS 0.209 1.232 0.046 6.17E-06

APOE e4 non-carrier 1169 AD PCA-GRS 0.288 1.334 0.056 2.89E-07

Meta PCA-GRS 0.283 1.327 0.055 3.24E-07

Cox hazard model results for the AD PCA-GRS and the Meta PCA-GRS. Results include those for the full UPitt validation sample and stratified into APOE e3 carriers and non-carriers. HR,
hazard ratio; S.E., standard error. The sample size of all sample is 2052, among of which 2049 has non-missing information about the APOE status, and 3 with missing information about
the APOE status.

FIGURE 5

MetaGRS validation using Cox proportional hazard model in UPitt after removing APOE region. The figure shows the performance of MetaGRS in
UPitt in (A) all sample; (B) APOE e4 carriers; and (C) APOE e4 non-carriers. APOE region is removed in the calculation of AD GRS. Cox proportional
hazard model is performed in each sample, adjusting for age, sex and the first five principal components. C-index is used to evaluate the
performance of prediction.

Secondly, MetaGRS did not consider environmental and
behavioral risk factors and their interactions with genetic factors,
thus, social determinants of health were overlooked. Literature
has shown an association between neighborhood disadvantage and
AD (Powell et al., 2020), where living in a more disadvantaged
neighborhood is associated with a higher risk of AD. Consistent
access to healthcare resources, for which we did not control for,
benefits both physical and brain health and may explain a non-
negligible portion of variations for diseases related to AD or AD
itself (Livingston et al., 2020) and should be further studied. Lastly,
there may be important but undiscovered risk variants for AD
that we could not include into the MetaGRS model thus the
modest improvement of the MetaGRS for AD. We expect this to be
addressed as larger, more diverse genome-wide association (GWA)
studies are performed and results released to the public.

The results presented here suggest that the AD MetaGRS is
effectively as clinically useful as the typical AD GRS, though both
can stand to be improved. AD MetaGRS can help to classify
individuals into different groups based on their AD genetic risk.
This is crucial for AD as the current treatment is primarily focused
on symptom management. For individuals with a high AD genetic
risk, preventative interventions should be taken earlier to slow
down the disease progression. In clinical trials, AD MetaGRS can
be an alternative proxy to assist with selection of the highest risk
subjects in order to improve the likelihood of finding effective
prevention therapies (Clark et al., 2022).

There could be several avenues for future research. First, the
biological explanations underlying the similarities in prediction
power between AD GRS and MetaGRS are not fully explained
in this study. Further studies could explore the functional
interpretation of the genetic variants included in the MetaGRS and
their potential biological relevance to AD. Moreover, our study
is focused on European White subjects. As larger, more diverse
GWA studies are performed, we expect more studies to replicate
MetaGRS in other ethnicities.

4. Materials and methods

4.1. Study design and participants

4.1.1. Training data–NACC samples
The National Alzheimer’s Coordinating Center (NACC) is

responsible for maintaining a database of clinical information
collected from the 29 NIA-funded Alzheimer’s Disease Centers
(ADCs) (Beekly et al., 2004). Each center collects and manages
patient information in a site-specific way, requiring data
harmonization on the part of NACC. To train our MetaGRS
model we created a combined dataset from ADCs 1-7, which
included genetic and AD diagnosis information for 5,869 subjects
(2,494 AD cases, 2,021 controls, and 1,354 missing/unknown)
before QC.
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4.1.2. Testing data−ADRC University of Pittsburgh
(UPitt) samples

While NACC oversees the data from the ADCs, is also falls
under a group of Alzheimer’s Disease Research Centers (ADRCs).
These 33 ADRCs are NIA-funded medical centers aimed at
translational AD research (Alzheimer’s Disease Research Centers,
2021) spread across 26 states. For our testing dataset we used the
ADRC housed at the University of Pittsburgh, the largest non-
NACC ADGC dataset. This input dataset contained 2,212 subjects,
with a 60/40 case-control split, before QC.

4.1.3. Identifying phenotypes of interest
As mentioned previously, GRS calculation requires GWAS

summary statistics, meaning our MetaGRS requires summary
statistics for multiple traits. In order to pick the most informative
phenotypes for inclusion in our MetaGRS model, we conducted a
literature search of all NACC studies, with no inclusion restrictions,
to identify risk factors and comorbidities correlated with AD.
From our initial list of more than 50 traits, we excluded those
without a publicly available large-scale GWAS. We then cross-
referenced our list with those included in Andrews et al. (2021),
a study that investigated individual trait risk scores and their
relationship with AD. From this, we narrowed our list to 25 traits
for inclusion, including AD, BMI, type 2 diabetes, and depression
(see Supplementary Table 1 for a full list). For each phenotype,
we use the GWAS summary statistics based on European White
ancestry and built upon the Human Genome Build 19 or GRCh 37.

4.1.4. Data cleaning and quality control
Both the training and testing datasets were originally separated

into individual chromosomes in genfile format. In order to easily
work with the data, we converted all files into PLINK’s bfile
format and then merged all chromosomes into a single whole-
genome file. We then removed any samples of non-European
heritage and proceeded to the quality control (QC) process as
described in Choi et al. (2020), with small changes to parameters
to fit our needs, using PLINK 1.90beta version 6.9 and R. We
performed the following QC procedures on the NACC and UPitt
datasets: (1) removing SNPs with a minor allele frequency < 0.05,
significant (p< 1e-6) Hardy-Weinberg equilibrium test values, and
missing in more than 5% of subjects; (2) removing samples missing
more than 1% of genotyped SNPs; (3) removing samples with
extreme heterozygosity estimate values; (4) removing mismatching
SNPs between the GWAS and training/testing data and correcting
SNPs that needed to be recoded, strand flipped, or both; (5)
removing individuals with a first or second degree relative in
the sample, as indicated by a relatedness value greater than
0.125.

All 25 GWAS summary statistics files were QC’ed the same
way, again following the procedures laid out in Choi et al.
(2020). GWAS QC involved removing SNPs with a minor allele
frequency < 0.01, SNPs that were duplicates or indels, and
ambiguous SNPs.

4.2. GRS calculation for each phenotype

The first step to calculate MetaGRS is to calculate GRS for
each phenotype. Because not all 25 phenotypes are available in

NACC samples, we adopt the principal component approach of
Coombes et al. (2020) to calculate PCA-GRS of each phenotype.
Specifically, given a phenotype k, we compute GRS of subject i
using GRSik(t) =

∑
j βjkxijI

{
pjk < t

}
for a p-value threshold t,

where βjk is the effect size for SNP j from the GWAS summary
statistics for phenotype k, xij is the minor allele count of SNP
j for subject i, and pjk is the p-value of SNP j for phenotype
k. We consider 13 p-value thresholds for t: 5e-8, 1e-7, 1e-6, 1e-
5, 1e-4, 1e-3, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. Then, instead
of identifying the optimal p-value threshold supervised by the
phenotype k, we adopt the principal component GRS method
(Coombes et al., 2020) and conduct a principal component analysis
(PCA) on the 13 standardized GRSs, each obtained from a p-value
threshold and is standardized to zero mean and unit standard
deviation. For subject i, the resulting first principal component(s)
(PC) score is used as the “final” GRS of phenotype k, and is
denoted as PCA_GRSk and referred to as PCA-GRS for phenotype
k. In PCA-GRS, each SNP is reweighted so to maximize to GRS
variation across all 13 p-values, and these weights are used to
compute the PCA-GRS for phenotype k in the testing UPitt
sample.

4.3. MetaGRS construction using
elastic-net regression

Meta-GRS for AD is a weighted sum of individual GRSs for
various phenotypes (Abraham et al., 2019). Because phenotypes
could be correlated with each other, a composite GRS based on
simple summation of the 25 PCA-GRS may conflate the effects.
Similar to Abraham et al. (2019), we perform the elastic-net
logistic regression in NACC using R package “glmnet” to determine
the weights for each PCA-GRS for computing the MetaGRS.
The model regresses AD status on the 25 standardized PCA-
GRSs, adjusting for sex and the first five principal components
for population stratification. The coefficients from the elastic-net
regression indicate the contribution of each PCA-GRS to the risk of
AD after capturing the genetic correlation between each phenotype.
We trained and assessed the parameters in the elastic-net model
with 20-fold cross-validations, and the parameters leading to the
highest AUC were chosen for the final model. From the final model,
the regression coefficients of the 25 PCA-GRSs are then used as the
weights to compute MetaGRS for AD in the UPitt testing cohort,
using the following formula:

MetaGRS =
25∑

k = 1

γkPCA_GRSsk, (1)

where PCA_GRSsk is the PCA-GRS for phenotype k standardized
(denoted as s) to zero mean and unit standard deviation; γk is
the weight associated with phenotype k obtained from the elastic-
net regression.

4.4. Evaluation of predictive power of
MetaGRS

We compute the Meta-GRS for each individual in the UPitt
testing cohort by computing the weighted sum of the UPitt
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PCA-GRSs of different phenotypes with weightγk in Equation
(1). We then evaluate the prediction performance of MetaGRS
on AD status in comparison with a model that includes non-
genetic covariates and AD PCA-GRS. We considered two predictive
models for AD. The first model is to predict the age of onset
of AD using Cox proportional hazard model, adjusting for age,
sex, and first 5 principal components to capture the population
stratification. The second model is to predict AD status using
a logistic regression, adjusting for age, sex, and first 5 principal
components. To evaluate the utility of MetaGRS, we compare the
effect sizes in terms of hazard ratio in the Cox model and odds ratio
in the logistic model. We also evaluate the predictive performance
based on the C-index in the Cox model and pseudo-R2 and AUC in
the logistic model.
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