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Background: Alzheimer’s disease (AD) is the most prevalent form of dementia,

and is becoming one of the most burdening and lethal diseases. More useful

biomarkers for diagnosing AD and reflecting the disease progression are in need

and of significance.

Methods: The integrated bioinformatic analysis combined with machine-learning

strategies was applied for exploring crucial functional pathways and identifying

diagnostic biomarkers of AD. Four datasets (GSE5281, GSE131617, GSE48350, and

GSE84422) with samples of AD frontal cortex are integrated as experimental

datasets, and another two datasets (GSE33000 and GSE44772) with samples

of AD frontal cortex were used to perform validation analyses. Functional

Correlation enrichment analyses were conducted based on Gene ontology

(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the Reactome

database to reveal AD-associated biological functions and key pathways. Four

models were employed to screen the potential diagnostic biomarkers, including

one bioinformatic analysis of Weighted gene co-expression network analysis

(WGCNA)and three machine-learning algorithms: Least absolute shrinkage and

selection operator (LASSO), support vector machine-recursive feature elimination

(SVM-RFE) and random forest (RF) analysis. The correlation analysis was

performed to explore the correlation between the identified biomarkers with CDR

scores and Braak staging.

Results: The pathways of the immune response and oxidative stress were

identified as playing a crucial role during AD. Thioredoxin interacting protein

(TXNIP), early growth response 1 (EGR1), and insulin-like growth factor binding

protein 5 (IGFBP5) were screened as diagnostic markers of AD. The diagnostic

efficacy of TXNIP, EGR1, and IGFBP5 was validated with corresponding AUCs of

0.857, 0.888, and 0.856 in dataset GSE33000, 0.867, 0.909, and 0.841 in dataset

GSE44770. And the AUCs of the combination of these three biomarkers as a

diagnostic tool for AD were 0.954 and 0.938 in the two verification datasets.
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Conclusion: The pathways of immune response and oxidative stress can play

a crucial role in the pathogenesis of AD. TXNIP, EGR1, and IGFBP5 are useful

biomarkers for diagnosing AD and their mRNA level may reflect the development

of the disease by correlation with the CDR scores and Breaking staging.
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Introduction

Alzheimer’s disease (AD) is the most prevalent form of
dementia accounting for 60–80% of all cases (Alzheimer’s
Association, 2022), and is becoming one of the main causes of death
and posing a huge burden on patients and their families (Katzman,
2008; Georges et al., 2020). It is reported that about 50% of people
aged 80 suffer from this disorder (Nalbantoglu et al., 2005) and the
number of that would accumulate up to 115 million by 2050, which
means there are 7.7 million increased cases every year and one
more suffers every 4 s (Sosa-Ortiz et al., 2012). AD is manifested by
memory loss, executive dysfunctions, and other cognitive deficits
affecting patients’ ability to perform everyday activities (Querfurth
and Laferla, 2010; Mckhann et al., 2011) and would eventually
lead to the premature death of an individual occurring typically
3–9 years after diagnosis (Querfurth and Laferla, 2010). Due to
the lack of effective treatments and the increasing average lifespan,
AD has posed an enormous burden on worldwide economics and
health (Alzheimer’s Association, 2016; Robinson et al., 2017).

The major neuropathological features of AD are intracellular
neurofibrillary tangles (NFTs) formed by hyperphosphorylated
tau protein, extracellular senile plaques composed of aggregated
β-amyloid (Aβ) fibers (Tabaton et al., 1991; Smith, 1998), and
progressive brain atrophy causing by loss of synapses and neurons
(Butterfield and Halliwell, 2019; Alzheimer’s Association, 2021).
Recently, attention has also been paid to other pathological
markers including insulin resistance (de la Monte, 2017; Rad
et al., 2018), oxidative stress (Perry et al., 2008; Jiang et al., 2016),
neuroinflammation (Calsolaro and Edison, 2016), erythrocytic
abnormality (Kosenko et al., 2020), mitochondrial dysfunction
(Lustbader, 2004; Carvalho et al., 2019), and so forth. Several
novel hypotheses were proposed such as the erythrocytic hypothesis
(Kosenko et al., 2020), heart failure link to AD (Tublin et al., 2019),
synaptic failure hypothesis (Tublin et al., 2019), and mitochondrial
cascade hypothesis (Swerdlow et al., 2014). However, lacking a
comprehensive understanding of the whole mechanism, none of
these could precisely connect all the pathological events. There is an
urgent need to detangle the mechanism of AD and identify useful
biomarkers for diagnosis.

Bioinformatics analysis has evolved into an integrative
field between computer science and biology, which allows the
representation, storage, management, analysis, and investigation of
numerous data types with diverse algorithms and computational
tools (Mulder et al., 2017; Auslander et al., 2021). However,
due to the quick development of next-generation sequencing and
other emerging omics techniques, accumulated omics data at an

astonishing speed and scope is urging for more effective approaches
to conduct sophisticated analyses from various biomolecular
levels, such as genomics, transcriptomics, proteomics, radiomics
and metabolomics (Pevsner, 2015; Ayyildiz and Piazza, 2019).
Fortunately, machine learning meets omics and exhibits extreme
power in processing and modeling omics data with huge and
diverse volumes (Li et al., 2022). Machine learning is a branch of
artificial intelligence focusing on simulating human learning by
exploring patterns in the data and applying self-improvement to
continually enhance the performance of learning tasks (Auslander
et al., 2021). Recently, the integrated bioinformatic analysis
combined with machine-learning strategies was applied to the
identification of potential pathways and diagnostic biomarkers of
diseases, which has earned some praise (Journal of Nature Genetics,
2019; Auwul et al., 2021; Tran et al., 2021).

In our study, we integrated four frontal cortical datasets
from the GEO database to discover novel pathways and identify
diagnostic biomarkers of AD by bioinformatic analysis combined
with machine learning strategies. The differential expressions and
diagnostic efficacy of the identified biomarkers were verified in
another two frontal cortical datasets of AD. The correlation
analysis between the identified biomarkers and the CDR scores
and Braaking staging. Finally, biomarkers associated with the key
functional pathways in AD were identified and verified, which
could also reflect the development of AD.

Materials and methods

A diagram of the workflow of the bioinformatics analyses
combined with machine learning strategies is shown in Figure 1.

Data collection and data processing

We retrieved and downloaded six microarray expression
profile datasets with the frontal cortex of AD patients from
the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO) database.1 The search was
conducted with the following keywords: (“Alzheimer’s disease” and
“Expression profiling by array”), and the species was restricted as
“Homo sapiens.” Four datasets (GSE5281, GSE131617, GSE48350,
and GSE84422) from the platform of Affymetrix are used as

1 http://www.ncbi.nlm.nih.gov/geo
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FIGURE 1

The workflow of the analysis process.

experimental datasets, and another two datasets (GSE33000 and
GSE44772) from the platform of Rosetta/Merck were used as
validation datasets.

Initially, referring to the annotation from the platforms, probes
were annotated with gene symbols. Once there are multiple probes
associated with the same gene, the average value of the expression
would be calculated and applied. Then, the batch effect of the four
experimental datasets was removed using the “Combat” function
of the “SVA” package in R to fulfill normalization (Johnson et al.,
2007). Finally, the validation of the differential expressions and
diagnostic efficacy of identified biomarkers was performed on the
validation datasets.

Differential gene expression analysis

After normalization, four datasets were merged into an
integrated dataset including 87 frontal cortial samples of AD
and 126 controls. The differential gene expression analysis
was conducted on this integrated dataset with the “limma”
package in R. The | log2FC| (fold change) >2 and adjusted
p < 0.05 were regarded as thresholds for the screening.
Heatmaps and volcano plots were performed with “pheatmap” and
“EnhancedVolcano” packages in R.

Functional enrichment analysis

Focusing on all genes instead of only DEGs and demonstrating
significantly enriched functional pathways more intuitively, gene

set enrichment analysis (GSEA) was performed in R with
clusterProfiler (Subramanian et al., 2005; Yu et al., 2012). Gene
ontology (GO) enrichment analysis was conducted considering
three hierarchical categories of biological process, molecular
function, and cellular component with the “clusterProfiler”
package in R (Yu et al., 2012). Pathway enrichment analysis was
performed on Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Reactome database with “clusterProfiler” and “ReactomePA”
packages in R (Yu et al., 2012; Yu and He, 2016; Minoru et al., 2017;
Bijay et al., 2019).

Screening the diagnostic biomarkers

Four models were applied to screen the potential diagnostic
biomarkers, including one bioinformatic analysis and three
machine-learning algorithms. Weighted gene co-expression
network analysis (WGCNA) is a bioinformatic method describing
the correlation between genes and sample traits, which has been
widely used for identifying candidate biomarkers or therapeutic
targets (Langfelder et al., 2009). The least absolute shrinkage and
selection operator (LASSO) is a shrinkage and variable selection
method for regression models, which was applied to identify
the diagnostic genes associated with discrimination with the
“glmnet” package in R (Ranstam and Cook, 2018). Support vector
machine-recursive feature elimination (SVM-RFE) was conducted
in R using the “e1071” package with fivefold cross-validation
(Sanz et al., 2018). Random forest (RF) analysis was performed
in R with the “randomForest” package (Rigatti, 2017). Finally, the
Venn diagram was plotted to visualize the overlapping potential
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FIGURE 2

Identification of differentially expressed genes and Functional gene enrichment analyses. (A) Volcano plot; (B) GSEA profiles depicting the four
significant GSEA sets in Alzheimer’s disease; (C) GO analyses results of DEGs. (D) KEGG pathway analysis of DEGs. (E) Reactome pathway analysis of
DEGs.

biomarkers among the four models as the candidate biomarkers
(Bardou et al., 2014).

Validation of the candidate biomarkers

The differential expression of the candidate biomarkers was
verified in the validation datasets of GSE33000 and GSE44772.
The diagnostic efficacy of the candidate biomarkers was evaluated
by receiver operating characteristic (ROCs) analysis with the area
under the curves (AUCs) (Seshan et al., 2013). The correlation
analysis was performed to explore the correlation between the
candidate biomarkers with CDR scores and Braak staging.

Results

Identification of differentially expressed
genes

After normalization, an integrated dataset with frontal cortical
samples of AD was formed by four GEO datasets (GSE5281,
GSE131617, GSE48350, and GSE84422), consisting of 87 AD
patients and 126 control subjects. In the integrated dataset,
the differential gene expression analysis identified 2235 DEGs,
including 2029 downregulated genes and 206 upregulated genes
in AD compared to the matched controls (Figure 2A and
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FIGURE 3

Weighted co-expression network analysis (WGCNA). (A) The scale-free fit index and the mean connectivity for various soft-thresholding powers of
WGCNA. The left panel shows the scale-free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The right panel displays the mean
connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis). (B) Clustering dendrogram of differentially expressed genes
related to Alzheimer’s disease, with dissimilarity based on the topological overlap, together with assigned merged module colors and the original
module colors. (C) Heatmap depicts the Topological Overlap Matrix (TOM) of genes selected for WGCNA. Light color represents lower overlap and
red represents higher overlap. (D) Relationships of consensus modules with diseases. Each specified color represents a specific gene module.

Supplementary Table 1). The visualized DEG expressions in the
integrated dataset were shown in the heatmap (Supplementary
Figure 1).

Functional gene enrichment analyses

Gene set enrichment analysis in all detectable genes showed
that genes in AD were mainly enriched in the following pathways:
AD, neuron projection, synapses, multiple midbrain neurotypes,
and so forth (Figure 2B). Also, GSEA_GO analysis revealed
consistent results in pathway identification with GSEA analysis,
in which dendrite and glutamatergic synapses were involved
(Supplementary Table 1). GSEA_KEGG analysis showed that
neurodegeneration and oxygen-related pathways were involved in
AD, including the HIF-1 signaling and oxidative phosphorylation
pathways (Supplementary Table 1). The results of the above GSEA
analyses were further confirmed by GO, KEGG, and Reactome
analysis on DEGs (Supplementary Table 1). The biological
processes associated with immune response, oxidative stress, and
apoptosis were significantly enriched by GO analysis (Figure 2C).
PI3K-Akt signaling pathway was highlighted in both KEGG and
Reactome analysis (Figures 2D, E).

Screening the diagnostic biomarkers

Weighted gene co-expression network analysis showed that
eight remarkable co-expression gene modules identified were
significantly correlated with AD (Figures 3A–D). LASSO logistic
regression algorithm screened twelve potential diagnostic markers
from DEGs (Figure 4A). SVM-RFE and RF analyses showed that
there were 25 and 30 potential diagnostic markers associated
with AD (Figures 4B, C). Among these potential biomarkers,
there were three overlapping genes: thioredoxin interacting protein
(TXNIP), early growth response 1 (EGR1), and insulin-like growth
factor binding protein 5 (IGFBP5) (Figure 4D and Supplementary
Table 1).

Validation of the candidate biomarkers

The expression changes of TXNIP, EGR1, and IGFBP5 were
further validated in another two datasets GSE33000 and GSE44770.
The results were consistent with the integrated dataset, in which
TXNIP and IGFBP5 were significantly upregulated and EGR1 was
downregulated (Figures 5A, B). The ROC analysis showed that the
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FIGURE 4

Machine-learning strategies for biomarker identification. (A) The cross-verification curve of least absolute shrinkage and selection operator (LASSO)
logistic regression. (B) Support vector machine-recursive feature elimination (SVM-RFE) analysis. (C) Random forest (RF) analysis. (D) Venn diagram
showed the intersection of diagnostic markers obtained by the four algorithms.

AUCs of TXNIP, EGR1, and IGFBP5 were 0.857, 0.888, and 0.856
in dataset GSE33000, 0.867, 0.909, and 0.841 in dataset GSE44770.
The AUCs of the combination of these three biomarkers as a
diagnostic tool for AD were 0.954 and 0.938 (Figure 5C). The
correlation analysis indicated that TXNIP and IGFBP5 expressions
were significantly correlated with CDR scores, and EGR1 and
IGFBP5 expressions were significantly correlated with the Braak
staging (Figure 6).

Discussion

The frontal cortex has always been viewed as the “motor” lobe
associated with two cognitive functions of memory and motor
(Fuster, 1993; Boyle, 2004; Hashimoto et al., 2017) and is very
vulnerable to suffering from impairment in AD. And studies
suggested that the frontal cortex is quite sensitive to subclinical
changes which may help predict cognitive impairments and early
disturbance of daily activities (Stoeckel et al., 2013; Marshall et al.,
2019). Hence, we select the frontal cortical samples of AD to
identify the diagnostic biomarkers. To enlarge the scale of the
sample size and simultaneously avoid the batch effect, we integrated
four AD frontal cortical datasets of transcriptome from the same
platform to conduct the analyses, and another two frontal cortical
datasets to perform further validation. Considering the extreme
power of machine learning in processing and modeling omics data,

the integrated bioinformatic analysis was combined with three
machine-learning strategies to fulfill the identification of diagnostic
biomarkers.

The differential gene expression analysis revealed 2235 DEGs
in AD compared to the matched controls, including 2029
downregulated genes and 206 upregulated genes (Figure 2A).
Multiple functional enrichment analyses found that several
essential pathways were significantly enriched in AD patients,
including AD, neurodegeneration, synapse, immune response,
oxidative stress, apoptotic signaling pathway, and so forth. It is
widely known that the loss of synapse correlates the best with
cognitive impairment and even precedes neuronal loss in AD, and
there are many factors contributing to synaptic dysfunction in AD,
especially the above-identified: immune response and oxidative
stress (DeKosky and Scheff, 1990; Britschgi and Wyss-Coray,
2007; Hong et al., 2016). Mounting studies show that oxidative
stress can impair synapses and contribute to AD through most
pathological hypotheses including the amyloid cascade hypothesis,
tau hypothesis, inflammatory hypothesis, and so forth (Ansari and
Scheff, 2010; Zhao and Zhao, 2013; Bai et al., 2022). Accumulating
evidence has also stressed that immune responses involving glial
cells and the complement system are prominently activated in
the AD brain, which can prune excess synapses inappropriately
and mediate synapse loss eventually (Akiyama et al., 2000; Wyss-
Coray, 2006; Britschgi and Wyss-Coray, 2007; Hong et al., 2016;
Rajendran and Paolicelli, 2018). Generally, our results confirmed
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FIGURE 5

Validating the differential expression and diagnostic efficacy of the identified biomarkers. (A) Validation of the expression levels of the identified
biomarkers in dataset GSE33000. (B) Validation of the expression levels of the identified biomarkers in dataset GSE44770. (C) Validation of the
diagnostic efficacy of diagnostic biomarkers revealed by ROC analysis in the validation dataset GSE33000 and GSE44770 (TXNIP, EGR1, IGFBP5, and
the combination of the three genes as a diagnostic tool).

the pathological pathways of synapse and apoptosis in AD and
further stressed the crucial role of the immune response and
oxidative stress in the pathogenesis of the disease.

Moreover, one bioinformatic analysis of WGCNA and three
machine-learning strategies of LASSO, SVM-RFE, and RF analyses
commonly identified that TXNIP, EGR1, and IGFBP5 could serve
as biomarkers of AD, combining them as a tool gave rise to
high AUCs of 0.954 and 0.938 in the two verification datasets
(Figure 5C). The correlation analysis further revealed that the
expressions of TXNIP and IGFBP5 were significantly correlated
with the CDR scores, and the expressions of EGR1 and IGFBP5
were significantly correlated with the Braak staging (Figure 6).

Previous studies have shown that TXNIP as an endogenous
inhibitor of antioxidant thioredoxin was found to increase in AD
patients and AD mouse models, and could be a key coordinator
of different pathological processes (Tsubaki et al., 2020). TXNIP

connects oxidative stress and inflammation by interaction with
the nucleotide-binding domain, leucine-rich-containing family,
and pyrin domain-containing-3 (NLRP3) inflammasome complex
(Wang et al., 2019; Eraky and Ramadan, 2022; Sbai et al., 2022).
Recent studies also suggested that blocking the interaction of
NLRP3 provides a significant effect, and thus TXNIP could serve as
a therapeutic target (Zhang et al., 2021). Therefore, TXNIP closely
associated with the identified pathways of immune response and
oxidative stress can be a useful biomarker of AD. EGR1 has also
been reported in previous gene-wide association analyses using
brain expression data (Koldamova et al., 2014; Mukherjee et al.,
2017; Lim et al., 2018), which was associated with Aβ toxicity
and was invalided in a C. elegans model (Mukherjee et al., 2017).
Functionally, EGR1 helps maintain the brain’s cholinergic function
during AD by regulating acetylcholinesterase (AChE) (Hu et al.,
2019). EGR1 can bind to the BACE1 promoter and block the
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FIGURE 6

Correlation analysis of the identified biomarkers with the development of AD. (A) Correlation of the identified biomarkers with the CDR scores.
(B) Correlation of the identified biomarkers with the Braak staging.

activation of the APP signaling to ultimately suppress the Aβ

deposition and improve the cognitive function of AD (He et al.,
2022). Studies also proposed EGR1 to be a key molecule affecting
the activity of the nucleus basalis of Meynert by regulating synaptic
activity and plasticity during AD (Zhu et al., 2016). Conclusively,
EGR1 plays an important role in the development of AD and
can serve as a useful biomarker. IGFBP5 is a pluripotent growth
factor supporting neuronal survival and axon growth (Caroni
and Grandes, 1990; Bach et al., 2005; Fernandez and Torres-
Alemán, 2012; Rauskolb et al., 2017), which can coordinate the
bioavailability and bioactivity of insulin-like growth factor 1 (IGF-
1). IGFBP5 can modulate lipid metabolism and insulin sensitivity
(Xiao et al., 2020), which are both associated with the cognitive
impairment (Kao et al., 2020; Kellar and Craft, 2020). Studies have
shown that IGFBP5 was associated with faster cognitive decline (Yu
et al., 2018; Kim et al., 2019) and was found to increase in the brains
(Rauskolb et al., 2022), cerebrospinal fluid (Salehi et al., 2008), and
animal models of AD (Barucker et al., 2015).

Together, TXNIP, EGR1, and IGFBP5 served as potential
biomarkers for AD diagnosis reflecting different pathogenetic
pathways involved in the development of AD, which may
be due to the complicated and multiple pathophysiological
manifestations of AD. Besides the EGR1-associated Aβ deposition
which has gained the most concern, our results suggested
that the TXNIP-associated pathways of the immune response,
oxidative stress, and especially their interaction should be paid
more attention. More importantly, the identification of IGFBP5
highlights the role of insulin metabolism in the pathogenesis
and development of AD. Evidence from epidemiological, clinical,
and neuropathology has shown that patients with diabetes are
at higher risk of developing AD due to impaired brain insulin
signaling (Barbiellini Amidei et al., 2021; De Felice et al.,
2022). Studies have repurposed anti-diabetes agents as novel
therapeutics for AD, while how impaired insulin signaling and
brain insulin resistance occurs remains unclear, urging further
exploration.

There are some limitations of our study. Firstly, although we
tried to select the same region of frontal cortex in AD brains
from the same platform and have performed validation in another
two verification datasets, the results still need more experimental
confirmation for the data is from publicly available microarray
datasets. Secondly, given the limited scale of sample size and type,
the diagnostic efficacy of biomarkers should be further explored
clinically, and even in samples of blood and cerebrospinal fluid.
Thirdly, we fail to identify the early detecting biomarkers of AD due
to the lack of datasets on patients with mild cognitive impairment
(MCI), though early detection is the now most urgent need under
the huge burden of increasing incidence and heavy cost. And we
would like to perform the analysis of identifying the potential
diagnostic biomarkers of MCI, once there were available datasets.

Conclusion

The integrated bioinformatic analysis combined with machine
learning strategies can effectively help identify the functional
pathways and diagnostic biomarkers in disease. Based on these
methods, we stressed the crucial roles of immune response
and oxidative stress in the pathogenesis of AD and identified
three genes associated with the above two pathways as useful
biomarkers, including TXNIP, EGR1, and IGFBP5. Furthermore,
the expressions of TXNIP, EGR1, and IGFBP5 may reflect
the development of AD by correlation with the CDR scores
and Braak staging.
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