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Introduction

Speech production is a complex, neuromotor behavior that involves the physiological,

neurological, respiratory, and muscular systems. The decrement in overall function of these

systems occurs to advancing age, leading to aging-related changes in speech production.

Great efforts have been made to investigate the acoustic changes in the aging speech in the

past few decades. For example, changes with aging in voice fundamental frequency (f o) occur

through adult life (Ramig and Ringel, 1983; Decoster and Debruyne, 1997; Mueller, 1997;

Sataloff et al., 1997). When compared to younger adults, older adults exhibit greater voice

f o instability and lower vowel formants (Gorham-Rowan and Laures-Gore, 2006; Torre and

Barlow, 2009). Also, decreased speaking rates (Duchin andMysak, 1987;Wohlert and Smith,

1998) and speech accuracy (Sadagopan and Smith, 2013; Bilodeau-Mercure et al., 2015)

represent substantial aging-related deficits in prosody and articulation.

In addition to the acoustic changes in the aging speech, the ability to monitor and correct

acoustic changes during speech production that depends on the integration of auditory

feedback andmotor systems, or speechmotor control, is also compromised by normal aging.

By unexpectedly perturbing voice f o in auditory feedback during ongoing vocalization,

for example, several studies found larger and more variable compensatory vocal responses

produced by older adults than by younger adults (Liu et al., 2010; Liu P. et al., 2011; Li

et al., 2018). In accordance with abnormally larger vocal compensate responses to pitch

perturbations in patients with neurological disorders relative to healthy controls (Liu et al.,

2012; Huang et al., 2016; Mollaei et al., 2016; Ranasinghe et al., 2017), enhancement of vocal

compensations for perturbed auditory feedback observed in older adultsmay reflect a decline

in speech motor control with normal aging.

In contrast to aging-related changes in speech acoustics, the neuromotor control of

speech production with advancing age has received much less attention. Investigations of

speech motor control in aging adults can provide significant insights into our understanding

of the developmental changes in speech production across the adult lifespan. Speech aging

has been attributed to age-related changes in the peripheral and neurological systems and

cognitive functions (Ramig et al., 2001; Tucker et al., 2021) as well as sex difference (Torre

and Barlow, 2009). Therefore, this review discusses multiple factors that are involved in

aging-related neuromotor control of speech production, including laryngeal physiology,

brain structure and function, higher-order cognitive functions, and sex-aging interaction.
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Laryngeal physiology

Aging-related laryngeal structures accompany with

physiological changes, such as decrease and degeneration in

thyroarytenoid muscle fiber diameter (Ramig et al., 2001),

decreased firing rates (Baker et al., 1998), larger internal stiffness

as well as greater mass of vocal folds (Gorham-Rowan and

Laures-Gore, 2006). Notably, groups of laryngeal muscles have

been identified to be involved in regulating voice f o by controlling

the geometry and tension of the vocal folds (Hirano et al.,

1970; Ludlow et al., 1992), and our work specified significant

contributions of laryngeal cricothyroid and thyroarytenoid

muscles to compensatory vocal adjustment (Liu H. et al., 2011).

Since the ability to precisely control vocal production declines in

older adults (Ballard et al., 2001), excessive vocal compensations

when facing pitch errors observed in aging adults (Liu et al.,

2010; Liu P. et al., 2011; Li et al., 2018) may be attributed to their

deficits in controlling laryngeal muscles to produce the desired

speech sounds. Alternatively, aging-related decline in speech

production may be related to changes in the use of feedback

control strategies with advancing age. Successful control of

speech production requires a dynamic balance of auditory and

somatosensory feedback (Golfinopoulos et al., 2010), and deficits

in somatosensory feedback shifts the balance to auditory feedback

(Lametti et al., 2012). Larson et al. (2008) found enhanced vocal

compensations for pitch errors induced by anesthetization of the

vocal folds when compared to normal kinesthesia, suggesting

increased reliance on auditory feedback due to interfered

somatosensory feedback. Given impaired kinesthetic function

caused by aging-related laryngeal changes (Ramig et al., 2001),

older adults may rely more on auditory feedback such that they are

more susceptible to errors in vocal output, resulting their reduced

accuracy in the neuromotor control of vocal production.

Brain structure and function

In addition to the peripherical mechanisms, structural and

functional changes in the aging brain also contribute to the age-

related decline in speech production (Eckert et al., 2008; Harris

et al., 2009; Soros et al., 2011; Tremblay et al., 2013, 2017; Tremblay

and Deschamps, 2016). When compared to younger adults, for

example, older adults exhibited longer speech movement time that

was significantly correlated with their structural changes in the

bilateral anterior insula, bilateral striatum, rostral supramarginal

gyrus, left primary motor area and right inferior frontal sulcus

(Tremblay and Deschamps, 2016). As well, older adults showed

greater activation in the inferior frontal gyrus, precentral gyrus,

anterior insula, and supplementary motor area during overt speech

production than younger adults (Soros et al., 2011). In addition,

subcortical structures such as the basal ganglia and cerebellum are

also involved in the neuromotor control of vocal production, as

evidenced by abnormally enhanced vocal compensations for pitch

perturbations in aging patients with Parkinson’s disease (PD; Liu

et al., 2012; Chen et al., 2013; Huang et al., 2016; Mollaei et al.,

2016) and spinocerebellar ataxia (SCA; Parrell et al., 2017; Houde

et al., 2019; Li et al., 2019).

Note that there is a significant decrease in the number of

inhibitory synapses with advancing age (Kovacevic et al., 2005)

that limit the capacity to suppress responses to repetitive auditory

stimuli (Amenedo and Diaz, 1998), which may be responsible for

overcompensation for vocal pitch errors (Liu et al., 2010; Liu P.

et al., 2011; Li et al., 2018) and increased cortical responses to

pure tones (Stephen et al., 2010) in older adults. On the other

hand, previous studies on speech perception has shown aging-

related increase in the latency of neural responses to auditory

stimuli (Geal-Dor et al., 2006; Matilainen et al., 2010), which has

been attributed to the neuronal loss in the aging brain (Jernigan

et al., 2001). This delayed temporal processing of speech sounds

has been characterized by prolonged event-related potential (ERP)

N1 and/or P2 responses in latency in older adults (Tremblay et al.,

2003; Martin and Jerger, 2005), which may help explain older

adults’ slower P2 responses to auditory feedback errors during vocal

pitch regulation compared to younger adults (Li et al., 2018).

Higher-order cognitive functions

Previous research has shown that speech changes in older

adults only can be partially explained by physiological changes

to the speech system (Bilodeau-Mercure and Tremblay, 2016).

Cognitive decline in relation to working memory, attentional

control, and executive function during aging (Salthouse, 1996;

Park et al., 2002) has an impact on language/speech production

(Barker et al., 2020). Aging-related declines in working memory,

for example, result in the production of inaccurate speech sounds

(Sadagopan and Smith, 2013). Inhibitory control deteriorates

during aging (Nielson et al., 2002), and deficits of this function

have been attributed to off-topic speech in older adults (Gold

and Arbuckle, 1995). Also, evidence from people with cognitive

impairment suggests a link between cognitive function and speech

production. For example, PD patients with motor speech disorders

were associated with greater attention/memory dysfunctions (Liu

et al., 2019), and individuals with mild cognitive impairment

exhibited weaker voice quality and slower articulation rates than

healthy controls (Themistocleous et al., 2020). Also, Alzheimer’s

disease (AD) patients exhibited enhanced and prolonged vocal

compensations for pitch perturbations that were significantly

related to their dysfunctions in working memory and executive

control (Ranasinghe et al., 2017).

A top-down inhibitory mechanism that has been proposed

to address the neuromotor control of vocal production from a

cognitive perspective (Guo et al., 2017; Ranasinghe et al., 2017; Liu

et al., 2020) may account for aging-related changes in vocal motor

control. Specifically, the left dorsolateral prefrontal cortex (DLPFC)

is crucially involved in inhibitory control (Burle et al., 2004),

and decreased activity in this region leads to impaired inhibitory

control processes (Barber et al., 2013). On the other hand,

decreased activity in the left DLPFC was significantly correlated

with excessive vocal compensations for pitch perturbations in AD

patients (Ranasinghe et al., 2017). Moreover, inhibitory continuous

theta burst stimulation (c-TBS) over left DLPFC led to enhanced

compensations for vocal pitch errors (Liu et al., 2020). These

findings suggest the existence of a top-down inhibitory mechanism
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mediated by the left DLPFC that underlies auditory-motor control

of vocal production, by which the audio-vocal system monitors

and corrects feedback errors to produce the desired speech sounds

with stability and precision. According to the inhibition deficit

hypothesis, deficient inhibitory control occurs to older adults so

that they fail to suppress task-irrelevant information (Campbell

et al., 2020). Therefore, overcompensation for vocal feedback errors

accompanied by decreased cortical activity observed in healthy

older adults (Liu P. et al., 2011; Li et al., 2018) and patients

with cognitive impairment (Ranasinghe et al., 2017, 2019) can be

conceivably attributed to impairment of this top-down mechanism

that fails to produce inhibitory control over vocal motor behaviors.

These findings support the idea that speech motor control should

be viewed as a “cognitive-motor accomplishment” (Kent, 2000),

although the precise role of higher-order cognitive functions for

speech motor control in older adults is still far from clear.

Sex and aging interaction

During the aging process, the substantial sex differences in

speech acoustics are important but often overlooked. For example,

men decrease their voice f o slightly until 50 years of age and then

increase it afterwards, which is in contrast with women whose

voice f o continuously decreases or stays constant until menopause

and then decreases (Sataloff et al., 1997; Torre and Barlow, 2009).

Our work reveals an aging-related, sex-specific changes in speech

motor control, as reflected by decreased P2 amplitudes with aging

in men only and men producing increased N1 and P2 responses

than women were found in young adults but not in elderly adults

(Li et al., 2018). These sex-related changes in speech production

with aging have been accounted for by aging-related differences in

the laryngeal and brain structures and functions between men and

women. For instance, throughout adulthood, women experience

more pronounced laryngeal drops and lengthening of the vocal

tract than men, leading them to adjust their vowel and speech

acoustic differentially to accommodate these changes (Rastatter and

Jacques, 1990; Linville and Rens, 2001). Progressive changes in

brain structure and function also differ between men and women

(Cowell et al., 1994; Kakimoto et al., 2016), as evidenced by greater

age-related increase in lateral fissure cerebrospinal fluid volume

and greater variation in frontal cortex atrophy in men than in

women (Coffey et al., 1998; Kakimoto et al., 2016).

More importantly, both animal and human studies have shown

the impact of sex hormonal levels throughout the menstrual cycle

or after menopause on controlling vocal production (Walpurger

et al., 2004; Wadnerkar et al., 2006; Caras, 2013; Zhu et al., 2016).

Specifically, in one study on young women across the menstrual

cycle, Zhu et al. (2016) showed that larger vocal compensations

for pitch perturbations were correlated with lower levels of

estradiol concentration significantly and smaller P2 responses

were associated higher levels of progesterone concentration.

Although the underlying mechanisms remain largely unknown,

sex hormones may modulate vocal motor behavior by activating

receptor-coupled effector mechanisms through binding to specific

hormone receptors that exist in the larynx and brain (Newman

et al., 2000; Goldstein et al., 2001; Gheller et al., 2016). Taken

together, these findings shed light on the substantial differences

between men and women in elucidating how the aging process

affects speech motor behaviors.

Future research

Clarifying the effects of aging on speech motor control not

only provides insights into the relationship between the dynamics

underlying speech production and neurobiology of aging, but also

has important enlightenments for the treatment of motor speech

disorders that frequently occur to aging adults. Future work is

warranted to investigate the neural mechanisms underlying the

effects of aging on speech motor control. On the other hand,

abnormal vocal compensation for perturbed auditory feedback has

been suggested to be a potential behavioral index of declined or

impaired speech motor control (Ranasinghe et al., 2017; Li et al.,

2018, 2021). More recently, non-invasive brain stimulation (NIBS)

such as continuous theta burst stimulation (cTBS) has been applied

over specific brain regions of aging patients with PD and SCA (Dai

et al., 2022; Lin et al., 2022), resulting in a normalization of their

overcompensation for vocal pitch perturbations. Therefore, NIBS

may be a promising strategy that not only improves aging-related

decline in the neuromotor control of speech production but also

provides novel treatment of motor speech disorders that occur to

aging patients with neurological disorders. Further investigations,

however, are required to explore this topic in the future.
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