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Introduction: The study aims to test whether an increase in memory load could 
improve the efficacy in detection of Alzheimer’s disease and prediction of the 
Mini-Mental State Examination (MMSE) score.

Methods: Speech from 45 mild-to-moderate Alzheimer’s disease patients and 44 
healthy older adults were collected using three speech tasks with varying memory 
loads. We  investigated and compared speech characteristics of Alzheimer’s 
disease across speech tasks to examine the effect of memory load on speech 
characteristics. Finally, we  built Alzheimer’s disease classification models and 
MMSE prediction models to assess the diagnostic value of speech tasks.

Results: The speech characteristics of Alzheimer’s disease in pitch, loudness, 
and speech rate were observed and the high-memory-load task intensified such 
characteristics. The high-memory-load task outperformed in AD classification 
with an accuracy of 81.4% and MMSE prediction with a mean absolute error of 
4.62.

Discussion: The high-memory-load recall task is an effective method for speech-
based Alzheimer’s disease detection.
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1. Introduction

In the early stages of Alzheimer’s disease (AD), impairments in semantic memory and the 
executive component of verbal fluency manifest as language deficiencies characterized by 
difficulties in initiating speech and slower response times (Appell et al., 1982; Murdoch et al., 
1987; Salmon and Chan, 1994; Emery, 2000; Minati et al., 2009; de Looze et al., 2022). As the 
disease progresses, syntactic and pragmatic language abilities begin to show impairment with 
speech becoming verbose, circuitous, incoherent, and exhibiting repetition of syllables, words, 
or sentences (Appell et al., 1982; Kempler et al., 1987; Liampas et al., 2022; Roelofs, 2023). In 
addition to linguistic deficiencies, research has also identified impairments in speech motor 
function and changes in the acoustic characteristics of speech in AD, including alterations in 
voice pitch, prosody, intensity, vocal quality, and speech rate (Hoffmann et al., 2009; Martínez-
Sánchez et al., 2012; Sajjadi et al., 2012; Meilán et al., 2014; Cho et al., 2022).
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Research on speech-based AD detection has used observable 
acoustic features in AD patients. For example, López-de-Ipiña 
analyzed speech recordings from a multilingual database, AZTIAHO, 
comprised of video recordings of conversation, and built AD 
classification models with 86.1% accuracy (López-de-Ipiña et  al., 
2013). Meilán characterized AD patients with 84.8% accuracy using 
an oral sentence reading task (Meilán et al., 2014). König used speech 
recordings from multiple speech tasks such as countdown, picture 
description, sentence repetition, and semantic fluency, to build 
classification models, achieving 87% accuracy in distinguishing 
between AD patients and healthy older adults (König et al., 2015). 
However, previous research has focused less on how speech tasks may 
effectively reflect the distinctive speech characteristics of AD and 
more on utilizing accessible speech data from random speech tasks.

It is important to understand the inherent properties of speech 
tasks, as different speech tasks demand distinct cognitive abilities that 
may be susceptible to AD pathology or remain intact until the final 
phase of AD. Recent empirical data and theoretical foundations imply 
that cognitive loads traditionally thought to be unrelated to speech 
motor performance may, in fact, have an effect on speech motor 
performance, as reflected in changes in speech kinematics and 
acoustic characteristics (Caruso et al., 1994; Dromey and Bates, 2005; 
Dromey and Shim, 2008; Kemper et al., 2010; Huttunen et al., 2011; 
Sadagopan and Smith, 2013; Bailey and Dromey, 2015; MacPherson 
et al., 2017). For example, the cognitive load in the form of divided 
attention affects speech kinematics, such as lower lip movement 
pattern variability, articulatory displacement and velocity, and 
utterance duration (Sadagopan and Smith, 2013; Bailey and Dromey, 
2015). Other studies focused on acoustic findings have revealed that 
the increased cognitive demand is correlated with a decrease in speech 
rate (Kemper et  al., 2010), increased cepstral peak prominence, 
decreased low-to-high spectral energy ratio (MacPherson et al., 2017), 
sound pressure level, fundamental frequency, intensity, and the 
variability of fundamental frequency and intensity (Dromey and 
Bates, 2005; Dromey and Shim, 2008; Huttunen et  al., 2011). 
Moreover, special populations such as children, older adults, and 
patients with cognitive impairment, who are assumed to have 
comparatively smaller cognitive reserves, may be more susceptible to 
cognitive load-induced changes in speech motor performance (Kamhi 
et al., 1984; Maner et al., 2000; Prelock and Panagos, 2009; Svindt 
et al., 2019). Previous investigations have revealed the susceptibility of 
older adults to increases in cognitive load, exhibiting greater 
performance costs, such as reductions in fine motor control, 
disruptions in the stability and timing of speech, and increased 
articulatory coordination variability (Ramig and Ringel, 1983; Kemper 
et al., 2010, 2011; Marzullo et al., 2010; Bailey and Dromey, 2015; 
MacPherson, 2019).

Based on prior research, it is apparent that there are clear 
associations between cognitive load and speech motor performance. 
Since AD is characterized by memory impairment, a speech task 
requiring a high memory load would cause greater changes in the 
acoustic features of AD patients. Furthermore, it is expected that a 
speech task with a high memory load will have higher diagnostic value 
as a speech-based AD detection method, as well as demonstrate 
superior performance in AD classification and in the MMSE prediction 
model. In this study, we hypothesized that (1) there are differences in 
speech characteristics between AD patients and healthy older adults, 
(2) a high-memory-load speech task makes AD speech characteristics 

detectable, and (3) a high-memory-load speech task enhances the 
performance of AD classification and MMSE prediction models.

2. Methods

2.1. Participants

We collected speech data from 45 individuals with mild-to-
moderate AD and 44 healthy older adults. This study was conducted 
in accordance with the current Declaration of Helsinki (World 
Medical Association, 2013). The institutional review board approved 
the protocol of the SMG-SNU Boramae Medical Center (IRB No. 
30–2020-174) and the informed consent was exempted but 
we obtained the verbal consent. AD patients were recruited from the 
SMG-SNU Boramae Medical Center. AD was diagnosed by a geriatric 
psychiatrist using the National Institute of Aging and Alzheimer’s 
Association (NIA-AA) criteria (Hyman et  al., 2012), and subjects 
suspected or diagnosed with dementia types other than AD were 
excluded. Healthy older adults were recruited from the local 
community. They were also screened by a geriatric psychiatrist, and 
the Mini-Mental State Examination (MMSE) score was 27 or higher 
for all participants in that group (Cockrell and Folstein, 1988). The 
MMSE was administered on a different day from the experiment. All 
participants were (1) between 65 and 85 years of age, (2) native Korean 
speakers, (3) had no neurological/psychiatric disorder other than AD, 
(4) had no hearing problem, and (5) volunteered to participate.

The demographics of participants are presented in Table 1. The 
final data were comprised of 45 individuals with mild-to-moderate 
AD (number of female participants = 28, mean age = 75.67 ± 4.88, 
mean education years = 7.24 ± 4.88, mean MMSE score = 16.89 ± 4.27) 
and 44 healthy older adults (number of female participants = 24, mean 
age = 75.30 ± 0.80, mean education years = 7.67 ± 5.39, mean MMSE 
score = 28.95 ± 1.15). There were no significant differences between sex 
ratio, mean age, and mean education years between groups.

2.2. Speech task

Speech tasks were performed over the phone by four well-trained 
researchers (three researchers with master’s degree in Clinical 
Psychology and one graduate student in Cognitive Science). 
Participants were instructed to perform the tasks alone in a silent 
room so that they would not be interrupted. One call was conducted 
per each participant. It took about 10 min to conduct three speech 
tasks. The participants’ responses were recorded as *.m4a sound files 
and then converted to *.wav sound files.

TABLE 1 Demographics of participants in the dataset.

AD (n = 45) HC (n = 44) Value of p

Gender, female (%) 28 (62.2) 24 (54.5) 0.463

Mean age, y (SD) 75.67 (4.88) 75.30 (0.80) 0.624

Mean education, y (SD) 7.24 (5.36) 7.67 (5.39) 0.708

Mean MMSE score (SD) 16.89 (4.27) 28.95 (1.15) < 0.001

AD, Alzheimer’s disease; HC, healthy older adults; MMSE, mini-mental statement 
examination; value of p, chi-squared test was used for gender and the independent t-test was 
used for age, education, and MMSE score.
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In this study, three speech tasks with varying memory loads were 
administered: the interview task, the repetition task, and the recall 
task. We  manipulated the memory load by varying the length of 
stimuli to be  remembered. In the low memory load condition, 
participants were given the interview task, which consisted of five 
questions about personal information and daily life activities, to which 
they were free to respond. In the moderate memory load condition, 
the repetition task was administered. As the researcher read a sentence 
aloud to the participants, they were instructed to remember and 
repeat the sentence as precisely as they could. If a participant was 
unable to repeat the sentence correctly, the researcher read it aloud 
again. Stimuli were composed of two sets, and each set included eight 
sentences. In the high-memory-load condition, the recall task was 
performed. In this circumstance, the length of items to be remembered 
increases from one sentence to one paragraph. As a paragraph of the 
story was presented, participants were asked to recall as many details 
as possible. The key details of story that are expected to be answered 
such as the name of the main characters and the main event of the 
story were defined under the agreement of the researchers before the 
experiment. If the response was insufficient or lacked key details, the 
researcher encouraged the participants to elaborate up to two times 
(e.g., Who else are the characters in the story?, What happened to the 
main character?). Two stories were given, and each story was 
composed of eight sentences. One of them was adapted from the Kim’s 
study (Kim and Sung, 2014).

2.3. Data preparation

An experimental scheme of the total study is presented in 
Figure 1. Rather than the automatic speaker diarization, manual 
speech segmentation method was employed to eliminate the voice 

of researchers completely to overcome the speech overlap issue 
between researchers and participants. Using the open-source 
software “Voice studio2.0,” the acquired speech samples were 
segmented into pauses and utterances. Twenty researchers with 
training in audio segmentation guidelines manually tagged the 
time stamps of corresponding utterances, while four other 
researchers evaluated the quality of the time stamp tagging to 
ensure if the speech of participants was completely included and 
the speech of researchers was completely removed. Among the 
3,831 speech segments, 30 samples were disqualified due to 
excessive noise or sound distortion.

We extracted the extended Geneva acoustic feature set (eGeMAPS; 
Eyben et  al., 2015) using the Python library and the openSMILE 
toolkit (Eyben et al., 2010). The eGeMAPS is a minimalistic set of 
voice parameters that was initially developed to recognize the affective 
state of a speaker based on the information conveyed by the voice. 
However, eGeMAPS is now widely used in various areas of speech 
analysis, particularly in speech-based AD detection (Haider et al., 
2019; Pappagari et al., 2021; Valsaraj et al., 2021). The eGeMAPS is 
utilized in numerous studies because it consists of a standardized, 
limited set of features that were selected based on their theoretical 
relevance and ability to analyze an important aspect of speech (Xue 
et al., 2019). Because eGeMAPS is divided into four parameter groups, 
namely, frequency-related, intensity-related, temporal, and spectral, it 
is capable of revealing significant aspects of voice characteristics. 
Frequency-related features are related to the pitch of speech such as 
Fundamental Frequency (F0), jitter. Intensity-related features are 
involved to the amplitude of speech such as loudness, and shimmer. 
Temporal features are related to the speed of speech such as the 
duration of speech. Spectral features indicate how much energy is 
present in the signal at different frequencies such as MFCC, Alpha 
Ratio, and Hammarberg Index.

FIGURE 1

An experimental scheme of the study.
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2.4. Statistical analysis

We described the demographics of the participants using the 
independent t test or chi-squared test. We performed an independent 
two-sample t test or Welch’s two-sample t test to investigate differences 
in speech characteristics between AD patients and healthy older 
adults. We  conducted a pairwise t test to examine the impact of 
memory load on the speech characteristics of AD. A two-sided p value 
of <0.05 was determined to be statistically significant, and a Bonferroni 
correction for multiple comparisons was applied. All statistical 
analyses were performed using R version 4.2.1.

2.5. Machine learning

In this study, feature selection was accomplished via analysis of 
variance (ANOVA) only on the training data. Statistically significant 
features (p < 0.01) were selected from the original features that were 
extracted from speech samples to build classification models. Certain 
features were scaled so that features with large values could not 
outweigh features with small values. Each dataset from the three 
speech tasks was split into 70% training data and 30% test data. Due 
to the segmentation of each participant’s speech data into utterances, 
the dataset contains multiple speech segments from a single 
participant. When splitting datasets, we ensured that there were no 
participant overlaps and that each set maintained a similar class 
distribution. A weighted voting classifier combining random forest 
and logistic regression was then used to classify the data. Weights were 
added to the classifier based on the performance of that classifier so 
that a classifier that achieved better accuracy was given a higher 

weight. The hyperparameters were tuned on training data through 
10-fold cross-validation, and the resulting model was evaluated on the 
testing data. To evaluate and compare the performance of different 
speech tasks, accuracy, precision, sensitivity, specificity, F1-score, and 
the area under the curve (AUC) were measured.

We built MMSE prediction models using the same methodology 
as the AD classification models. A weighted voting regressor 
combining random forest, support vector machine was built. To 
evaluate and compare the prediction performance of speech tasks, the 
mean absolute error (MAE), and the root mean square error (RMSE) 
were calculated. Machine learning was performed using Python 
version. 3.10.8.

3. Results

3.1. Speech characteristics of AD

To investigate the speech characteristics of AD, frequency, 
intensity, and temporal features were compared between patients with 
AD and healthy older adults. While the eGeMAPS includes spectral 
features, because they are timbral features, it is difficult to gain 
intuitive insight from them, even if AD patients have spectral features 
that differ from those of healthy older adults. This is why the present 
study investigated frequency, intensity, and temporal characteristics 
to determine the speech characteristics of AD.

The comparisons of acoustic features between AD patients (AD) 
and healthy older adults (HC) are summarized in Table 2. First, for the 
frequency-related features, the mean F0 (AD = 30.14 ± 3.13, 
HC = 31.6 ± 3.94, p < 0.001), 20th percentile of F0 (AD = 26.31 ± 3.15, 

TABLE 2 A comparison in acoustic features between patients with AD and healthy older adults.

Speech Features AD HC p

Frequency F0 percentile range 7.4 (1.77) 5.73 (3.36) <0.001

20th percentile of the F0 26.31 (3.15) 28.55 (4.98) <0.001

Jitter mean 0.04 (0.01) 0.03 (0.02) <0.001

Normalized F0 SD 0.19 (0.04) 0.16 (0.06) <0.001

F0 mean 30.14 (3.13) 31.6 (3.94) <0.001

50th percentile of the F0 30.16 (3.35) 31.32 (4.02) 0.011

Intensity Loudness peaks per second 2.37 (0.57) 2.82 (0.59) <0.001

Loudness percentile range 0.46 (0.25) 0.62 (0.28) <0.001

Loudness falling slope mean 4.6 (2.25) 5.73 (2.64) <0.001

80th percentile of the loudness 0.55 (0.27) 0.68 (0.28) <0.001

Loudness rising slope mean 5.33 (2.61) 6.55 (2.82) <0.001

Loudenss falling slope SD 3.03 (1.41) 3.56 (1.67) 0.006

50th percentile of the loudness 0.22 (0.14) 0.27 (0.12) 0.008

Loudness mean 0.33 (0.15) 0.37 (0.14) 0.012

Loudness rising slope SD 3.75 (1.69) 4.27 (1.96) 0.023

Temporal Mean duration of voiced region 0.3 (0.11) 0.37 (0.14) <0.001

SD duration of voiced region 0.24 (0.08) 0.28 (0.08) <0.001

Number of voiced region 2.06 (0.4) 1.79 (0.82) <0.001

AD, Alzheimer’s disease; HC, healthy older adults; p, independent t-test, or Welch’s two-sample test were used as appropriate and a Bonferroni correction for multiple comparisons was applied; 
Features are sorted by value of p.
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HC = 28.55 ± 4.98, p < 0.001), and 50th percentile of F0 
(AD = 30.16 ± 3.35, 31.32 ± 4.02, p = 0.011) indicate the pitch of the voice. 
In all cases, values are lower for AD patients. The F0 percentile range 
indicates that the F0 range for AD patients was greater (AD = 7.4 ± 1.77, 
HC = 5.73 ± 3.36, p < 0.001) and high standard deviation of F0 also 
indicates the higher variability of F0 in AD patients (AD = 0.19 ± 0.04, 
HC = 0.16 ± 0.06, p < 0.001). AD patients demonstrated a greater degree 
of jitter (AD = 0.04 ± 0.01, HC = 0.03 ± 0.02, p < 0.001), indicating greater 
pitch variability. To sum up, frequency-related features indicate that AD 
patients have lower voice pitch and higher pitch variability compared to 
healthy older adults.

For AD patients, the 80th percentile of loudness (AD = 0.55 ± 0.27, 
HC = 0.68 ± 0.28, p < 0.001), 50th percentile of loudness 
(AD = 0.22 ± 0.14, HC = 0.27 ± 0.12, p = 0.008) and the mean loudness 
(AD = 0.33 ± 0.14, HC = 0.37 ± 0.14, p = 0.012) were lower. Loudness 
peaks per second (AD = 2.37 ± 0.57, HC = 2.82 ± 0.59, p < 0.001), 
loudness percentile range (AD = 0.46 ± 0.25, HC = 0.62 ± 0.28, 
p < 0.001), loudness falling slope (AD = 4.6 ± 2.25, HC = 5.73 ± 2.64, 
p < 0.001), and loudness rising slope (AD = 5.33 ± 2.61, 
HC = 6.55 ± 2.82, p < 0.001), all of which indicating loudness variability, 
were reduced in AD patients. Intensity-related features indicate that 
AD patients exhibit diminished loudness and monotonous loudness.

In terms of temporal features, AD patients had a shorter duration 
of voiced regions (AD = 0.3 ± 0.11, HC = 0.37 ± 0.14, p < 0.001) and a 
greater number of voiced regions (AD = 2.06 ± 0.4, HC = 1.79 ± 0.82, 
p < 0.001). This suggests that AD patients had difficulty maintaining 
speech, spoke at a slower rate, and produced more pauses and 
hesitations than healthy older adults.

3.2. The effect of memory load on the 
speech characteristics of patients with AD

To investigate the effect of memory load on the speech 
characteristics of patients with AD, we divided the dataset according to 
the applied speech task and conducted an independent t test. Table 3 
depicts the speech characteristics across speech tasks that demonstrated 
statistical significance in at least one of the study tasks. The greatest 
number of recall task features was reported to be statistically significant 
(n = 21). In the interview and recall tasks, fourteen and four features, 
respectively, demonstrated statistical significance.

Regarding frequency-related features, we  observed a certain 
tendency in the speech of AD patients regardless of the speech tasks. 
In all speech tasks, AD patients demonstrated a lower pitch (e.g., F0 
mean, 20th, and 50th percentile of the F0) and greater pitch variability 
(F0 percentile range, Normalized F0 SD). In the interview and 
repetition tasks, however, those tendencies were not recognizable 
enough to report statistical significance; in the recall task, however, 
the majority of features demonstrated statistical significance. In 
addition, when we previously analyzed speech features regardless of 
speech task, there were no significant differences between groups for 
the F0 rising slope and F0 falling slope. However, after separating the 
data by speech task, it was discovered that these features were 
significantly different for the recall task.

In the case of intensity-related features, we  also observed a 
consistent trend regardless of the speech tasks. In all speech tasks, 
patients with AD exhibited small loudness (loudness mean, 20th, 50th, 
and 80th percentile of the loudness) and monotonous loudness 

(loudness percentile range, loudness peaks per second, loudness rising 
slope, and loudness falling slope). Despite this, the interview and 
repetition task failed to identify statistically significant differences in 
the majority of intensity-related features. In the meantime, they were 
distinguishable enough for statistical significance in the recall task.

In terms of temporal features, the recall task did not show superior 
discriminability. AD patients exhibited a shorter duration and a higher 
number of breaks in the interview and the recall task.

3.3. Machine learning performances

The diagnostic value of the three speech tasks was evaluated, and the 
results are displayed in Table 4; Figure 2. In Table 4, the performance of 
the AD classification models is compared. With an accuracy of 81.4%, 
the recall task outperformed all other speech tasks, including interviews 
and repetitions. The repetition task achieved the second-highest 
accuracy of 78.5%, and the interview task achieved 76.1%.

The recall task demonstrates the highest scores for all other 
performance analysis metrics, including precision, sensitivity, and 
F1-score, but specificity, indicating the relative success of AD 
classification. In particular, the recall task has both high F1-score of 
86.5%, indicating an exceptional ability to screen AD patients correctly 
and not miss AD patients.

Moreover, an analysis was conducted on the Area Under the 
Curve (AUC) to evaluate the classification performance in 
distinguishing between classes (see Figure 2). The recall task yielded 
the highest AUC value of 0.88, while the interview and repetition tasks 
yielded AUC values of 0.81 and 0.85, respectively.

In the MMSE prediction, we  measured MAE, and RMSE, to 
evaluate the model performances. The performance metrics of various 
speech task models are displayed in Table 5. The MAE and RMSE are 
metrics for measuring prediction error which means that the lower 
the MAE and RMSE, the greater the predictability. With an MAE of 
4.62, and RMSE of 5.85, the recall task achieved the best prediction 
accuracy. With an MAE of 4.89, and RMSE of 6.16, the interview task 
had the second-best performance.

4. Discussion

The study’s key findings were as follows: (1) AD patients exhibited 
speech characteristics that distinguished them from healthy controls; 
(2) the memory load imposed by the speech task accentuated the 
speech characteristics of AD; and (3) the speech task with a high 
memory load enhanced the performance of classification and 
prediction models for speech-based AD detection.

In this study, we  examined the acoustic features of speech in 
patients with AD and healthy older adults, and investigated how these 
features change under different speech tasks and memory loads. 
We  found that AD patients had distinct speech characteristics 
compared to healthy older adults, including a lower pitch, increased 
pitch variability, decreased loudness, monotonous loudness, and a 
slower speech rate. The present study’s findings align with those of 
earlier investigations, which also noted changes in the acoustic 
characteristics of individuals with AD (Horley et al., 2010; Martínez-
Sánchez et al., 2012; Meilán et al., 2012, 2014). However, there was a 
disparity in regards to the frequency-related characteristics of 
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AD. Previous studies found a higher pitch associated with AD, which 
is inconsistent with the current study’s results (Martínez-Sánchez 
et al., 2012; Meilán et al., 2014). We posit that this inconsistency is 
attributable to the disparate sex ratios of study participants (the 
proportion of female patients = 62.2% in this study; the proportion of 
female patients = 68% in Meilán’s study; and the proportion of female 
patients = 84% in Martínez-Sánchez’s study). As sex is among the most 
influential physiological factors affecting pitch (Puts et al., 2012), and 
the effects of cognitive decline and aging on speech features vary 
according to sex, accounting for the sex ratio of participants is critical 

when comparing the frequency-related features of diverse studies. 
Consequently, previous studies with a comparably higher female ratio 
than the current study yielded opposing results. Collectively, the 
results of the current study validate that speech’s acoustic features are 
associated with AD and specify how these features change, suggesting 
a basis for speech-based AD detection in clinical settings.

This study also demonstrated that the speech characteristics of 
Alzheimer’s Disease (AD) can be accentuated when a high memory load 
is imposed. Specifically, our findings indicate that the acoustic features 
of speech in AD can vary in prominence depending on the speech task, 

TABLE 3 A comparison of speech characteristics between AD patients and healthy older adults across speech tasks.

Speech Features Interview Repetition Recall

AD HC p AD HC p AD HC p

Frequency Normalized jitter 

SD

1.54 (0.21) 1.65 (0.2) 0.011 1.7 (0.21) 1.74 (0.23) 0.464 1.59 (0.24) 1.77 (0.27) <0.001

F0 percentile range 8.52 (1.79) 6.53 (3.37) <0.001 6.12 (1.49) 4.8 (2.99) 0.011 7.56 (1.62) 5.85 (3.33) 0.003

Jitter mean 0.04 (0.01) 0.04 (0.01) 0.016 0.04 (0.01) 0.03 (0.01) 0.101 0.04 (0.01) 0.03 (0.02) 0.007

20th percentile of 

the F0

26.48 (3.24) 29.14 (5.31) 0.006 26.59 (3.19) 28.12 (4.2) 0.059 25.87 (3.01) 28.41 (5.43) 0.008

F0 Rising slope SD 280.29 

(133.09)

314.12 

(106.09)

0.190 305.72 

(139.15)

286.51 

(121.58)

0.492 318.75 

(182.34)

401.88 

(138.27)

0.018

F0 Falling slope 

SD

129.3 (53.47) 110.27 

(81.46)

0.201 126.13 

(65.76)

114.29 

(64.86)

0.397 133.21 

(126.57)

184.22 

(75.89)

0.024

F0 mean 30.86 (3.11) 32.52 (4.08) 0.035 29.85 (3.1) 30.76 (3.25) 0.181 29.72 (2.99) 31.51 (4.38) 0.029

Normalized F0 SD 0.19 (0.04) 0.16 (0.06) 0.010 0.17 (0.04) 0.15 (0.05) 0.105 0.19 (0.04) 0.17 (0.06) 0.030

50th percentile of 

the F0

30.98 (3.36) 32.31 (4.08) 0.100 30.07 (3.4) 30.54 (3.08) 0.501 29.43 (3.11) 31.12 (4.67) 0.050

Loudness Loudness 

percentile range

0.49 (0.27) 0.64 (0.28) 0.016 0.52 (0.24) 0.6 (0.31) 0.168 0.38 (0.25) 0.64 (0.22) <0.001

Loudness peaks 

per second

2.39 (0.53) 2.86 (0.56) <0.001 2.68 (0.51) 2.96 (0.47) 0.009 2.05 (0.62) 2.64 (0.55) <0.001

80th percentile of 

the loudness

0.58 (0.28) 0.69 (0.28) 0.071 0.61 (0.26) 0.66 (0.31) 0.475 0.46 (0.26) 0.68 (0.21) <0.001

Loudness mean 0.35 (0.16) 0.39 (0.15) 0.195 0.36 (0.14) 0.36 (0.16) 0.936 0.28 (0.14) 0.37 (0.12) 0.001

Loudness falling 

slope mean

4.88 (2.37) 6.01 (2.88) 0.048 4.45 (2.02) 5.05 (2.49) 0.221 4.46 (2.23) 6.14 (2.58) 0.002

Normalized 

shimmer SD

0.73 (0.1) 0.8 (0.11) 0.004 0.78 (0.09) 0.84 (0.13) 0.019 0.75 (0.09) 0.83 (0.12) 0.002

20th percentile of 

the loudness

0.09 (0.03) 0.06 (0.07) 0.003 0.1 (0.03) 0.06 (0.07) 0.001 0.08 (0.03) 0.04 (0.07) 0.003

Loudness rising 

slope mean

5.68 (2.7) 7.03 (3.11) 0.032 5.13 (2.34) 5.72 (2.64) 0.272 5.16 (2.65) 6.9 (2.73) 0.003

50th percentile of 

the loudness

0.22 (0.15) 0.27 (0.12) 0.105 0.27 (0.13) 0.28 (0.13) 0.810 0.17 (0.13) 0.25 (0.1) 0.004

Loudness falling 

slope SD

3.24 (1.46) 3.71 (1.76) 0.171 2.77 (1.17) 3.01 (1.54) 0.414 3.09 (1.44) 3.95 (1.71) 0.013

Temporal Mean duration of 

voiced region

0.3 (0.12) 0.38 (0.14) 0.003 0.32 (0.09) 0.37 (0.13) 0.059 0.29 (0.1) 0.35 (0.14) 0.014

SD duration of 

voiced region

0.23 (0.09) 0.28 (0.08) 0.008 0.25 (0.05) 0.27 (0.06) 0.067 0.25 (0.08) 0.3 (0.1) 0.011

AD, Alzheimer’s disease; HC, healthy older adults; p, independent t-test, or Welch’s two-sample test were used as appropriate and a Bonferroni correction for multiple comparisons was applied; 
Features are sorted by value of p; Statistically significant features are in bold.
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with the recall task, which involves a high memory load, eliciting the 
most noticeable differences. These results corroborate prior studies that 
have established a relationship between cognitive load and alterations 
in the acoustic features of speech. Previous investigations have shown 
that cognitive load can modify speech acoustics and that cognitively 
impaired individuals, including older adults, are particularly vulnerable 
to these effects, leading to more pronounced changes in speech 
characteristics (Ramig and Ringel, 1983; Kemper et al., 2010, 2011; 
Marzullo et al., 2010; Bailey and Dromey, 2015; MacPherson, 2019). 
This phenomenon can be  explained by the cognitive “supply and 
demand” model (Seidler et al., 2010), whereby an imbalance between 
available cognitive resources and the cognitive demands of a task leads 
to greater alterations in speech motor performances and acoustic 
features. Temporal features, however, appear to be  less affected by 
memory load than frequency and intensity-related features. Numerous 
studies have reported that a slower speech rate is the most characteristic 
speech trait of AD (Hoffmann et al., 2009; Martínez-Sánchez et al., 2012, 
2013; Meilán et al., 2012, 2014). As a slower speech rate is one of the 
most recognizable acoustic features of AD, we believe it was observed 
to be less task-dependent. In other words, among the various speech 
characteristics of AD, some features are consistently distinct and not 
task-dependent, whereas others can be observable or unobservable 
depending on the context. Therefore, to induce and effectively capture 
the latter, we  must impose a heavy memory load; consequently, 
cognitive struggles of AD patients can manifest as changes in the 
acoustic features of speech.

Last, the current investigation revealed that a speech task with a 
high-memory-load can improve the performance of AD classification 
and MMSE prediction models. We conducted a comparative analysis 
of the performance of AD classification and MMSE prediction models, 

utilizing speech data obtained from three speech tasks that varied in 
their memory loads. The recall task with a high memory load 
outperformed the other tasks in both the AD classification and MMSE 
prediction models that other tasks with less memory load. Few studies 
have compared the performance of speech tasks and evaluated their 
potential, and a recent study found that the recall task achieved the 
best classification performance using linguistic features (Clarke et al., 
2021). Our study provides evidence that recall tasks employing 
acoustic features can effectively perform in both AD classification and 
MMSE prediction. It is conceivable that the acoustic features of AD, 
which were accentuated by the high memory load of the recall task, 
could increase the variability in speech characteristics between groups 
and facilitate their classification and prediction. Based on the obtained 
results, we conclude that the recall task has practical implications as a 
speech-based AD detection tool.

This research has a number of limitations. One limitation is the 
small sample size, with speech data collected from only 45 AD patients 
and 44 healthy controls. This limited dataset size may constrain the 
ability to achieve improved classification and model performance. 
Also, the current study conducted only one call per participant which 
is not free from the fluctuations in the cognitive performance of 
patients. Hence, building larger datasets with more participants and 
repeated conduction of the experiment may allow for the enhancement 
of classification and prediction performances and the reliability of 
results. Another limitation of this research is that the acoustic features 
were extracted using an existing conventional feature set, 
eGeMAPS. While eGeMAPS comprises standardized features with a 
robust theoretical foundation and is widely used in speech-based AD 
detection, it may not be the optimal feature set to describe the AD 
voice, as it was initially designed to identify the emotional states of a 
speaker. Therefore, in future studies, it is critical not only to identify 
the optimal speech task but also to develop an appropriate acoustic 
feature set that accurately characterizes the AD voice. Another 
limitation is that the current study provides limited explanation 
between the speech features and the memory load. We observed that 
the differences in speech features between AD patients and healthy 
older adults accentuated in the recall task with high memory load and 

TABLE 4 A comparison of the performance of AD classification models.

Task Accuracy Precision Sensitivity Specificity F1-score

Interview 76.1 77.9 73.6 78.6 75.7

Repetition 78.5 78.6 78.1 79.0 78.3

Recall 81.4 90.3 83.0 77.3 86.5

The performances of AD classification of three speech tasks are presented. A weighted voting classifier combining the logistic regression and random forest was used. The best results are given 
in bold.

FIGURE 2

The ROC curves of the recall, repetition, and interview speech tasks. 
ROC, receiver operating characteristic; AUC, area under the curve.

TABLE 5 A comparison of the performance of MMSE prediction models.

Task MAE RMSE

Interview 4.89 6.16

Repetition 5.19 6.41

Recall 4.62 5.85

AE, mean absolute error; RMSE, root mean squared error; The performances of MMSE 
prediction of three speech tasks are presented. A weighted voting regressor combining 
random forest, ridge, and k-nearest-neighbor was used. MAE and RMSE are metrics for the 
measurement of prediction error and the lower these metrics, the greater the predictability.
The best results are given in bold.
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it possibly led to the excellent AD classification performance and 
MMSE prediction performance of the recall task. Yet, a clinically valid 
explanation which connects the speech characteristics of AD patients 
and the memory load is still lacking. Hence, in the future study, the 
associations between speech features and the cognitive function or 
brain structures should be identified to provide clinical validity as an 
AD detection method to the speech features and the memory load.

Otherwise, this study highlights the significance of utilizing 
appropriate speech tasks for accurate and efficient speech-based AD 
detection. Our findings demonstrate that a recall task with a high 
memory load can effectively reveal the speech characteristics of AD, 
leading to improved AD classification and MMSE prediction. Given 
the practicality and limited availability of data and time in the real-
world setting, an efficient speech-based AD detection tool must 
accurately detect AD with minimal resources. The use of memory load 
in speech tasks is shown to be advantageous in achieving effective 
speech-based AD detection, as it enhances the speech characteristics 
of AD and improves detection accuracy. Hence, rather than the 
combination of various speech tasks like previous studies, the compact 
method with high-memory-load speech task would allow the efficient 
and less demanding speech-based AD detection for patients 
and clinicians.

In addition, this study benefits from the utilization of acoustic 
features in speech analysis. Unlike linguistic features, which are 
limited to specific language properties and contexts, acoustic features 
serve as language-universal markers with broader applicability. Our 
research, based on acoustic features, allows for more generalizable 
findings that can be applied to various linguistic contexts.

In future research, it is important to seek neuroscientific evidence 
to support speech-based AD detection. While it is clear that AD 
patients exhibit changes in acoustic features of their speech, the neural 
mechanisms underlying these alterations are not yet well-understood. 
Thus, future investigations should explore the neural correlates of AD 
speech characteristics to provide clinical validity to speech-based AD 
detection. By elucidating the neural underpinnings of AD speech 
features, we can gain a better understanding of the AD and develop 
more accurate and effective diagnostic tools.
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