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Introduction: The ventral tegmental area (VTA) is less a�ected compared to

substantia nigra pars compacta (SNc) in Parkinson’s disease (PD). This study aimed

to quantitatively evaluate iron content in the VTA across di�erent stages of PD in

order to help explain the selective loss of dopamine neurons in PD.

Methods: Quantitative susceptibility mapping (QSM) data were obtained from

101 PD patients, 35 idiopathic rapid eye movement sleep behavior disorder (RBD)

patients, and 62 healthy controls (HCs). The mean QSM values in the VTA and SNc

were calculated and compared among the groups.

Results: Both RBD and PD patients had increased iron values in the bilateral SNc

compared with HCs. RBD and PD patients in the Hoehn–Yahr (H & Y) stage 1 did

not show elevated iron values in the VTA, while PD patients with more than 1.5H

& Y staging had increased iron values in bilateral VTA compared to HCs.

Discussion: This study shows that there is no increased iron accumulation in

the VTA during the prodromal and early clinical stages of PD, but iron deposition

increases significantly as the disease becomes more severe.

KEYWORDS

Parkinson’s disease, ventral tegmental area (VTA), idiopathic rapid eye movement sleep

behavior disorder (RBD), iron deposition, quantitative susceptibility mapping

1. Introduction

The dopamine (DA) neurons in the ventral tegmental area (VTA) principally project

to the nucleus accumbens in the ventral striatum, as well as the amygdala and prefrontal

cortex, as part of the mesocorticolimbic pathway, whereas the DA neurons in the

substantia nigra pars compacta (SNc) mainly project to the dorsal striatum, as part of

the nigrostriatal pathway. The mesocorticolimbic pathway involves a variety of behaviors

and psychopathological states, such as depression, anxiety, feeding, and reward-related and

goal-directed behaviors (Alberico et al., 2015). In Parkinson’s disease (PD), an impaired

dopaminergic mesocorticolimbic system is considered the leading cause of neuropsychiatric

symptoms (Castrioto et al., 2016). In PD, degeneration of the DA neurons in the SNc is the

most prominent symptom; in contrast, the DA neurons in the VTA are less affected (Ropper

et al., 2019). Although some theories have been suggested, such as the variety of neurons

found in the VTA (Nair-Roberts et al., 2008), lower expression of the dopamine transporters

(Lammel et al., 2008), differences in calcium channel expression (Mosharov et al., 2009),

levels of cytosolic DA, and the presence of α-synuclein (Mosharov et al., 2009; Pan and Ryan,

2012), it remains unclear why the VTA is relatively spared in PD.
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It has been demonstrated that abnormal iron deposition may

contribute to the damage of DA neurons in PD (Hare and Double,

2016). Quantitative susceptibility mapping (QSM) is more sensitive

and can better detect increased iron in PD than R2 and R2∗

mapping (Barbosa et al., 2015). Using QSM, several research studies

have shown that iron accumulation was both cross-sectionally and

longitudinally increased in the substantia nigra (SN) in PD patients,

and iron levels were correlated with clinical manifestations, using

QSM (Bergsland et al., 2019; Sun et al., 2020; Uchida et al., 2020).

In contrast, our knowledge of iron accumulation in the VTA in

PD remains limited. A study on chronic 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-treated PDmice detected an increased

iron level in the SNc, but not in the VTA, and suggested that

difference in iron deposition might be a reason contributing to

the selective degeneration of DA neurons (Lv et al., 2011). So

far, only one imaging study has investigated iron accumulation

in the VTA in PD patients and found increased iron content

(Ahmadi et al., 2020). However, as the primary purpose was to use

transcranial sonography and QSM to localize the SN, the previous

study did not investigate the iron levels at prodromal and different

clinical stages of PD or the relationship between iron levels and

clinical characteristics.

Thus, it is still unclear if increased iron deposition occurs in the

VTA during the prodromal and early clinical stage of PD, whether

iron accumulation increases as the disease becomes more severe,

and whether iron deposition in the VTA correlates with clinical

manifestations. Therefore, this study aimed to quantitatively

evaluate iron contents in the VTA across the prodromal and

different clinical stages of PD. Idiopathic rapid eye movement sleep

behavior disorder (RBD) patients were included in the current

study to evaluate iron content in the prodromal stage. RBD is

considered a prodromal stage of α-synucleinopathies since RBD

patients have a high rate of conversion to neurodegenerative

disorders, especially α-synucleinopathies, such as PD, dementia

with Lewy bodies, and multiple system atrophy (Schenck et al.,

2013).We hypothesized that iron content in the VTA is not elevated

in the early stage of PD but gradually increased as the disease

becomes more severe. This study will help to clarify the pattern of

iron deposition in the VTA and may provide an explanation of the

selective damage of DA neurons in PD.

2. Materials and methods

2.1. Participants

This experiment was performed in accordance with the

Declaration of Helsinki and was approved by the Institutional

Review Board of Xuanwu Hospital of Capital Medical University.

All participants (35 RBD patients, 101 PD patients, and 62

HCs) provided written consent before the experiment and were

recruited from the Movement Disorders Clinic of the Xuanwu

Hospital of Capital Medical University. The RBD patients were

screened by the International Classification of Sleep Disorder-

Third Edition diagnostic criteria (American Academy of Sleep

Medicine, 2014) and were confirmed by polysomnography.

PD patients were diagnosed by the MDS Clinical Diagnostic

Criteria (Andrew et al., 1992). The inclusion criteria for

HCs were (1) no family history of movement disorders, (2)

no neurological or psychiatric diseases, and (3) no obvious

cerebral lesions on structural images in magnetic resonance

imaging (MRI).

The PD patients were evaluated using the Movement Disorder

Society (MDS) Unified Parkinson’s Disease Rating Scale, Part

III (MDS-UPDRS III) and Hoehn and Yahr (H & Y) stage

while off their anti-parkinsonian medicine for 12 h. The RBD

patients were assessed by the Rapid Eye Movement Sleep Behavior

Disorder Questionnaire–Hong Kong (RBDQ-HK) and the MDS-

UPDRS III. In addition, all participants were evaluated using

the Hamilton Depression Scale (HAMD), Montreal Cognitive

Assessment (Chinese version; C-MoCA), Non-Motor Symptoms

Scale for Parkinson’s Disease (NMSS), Brief Smell Identification

Test (BSIT), Epworth Sleepiness Scale (ESS), Pittsburgh Sleep

Quality Index (PSQI), and Apathy Scale (AS). Demographic

information is summarized in Table 1.

2.2. MRI data collection

MRI data were collected on a 3T MAGNETOM Skyra scanner

(Siemens, Erlangen, Germany) using a 20-channel head coil. The

signals from different coils were combined by the sum of squares

method. A single-echo 3-dimensional (3-D) gradient echo (GRE)

sequence was collected with the following parameters: voxel size

= 0.667 × 0.667 × 1.5 mm3, repetition time (TR) = 25ms,

echo time (TE) = 17.5ms, slice thickness = 1.5mm, flip angle

= 15◦, field of view (FoV) = 256 × 192 mm2, and scanning

time = 5min 6 s. A whole-brain sagittal 3-D T1 magnetization-

prepared rapid gradient echo (MP-RAGE) imaging was performed

with the following parameter: voxel size = 1 × 1 × 1 mm3,

TR = 2,530ms, TE = 2.98ms, TI = 1,100ms; slice thickness =

1mm, flip angle = 7◦, FoV = 256 × 224 mm2, and scanning

time= 5min 13 s.

2.3. Image analysis

The QSM reconstruction was performed using MATLAB

2017b based STI Suite.1 The phase images were unwrapped

using a Laplacian-based algorithm method (Wu et al., 2012). The

unwrapped phase images were used to remove the background

field using the V-SHARP method (Li et al., 2014). The magnetic

susceptibility was determined using streaking artifact reduction for

QSM (STAR-QSM; Wei et al., 2015).

Image registration was performed using FMRIB Software

Library (FSL) v6.0.2 Individual 3D-T1 images were first skull

stripped and registered to a standard space [Montreal Neurological

Institute (MNI) 152] using FSL’s FLIRT and FNIRT tools. The

inverted warping field from standard to native space was then

obtained by inverting the warping field. Thereafter, the individual

3D-T1 image was also registered to GRE’s magnitude image using

1 https://people.eecs.berkeley.edu/∼chunlei.liu/software.html

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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TABLE 1 Demographic and clinical data of participants and the QSM values in ROIs.

HC
(mean ± SD)

n = 62

RBD
(mean ± SD)

n = 35

PD
(mean ± SD)

n = 101

P P (post-hoc)

HC vs.
RBD

RBD vs.
PD

HC vs.
PD

Age 64.97± 5.76 65.86± 6.31 64.21± 6.67 0.388a 1 0.550 1

Sex (M/F) 25/37 21/14 54/47 0.123a 0.062 0.503 0.103

RBDQ-HK 7.11± 5.75 34.44± 13.69 20.89± 16.36 <0.001
a

<0.001 <0.001 <0.001

HAMD 3.20± 3.10 5.76± 4.04 5.67± 3.96 <0.001
a

0.024 1 <0.001

C-MoCA 26.00± 2.28 25.11± 2.84 23.76± 3.74 0.001
a 0.781 0.212 <0.001

NMSS 14.04± 13.21 21.65± 13.54 38.77± 33.79 <0.001
a 0.688 0.013 <0.001

BSIT 8.86± 2.48 7.37± 2.13 7.27± 2.91 0.002
a 0.052 1 0.002

ESS 4.26± 2.98 5.47± 3.03 5.72± 3.26 0.061a 0.394 1 0.061

PSQI 6.21± 5.26 7.09± 4.09 6.09± 3.70 0.518a 1 0.793 1

AS 6.49± 6.30 9.35± 7.57 12.48± 9.04 <0.001
a 0.508 0.360 <0.001

UPDRS III - 5.09± 3.83 32.27± 13.68 - - - -

Duration (year) - 3.01± 1.48 4.85± 2.68 - - - -

H & Y stage - - 1.97± 0.69 - - - -

VTA_L (ppm) 0.0193± 0.003 0.0204± 0.003 0.0213± 0.002 <0.001
b 0.174 0.341 <0.001

VTA_R 0.0197± 0.003 0.0208± 0.002 0.0214± 0.002 <0.001
b 0.137 0.570 <0.001

SNc_L 0.0280± 0.011 0.0393± 0.014 0.0508± 0.022 <0.001
b

0.009 0.004 <0.001

SNc_R 0.0263± 0.014 0.0398± 0.014 0.0467± 0.026 0.001
b

0.008 0.240 <0.001

HC, healthy control; RBD, rapid eye movement sleep behavior disorder; PD, Parkinson’s disease; M, male; F, female; RBDQ-HK, Rapid Eye Movement Sleep Behavior Disorder Questionnaire–

Hong Kong; HAMD, Hamilton Depression Scale; C-MoCA, Montreal Cognitive Assessment (Chinese version); NMSS, Non-Motor Symptoms Scale for Parkinson’s Disease; BSIT, Brief Smell

Identification Test; ESS, Epworth Sleepiness Scale; PSQI, Pittsburgh Sleep Quality Index; AS, Apathy Scale; MDS-UPDRS III, Movement Disorder Society Unified Parkinson’s Disease Rating

Scale, Part III; VTA, ventral tegmental area; SNc, substantia nigra pars compacta; ppm, parts per million; L, left; R, right.
aANOVA, analysis of variance.
bANCOVA, analysis of covariance.

-, Not applicable. Bold values: P < 0.05.

the FLIRT tool to get a second warping field. Both warping

fields were combined to converted to obtain warping fields

covert MNI152 so that it was well-coregistered with individual’s

susceptibility map.

The VTA and SNc were defined by the California Institute of

Technology (CIT) 168 atlas of subcortical nuclei (Pauli et al., 2018),

with a threshold of 0.25. The CIT168 atlas divides the VTA into

the parabrachial pigmented nucleus (PBP) and VTA nucleus. Using

FSL, we merged the VTA nucleus and PBP into a whole VTA for

two reasons: (1) there is little evidence that the VTA component

nuclei represent neural populations specialized and distinct in

function (Trutti et al., 2019) and (2) as a probabilistic atlas (Pauli

et al., 2018), there is some overlap between the VTA nucleus and

PBP. The bilateral SNc and merged VTA were used as the ROIs in

the current study (Figure 1). The ROIs in standard MNI152 space

were normalized to individual magnitude space using the above-

mentioned warping fields using FSL. Finally, the individual ROIs

were obtained in order to calculate QSM values.

2.4. Statistical analyses

The demographic and clinical characteristics of HC, RBD, and

PD groups were compared using the analysis of variance (ANOVA).

FIGURE 1

Definition of regions of interest (ROIs). The ROIs include the VTA

(green) and SNc (red). VTA, ventral tegmental area; SNc, substantia

nigra pars compacta.

Post-hoc tests with Bonferroni correction were used for intergroup

comparisons. The Pearson chi-square test was applied for sex

frequency among the groups.
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FIGURE 2

QSM values in the VTA and SNc in three groups. (A, B) QSM values in the VTA in HC, RBD, and PD groups. (C, D) QSM values in the SNc in HC, RBD,

and PD groups. HC, healthy control; RBD, idiopathic rapid eye movement sleep behavior disorder; PD, Parkinson’s disease. VTA, ventral tegmental

area; SNc, substantia nigra pars compacta; ppm, parts per million; L, left; R, right. ***P < 0.001; **P < 0.01.

The normal distribution of QSM values was confirmed using

the one-sample Kolmogorov–Smirnov test. The differences in

QSM values among the three groups in each ROI were analyzed

using the analysis of covariance (ANCOVA) with age and sex as

covariables. Post-hoc tests with Bonferroni correction were used

for intergroup comparisons (P < 0.05). In order to reveal the

iron levels in different stages of PD, we further divided our PD

patients into three subgroups according to the H & Y stage: 26

PD patients with H & Y stage 1 (PD-H&Y1), 43 PD patients

with H & Y stage 1.5 and 2 (PD-H&Y2, including four patients

with H & Y stage 1.5), and 32 PD patients with H & Y stage

2.5 and 3 (PD-H&Y3, including 14 patients with H & Y stage

2.5). The differences in QSM values among the HCs and three

PD subgroups in each ROI were also analyzed using ANCOVA.

Post-hoc tests with Bonferroni correction were used for intergroup

comparisons (P < 0.05).

In addition, we calculated the mean QSM values of the bilateral

VTA, as well as the differences in mean QSM values between the

groups and the different H & Y stages.

Correlations between QSM values and clinical assessments

in RBD and PD patients were performed using Pearson’s

correlation analysis, while Spearman’s correlation analysis was

used to analyze the correlation between H & Y stage and

QSM values in PD patients. Statistical analyses were performed

using IBM SPSS Statistics (version 20, IBM Corp, Armonk,

NY, USA).

3. Results

No significant differences were observed among the three

groups in age, sex, and PSQI (ANOVA, P > 0.05), while there were

significant differences in RBDQ-HK, HAMD, C-MoCA, NMSS,

BSIT, ESS, and AS scores (ANOVA, P < 0.05; Table 1).

There were significant differences in QSM values in the bilateral

VTA and SNc among the HC, RBD, and PD groups (ANCOVA, P

< 0.001). The RBD group did not show enhanced iron values in

the bilateral VTA (post-hoc test, P > 0.05, Bonferroni corrected),

but had increased iron values in the bilateral SNc (post-hoc test,

P < 0.01, Bonferroni corrected) compared with HCs. PD patients

had increased iron values in the bilateral VTA and SNc compared

with HCs (post-hoc test, P < 0.001, Bonferroni corrected) and

had enhanced iron values in the left SNc compared with RBD

patients (post-hoc test, P < 0.01, Bonferroni corrected; Table 1 and

Figures 2A–D).

The QSM values had significant differences among the HCs

and three PD subgroups in the bilateral VTA and SNc (ANCOVA,

P < 0.001). In the bilateral VTA, the PD-H&Y1 group did not

show significantly higher iron values than the HC group (post-

hoc test, P > 0.05, Bonferroni corrected), while the PD-H&Y2 and

PD-H&Y3 groups showed higher values (post-hoc test, P < 0.01,

Bonferroni corrected). In the left VTA, the PD-H&Y3 group had

increased iron values compared with the PD-H&Y1 and PD-H&Y2

groups (post-hoc test, P < 0.001, Bonferroni corrected), while the
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PD-H&Y2 group also had an increase of iron values compared

with the PD-H&Y1 group (post-hoc test, P < 0.05, Bonferroni

corrected). In comparison to HCs, all three PD subgroups showed

higher iron values in the bilateral SNc (post-hoc test, P < 0.05,

Bonferroni corrected). The PD-H&Y3 group had increased iron

values in the left SNc compared with the PD-H&Y1 and PD-H&Y2

groups (post-hoc test, P < 0.001, Bonferroni corrected) and had

elevated iron values in the right SNc compared with the PD-H&Y1

group (post-hoc test, P < 0.05, Bonferroni corrected; Table 2 and

Figures 3A, B).

We found significant differences in mean VTA QSM

values between the groups and at different stages, which was

similar to the results of the left and right VTA QSM values

(Supplementary Tables 1, 2).

In PD patients, the QSM values in the left VTA were positively

correlated with H & Y stage (r = 0.543, p < 0.001, Figure 4A),

HAMD scores (r = 0.275, p = 0.007, Figure 4B), and NMSS (r =

0.238, p = 0.027, Figure 4C). In RBD patients, QSM values in the

left SNc were positively correlated with disease duration (r= 0.356,

p = 0.045) and RBDQ-HK scores (r = 0.388, p = 0.023), while

QSM values in the right SNc were negatively correlated with BSIT

scores (r=−0.496, p= 0.008). The QSM values in the bilateral SNc

were positively correlated with disease duration (left: r = 0.306, p

= 0.002; right: r = 0.211, p = 0.034). In addition, the QSM values

in the left SNc were positively correlated with the H & Y stage (r

= 0.462, p < 0.001), MDS-UPDRS III (r = 0.250, p = 0.013), and

HAMD scores (r = 0.233, p = 0.022), while the QSM values in the

right SNc were positively correlated with the AS scores (r = 0.226,

p= 0.045) in PD patients.

4. Discussion

In the current study, we investigated iron accumulation in the

VTA across different stages of PD. The novel finding is that iron

contents are not increased in the RBD patients and PD patients at H

& Y stage 1. The iron accumulation in the VTA becomes significant

in PD patients at mid stages and advanced stages. QSM values in

the left VTA positively correlate with the H & Y stage, NMSS, and

HAMD scores in PD patients.

We found that both RBD and PD patients had enhanced

iron contents in the bilateral SNc, which is consistent with

previous reports (Guan et al., 2017; Sun et al., 2020). In

contrast, there was no increased iron content in the VTA in

RBD patients and PD patients at H & Y stage 1. Age-related

iron accumulation might be an important factor contributing

to neurodegeneration, as aging processes might compromise the

iron homoeostatic system, leading to an excess of iron that is

not efficiently chelated by storage proteins or other molecules

(Killilea et al., 2004; Ward et al., 2014). An elevated level of

iron deposition in PD may result from increased iron influx

(Moos et al., 2007), loss of intracellular homeostasis (Zucca

et al., 2017), or impaired iron efflux (Bonaccorsi di Patti et al.,

2018). The interaction between excess iron and DA can produce

neurotoxic intermediate or end-products, leading to the formation

of DNA adducts, lipid peroxidation, loss of membrane integrity,

and induction of apoptosis (Blum et al., 2001; Hare and Double,

2016). It has been approved that α-synuclein could form toxic
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FIGURE 3

QSM values in the VTA in HCs and PD patients with di�erent H & Y stages. (A) The QSM values in the left VTA; (B) the QSM values in the right VTA; HC,

healthy control; PD, Parkinson’s disease; H & Y stage, Hoehn and Yahr stage; VTA, ventral tegmental area; ppm, parts per million; L, left; R, right. ***P

< 0.001; **P < 0.01; *P < 0.05.

FIGURE 4

Correlations between QSM values in the VTA and clinical features in PD patients. Correlation between QSM values in the left VTA and H & Y stage (A),

HAMD (B), and NMSS scores (C). VTA, ventral tegmental area; QSM, quantitative susceptibility mapping; PD, Parkinson’s disease; H & Y stage, Hoehn

and Yahr stage; HAMD, Hamilton Depression Scale; NMSS, Non-Motor Symptoms Scale for Parkinson’s Disease. ***P < 0.001; **P < 0.01; *P < 0.05.

aggregates in the presence of iron, which is considered to

contribute to the formation of Lewy bodies in DA neurons

via oxidative stress (Ostrerova-Golts et al., 2000). It has been

proposed that the vulnerability of DA neurons requires redox

load from a combination of relatively high iron and dopamine

together (Hare et al., 2014). Therefore, increased iron deposition

is believed to mediate the death of SNc dopaminergic neurons

(Hare and Double, 2016). Previous studies have suggested that

several reasons may relate to less damaged DA neurons in

the VTA compared with SNc, such as the variety of neurons

found in the VTA (Nair-Roberts et al., 2008), lower expression

of the dopamine transporter (Lammel et al., 2008), differences

in calcium channel expression and the presence of α-synuclein

(Mosharov et al., 2009), differences in vesicular monoamine

transporter-2 and neuromelanin (Liang et al., 2004), less degree

of oxidative stress and more inducible copper-zinc superoxide

dismutase activities (Hung and Lee, 1998), and more brain-

derived neurotrophic factor mRNA gene expression (Hung and

Lee, 1996). According to our findings, less accumulation of iron

is also a likely reason contributing to the relatively spared DA

neurons in the VTA during the prodromal and early clinical stages

of PD.

The underlying reasons contributing to the less accumulation

of iron in the VTA compared with SNc remain unclear. Previous

studies on chronic MPTP-treated mice have suggested that

misregulation of iron transporters, such as increased expression

of divalent metal transporter 1 and decreased expression of

ferroportin 1, might correlate with nigral iron accumulation.

However, this pattern of misregulation of iron transporters was not

detected in the VTA (Lv et al., 2011). These selective changes in iron

transporters may help explain the differential iron accumulation in

the SNc and VTA in PD.
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Our PD patients at more than 1.5H & Y staging had enhanced

iron deposition in the VTA. This finding is consistent with a

previous report (Ahmadi et al., 2020), in which PD patients with an

average of 1.97H & Y staging showed increased iron accumulation

in the VTA compared with HC. In addition, the QSM values in the

left VTA were positively correlated with the H & Y stage. These

observations suggest that as the disease becomes more severe, iron

deposition in the VTA becomes more significant, and may induce

the death of DA neurons at the mid-stage and advanced stage of

PD. Studies on the post-mortem brain of PD patients have proved

that there was a 40–77% loss of DA neurons in the VTA (Alberico

et al., 2015).

The neurons in the VTA project to extensive brain regions,

including the nucleus accumbens, amygdala, prefrontal cortex,

hippocampus, ventral pallidum, periaqueductal gray, bed nucleus

of the stria terminalis, olfactory tubercle, and locus coeruleus,

which are related to the various non-motor symptoms (Alberico

et al., 2015; Morales and Margolis, 2017). However, only a small

number of imaging studies have focused on the relationship

between physiological changes in the VTA and clinical phenotypes

of PD. The VTA showed an attenuated neural response to reward

outcomes in PD patients (van der Vegt et al., 2013). Increased

functional coupling between the VTA and default mode network

has been reported in PD patients with freezing of gait (Steidel et al.,

2021). In addition, increased functional connectivity between the

VTA and anterior cingulate cortex was related to depression in

PD (Wei et al., 2018). We found that the QSM values in the left

VTA were positively correlated with NMSS and HAMD scores,

which provides further support that damaged VTA is a reason

contributing to non-motor symptoms, especially depression, in

PD patients.

We found that only the iron contents of left VTA, not right

VTA, were significantly correlated with clinical symptoms in PD

patients. This phenomenon is likely due to the asymmetry of motor

symptoms as most of our PD patients had right-side onset (65

of 101 patients). As our RBD patients did not show significant

motor symptoms, we could not define the more- and less-affected

sides in RBD patients. Thus, we only performed between-group

comparisons of QSM values on the left and right sides.

In RBD patients, the QSM values in the SNc were positively

correlated with disease duration, which is consistent with our

previous report (Sun et al., 2020) and indicates that iron deposition

in the SNc increases with the progression of RBD. In addition,

the QSM values in the SNc correlated with RBDQ-HK and

BSIT scores. Olfactory dysfunction is associated with an increased

risk of developing PD, and RBD patients with hyposmia are at

high risk for converting to PD (Lyu et al., 2021). These results

suggest that iron accumulation in the SNc is associated with

the severity of RBD and may have the potential to predict the

conversion to α-synucleinopathies, which needs to be proved in

future longitudinal studies.

In the bilateral SNc, PD patients had significantly enhanced

iron contents, which is consistent with previous studies (He et al.,

2015; Guan et al., 2017; Bergsland et al., 2019; Ahmadi et al.,

2020; Sun et al., 2020; Fu et al., 2021), and the QSM values

were positively correlated with disease duration and the H & Y

stage (Du et al., 2016; Fu et al., 2021). The QSM values were

positively correlated with the MDS-UPDRS III and HAMD scores

in the left SNc (He et al., 2015; Fu et al., 2021) as well as the AS

scores in the right SNc. The enhanced iron might aggravate the

dysfunction of the nigrostriatal pathway with disease progression

and severity (Hare and Double, 2016), which exacerbates the

motor and non-motor symptoms. These findings suggest that the

QSM technique has the potential to be a neuroimaging marker

of disease progression, which needs to be examined in future

longitudinal studies.

There are some limitations in our study. First, this is a cross-

sectional study, and longitudinal studies are needed to reveal the

progress of iron deposition in the VTA and its relationship with

clinical progression. Second, as we only had a small number of

patients at the H & Y stage 4, the iron accumulation in the

VTA in more advanced PD patients was not investigated in the

current study.

5. Conclusion

Using the QSM, we demonstrate that the iron content in

the VTA is not enhanced in the prodromal and early clinical

stage of PD but becomes significantly increased as the disorder

becomes more severe. Moreover, the iron deposition in the

VTA is associated with the non-motor symptoms in PD. Our

findings may help to understand the iron deposition in the

VTA at different stages of PD and its relationship with clinical

manifestations of PD.
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