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Introduction: Visual hallucination is a prevalent psychiatric disorder characterized 
by the occurrence of false visual perceptions due to misinterpretation in the 
brain. Individuals with Parkinson’s disease often experience both minor and 
complex visual hallucinations. The underlying mechanism of complex visual 
hallucinations in Parkinson’s patients is commonly attributed to dysfunction in 
the visual pathway and attention network. However, there is limited research on 
the mechanism of minor hallucinations.

Methods: To address this gap, we conducted an experiment involving 13 
Parkinson’s patients with minor hallucinations, 13 Parkinson’s patients 
without hallucinations, and 13 healthy elderly individuals. We collected 
and analyzed EEG and MRI data. Furthermore, we utilized EEG data from 
abnormal brain regions to train a machine learning model to determine 
whether the abnormal EEG data were associated with minor hallucinations.

Results: Our findings revealed that Parkinson’s patients with minor 
hallucinations exhibited excessive activation of cortical excitability, an 
imbalanced interaction between the attention network and the default 
network, and disruption in the connection between these networks. These 
findings is similar to the mechanism observed in complex visual hallucinations. 
The visual reconstruction of one patient experiencing hallucinations yields 
results that differ from those observed in subjects without such symptoms.

Discussion: The visual reconstruction results demonstrated significant 
differences between Parkinson’s patients with hallucinations and healthy 
subjects. This suggests that visual reconstruction techniques may offer a means 
of evaluating hallucinations.
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1 Introduction

Visual hallucination (VH) is a perceptual phenomenon characterized by the 
occurrence of false visual experiences while an individual is awake (Shine et al., 2014), 
resulting from erroneous neural coding in the brain. One of the common neurological 
diseases related to VH is Parkinson’s disease (PD) (Barnes and David, 2001; Diederich 
et al., 2009). In the past, complex VH has been roughly attributed to levodopa’s effects, 
thought to be a side effect, but as research progresses, it is now thought to be a symptom 
of a disconnect between the dorsal, ventral, and default-mode networks, mediated by the 
quality of visual input (Muller et al., 2014). As the disease progresses, CVH become more 
pronounced, evolving from simple visual disturbances such as flashes or geometric 
patterns to vivid depictions of colorful animals and figures. This progression can lead to 
a gradual loss of the ability to differentiate between CVH and reality (Fénelon et al., 2000). 
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However, research has indicated that even in the early stages of PD, 
prior to medication treatment, some patients may exhibit mild VH 
symptoms, which are referred to as Minor Hallucinations (MH). 
Minor hallucinations include three aspects: existential hallucinations, 
through sexual hallucinations, illusions (Lenka et al., 2019).

In order to analyze the data and reconstruct the vision, it is 
necessary to understand the mechanism of visual hallucination. It is a 
good way to study CVH from a model-building point of view. For 
example, Collerton et al. (2023) provide eight models to explain the 
mechanism of CVH. With the development of research, the current 
mainstream consensus on the mechanism of Parkinson’s disease (PD). 
CVH is the theory that bottom-up and top-down information flow 
transmission is impaired, bottom-up: impaired transmission of visual 
information through the optic nerve-optic chiasm-lateral geniculate 
body-primary visual cortex; Top-down: impaired transmission of 
visual information through the ventral and dorsal advanced processing 
pathways of visual information; At present, we prefer to study the 
processing of advanced information from the aspect of brain network. 
Recruiting patients is a difficult task, and as hallucinations become 
more severe, information gathering becomes more difficult. We try to 
recruit a certain number of patients with minor hallucinations. A 
study investigating structural and functional changes associated with 
MH found that disruption of the internal organization of the DMN 
and its precise balance with the attentional control network is 
responsible for minor hallucinations in patients with Parkinson’s 
disease (Bejr-kasem et al., 2019). This is consistent with the attention 
network hypothesis for CVH proposed by Shine et al. (2015) and 
Caviness (2014). It is concluded that MH and CVH have similar 
structural and functional correlations. It is reliable to study the 
mechanism of visual hallucination in patients with 
minor hallucinations.

In order to study the mechanism of MH subjects with PD, a total 
of 13 PD patients with MH, 13 PD patients without hallucinations, 
and 13 healthy individuals were recruited for the present study. EEG 
and MRI data were collected and analyzed across all brain regions to 
investigate the neural correlates of MH in PD. The aberrant brain 
regions were found to contain neural coding information related to 
the experience of hallucinations. Furthermore, visual reconstruction 
techniques were employed to validate the association between MH 
and EEG data derived from these abnormal brain regions.

2 Materials and methods

2.1 Participants and stimuli

We recruited 13 PD patients with minor hallucinations (PD-MH), 
13 PD Patients without hallucinations (PD), and 13 healthy controls 
(HC), respectively. PD patients were grouped into hallucinations and 
non-hallucinations according to the Unified Parkinson’s Disease 
Rating Scale (UPDRS), Part I, Item 2(Goetz et  al., 2003). The 
participants who got score of 2 or more were grouped into 
hallucinations, the others were grouped into non-hallucinations. All 
subjects were recruited at Nanjing Medical University Affiliated Brain 
Hospital and all experimental procedures were approved by the Ethics 
Committee of Affiliated Brain Hospital of Nanjing Medical University 
(Ethics approval number: 2019-KY018-01). The inclusion criteria is 
Mini-Mental State Examination (MMSE) score of more than 17. 

Exclusion criteria included patients with eye diseases; limitations in 
MRI scanning, such as claustrophobia or pacemaker implantation; a 
history of cerebral infarction or brain tumor.

The demographic and clinical characteristics of all participants are 
presented in Table 1. There were no significant differences in age, 
gender, education level, cognitive ability, disease duration, and H-Y 
staging between the PD-MH group and the PD group. It is important 
to note that all PD patients had not previously received levodopa 
treatment, thus ruling out any potential drug effects.

In this study, both resting-state and task-state data were collected 
from all participants. The resting-state data acquisition lasted for a 
duration of 60 s with eyes closed. For the task-state data collection, 
participants were instructed to sit in a room where objects and people 
were arranged in a complex manner. The task required participants to 
verbally describe the objects and people they observed in order to 
assess their visual orientation and content. During the task, a camera 
was positioned directly behind the participants’ eyes, capturing the 
visual scenes they were observing in real-time. In terms of MRI data 
collection, a sequence of resting-state data was obtained. During the 
MRI session, participants were in a resting state, characterized by a 
clear and relaxed state of mind, with unknown eye closure. No task-
state magnetic resonance data was collected, and no specific gaze 
point was recorded.

2.2 Data collection and processing

The EEG recording was taken with the 64-channel EGI GES 
systems using AgCl electrode (10–10 standard mapping). The data was 
sampled at a frequency of 1,024 Hz, and filtered between 0.1 and 50 Hz 
by FIR filter. Noisy or unusable channels was removed according to 
the Nina rule (Bigdely-Shamlo et al., 2015). The data was processed 
using eeglab toolkit in MatLab (MathWorks). Independent 
Component Analysis (ICA) was used to separate the noise components 
and the data source components. Then the bad components of EEG 
data are manually removed, and finally restore the sequence EEG data.

MRI was obtained using a Siemens 3.0 T singer scanner (Siemens, 
Verio, Germany) and an 8-channel radio frequency coil at the Nanjing 
Medical University Affiliated Brain Hospital. The 3D-SPGR sequence 
was used to obtain three-dimensional T1-weighted images in the 
sagittal plane with the following parameters: TE = 3.34 ms; 
TR = 2,530 ms; flip angle = 7°; 128 sagittal surface slices; 1.33 mm slice 
thickness; matrix = 256 × 256. Functional images were collected using 
T2-weighted single-shot EPI sequences: 240 time points; TE = 30 ms; 
TR = 2000 ms; FOV = 240 × 240 mm 2; matrix = 64 × 64; flip angle = 90°; 
30 axes 3.0 mm thick; section gap = 0 mm. The MRI data adopts the 
resting-state fMRI data processing assistant toolkit DPARSF based on 
the statistical parameter mapping software SPM8 to be processed. To 
ensure data quality, the first 10 moments of each subject’s data were 
discarded. We performed slicing timing and motion calibration on the 
rest of the images. Based on head motion recordings, all participants 
had a maximum displacement of less than 2.0 mm on the x, y, or z axis, 
and a maximum angular rotation of less than 2° on each axis. After 
spatial normalization of the T1 space, all images were resampled to 
3 × 3 × 3 mm-sized voxels and spatially smoothed using a Gaussian 
filter with a half maximum width of 4 mm. The fMRI data were then 
subjected to temporal bandpass filtering (0.01–0.08 Hz) to remove 
low-frequency drift and physiological high-frequency noise.
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2.3 EEG and MRI data analysis

The Fast Fourier Transform (FFT) was utilized to analyze the 
frequency distribution of EEG data during the task-state. The power 
ratio for each channel was calculated across different frequency bands, 

including delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta 
(12–30 Hz), and gamma (>30 Hz) (Ramadan and Vasilakos, 2017). To 
account for impedance differences between channels, a single medium 
channel was used to adjust the bias. The threshold for each channel 
was determined as 1.5 times the mean difference within each group of 

TABLE 1 Demographic and clinical data of subjects.

Group Number Age Disease 
duration (years)

Education 
level (years)

MMSE MOCA Gender Hoehn & 
Yahr Stage

Characteristics 
of MH

HC 1 52 9 29 27 Female

HC 2 61 10 29 25 Female

HC 3 53 6 28 17 Male

HC 4 50 6 29 22 Female

HC 5 62 9 28 23 Female

HC 6 51 9 30 27 Male

HC 7 65 9 29 25 Male

HC 8 52 9 30 23 Female

HC 9 55 9 29 25 Female

HC 10 62 12 29 27 Female

HC 11 62 0 26 16 Male

HC 12 63 9 29 25 Female

HC 13 52 9 30 30 Male

PD 14 70 0 9 28 22 Female 2

PD 15 51 0 6 26 20 Male 1

PD 16 53 1 16 28 29 Female 1

PD 17 53 2 6 28 17 Male 1

PD 18 55 0.5 9 25 19 Female 2.5

PD 19 55 5 0 23 13 Female 2

PD 20 71 3 9 29 26 Female 1.5

PD 21 57 1 9 30 26 Male 2

PD 22 59 1 0 22 13 Female 2.5

PD 23 63 1 9 26 20 Male 1

PD 24 56 0.5 5 30 24 Male 1.5

PD 25 61 5 12 30 28 Female 1

PD 26 63 0.5 13 29 27 Female 1

PD-MH 27 65 2 0 21 15 Female 2 Visual illusions

PD-MH 28 56 2 12 27 16 Male 2 Visual illusions

PD-MH 29 66 2 9 27 23 Male 1 Unknown

PD-MH 30 56 4 5 29 22 Female 2 Unknown

PD-MH 31 61 1 8 29 18 Female 1.5 Unknown

PD-MH 32 74 3 8 27 19 Male 1 Visual illusions

PD-MH 33 66 2 11 26 23 Female 1.5 Unknown

PD-MH 34 67 2 13 29 25 Male 1 Unknown

PD-MH 35 55 3 5 29 18 Female 1.5 Passage hallucinations

PD-MH 36 65 3 9 28 21 Female 1.5 Unknown

PD-MH 37 50 1 12 25 16 Female 2.5 Passage hallucinations

PD-MH 38 66 3 0 19 13 Female 1.5 Visual illusions

PD-MH 39 66 3 0 22 13 Female 2.5 Presence 

hallucinations

https://doi.org/10.3389/fnagi.2023.1189621
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnagi.2023.1189621

Frontiers in Aging Neuroscience 04 frontiersin.org

subjects. For instance, when analyzing the delta power ratio in the 
frontal area electrodes of the three groups (PD-MH, PD, HC), three 
average values x x x1 2 3, ,  were obtained, and the threshold for PD-MH 
relative to PD in the frontal lobe with differential channels was 
calculated as 1.5 * (x1-x2).

In the processing of MRI data, the ICA method was employed using 
functional magnetic resonance imaging (fMRI) data. Seven brain 
functional sub-networks were identified based on the AAL template for 
intra-network comparison. The Shapiro–Wilk test was used to assess the 
normality of the data, and the ANOVA test was conducted to analyze the 
significance of the data across the three groups. Multiple comparisons 
were then performed to examine the differences between groups. A 
significance level of p < 0.05 was considered statistically significant.

Additionally, indices of fractional anisotropy (FA) and mean 
diffusivity (MD) were calculated, and whole-brain fiber tract tracking 
was conducted using diffusion tensor imaging (DTI) based on the 
MRI data (Le Bihan et al., 2001; Alexander et al., 2007; Thomason and 
Thompson, 2011). This analysis was performed on the DAN and VAN 
networks. The fiber bundle orientation map of specific brain regions 
was determined using the ICBM-DTI-81 template provided by Johns 
Hopkins University.

2.4 Visual reconstruction analysis based on 
EEG signal

A deep learning network is capable of computing features of input 
information through multiple iterative processes. In the context of 
vision-based reconstruction technology, deep network technology is 
employed to simultaneously calculate two sets of deep network 
structures in parallel. One network is responsible for computing 

features of the input EEG signals, while the other network supervises 
the original stimuli. The iterative EEG features are then transmitted to 
the feature decoder, resulting in the output of a reconstructed visual 
stimulus image (Qu et al., 2021). The algorithm network flow chart 
depicting this process is illustrated in Figure 1.

In our study, visual stimuli in the form of pictures were utilized 
for our subjects. We  collected EEG data for a duration of 500 ms 
following the presentation of the stimuli. Subsequently, the EEG signal 
underwent offline preprocessing as described earlier. The preprocessed 
signal was then fed into the first group of Long Short-Term Memory 
(LSTM) recurrent neural networks to extract the features present in 
the EEG data. Simultaneously, the stimulation image associated with 
the EEG signal was inputted into the second group of neural network 
VGG, which performed calculations for encoding and decoding 
models of the stimuli images, thereby extracting the features of the 
image coding process. These features were then transmitted to the first 
group of LSTM networks, resulting in the acquisition of EEG features 
related to the stimulus image features. At this stage, the EEG features 
associated with the stimulus image features were sent to the 
constructed VGG model, where image decoding and reconstruction 
were carried out, ultimately producing the reconstructed image.

LSTM is a recurrent neural network (RNN) that incorporates 
hidden computational gates. RNNs are designed to handle data with 
semantic associations, such as text sentences, semantics, reasoning, 
and stocks, which are logically related. EEG signals, in particular, are 
suitable for recurrent neural networks as they contain human 
physiological behaviors and logical patterns. However, when dealing 
with large amounts of data, the iterative calculation of RNNs may 
result in gradient explosion. To address this issue, a special type of 
RNN called LSTM, which includes hidden gate settings, is utilized. 
The network structure model of LSTM is depicted in Figure 2.

FIGURE 1

Visual reconstruction algorithm flow chart.
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In Figure 2, a hidden gate structure called the tan gate is added to 
the input data h. This hidden gate structure performs long-short-term 
memory sequence calculations each time the input data h is processed. 
During each calculation, a parameter related to the forward calculation 
is randomly omitted, and the input parameter is repeated twice. The 
resulting tan calculation is then fed into the next hidden gate h. By 
iteratively calculating the LSTM recurrent neural network, the features 
of the EEG signals fed into the neural network can be outputted as fE .

Simultaneously, the stimulation image associated with the EEG 
signal is sent to a second neural network called VGG. This network is 
responsible for encoding and decoding models of stimuli images, 
extracting features from the image coding process. VGG is a deep 
encoding and decoding computing network and is considered a classic 
representative network structure of convolutional neural networks 
(CNNs). It possesses a deep network structure and can perform 
numerous iterative calculations on input images through operations 
such as convolution, pooling, and activation. This allows VGG to 
compute the underlying features of the input image and construct an 
encoding and decoding model for similar images. The deeper network 
structure of VGG enables it to encode and compress images to a 
higher degree. However, one drawback is that the reconstructed 
images after decoding may exhibit lower accuracy.

The encoding and decoding model of the input images was 
constructed using the VGG model. The forward structure of the 
network was then utilized to generate the encoding results of the 
stimulus image corresponding to the input’s EEH time series. The 
results fP were sent to the first group of network LSTM as the time-
stamp for image encoding results and for calculating the supervision 
loss of the EEG feature extraction network. The supervision mode 
employed the Archirid loss Formula (1).

 

1

2

1 2

1 2

2

N
x xi ii

N −=∑
 

(1)

After the supervision of Equation (1) and the stimulus image, the 
EEG signal sent to the LSTM network would eventually output EEG 
features fE  related to the stimulus image feature.

At this time, the EEG features fE  associated with the stimulus 
image features were sent to the constructed VGG model, and the 
decoding calculation of this model was regarded as image features, fE  
and image decoding and reconstruction were performed on them.

The original image was used as supervision, and MES loss was 
applied to the reconstructed image as decoding supervision, as shown 
in Formula (2):
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Then, the decoded image with original image supervision was 
used as the output of the decoder, that is, the reconstructed image 
is obtained.

For the purpose of our study, we collected EEG data spanning 500 
ms from the PD-MH subject during approximately 1,200 experiments, 
which encompassed instances where the partner either faced the 
subject or did not face the subject. Out of these experiments, 1,000 
were used as a training set and 200 were allocated as a test set.

The structural similarity index (SSIM) was employed to assess the 
accuracy of the reconstruction as shown in Formula (3).
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(3)

where, μx is the average value of x, σ x
2 is the variance of x, μy is the 

average value of y, σ y
2 is the variance of y, σ xy  is the covariance of x 

and y, c c1 2,  are constants.

3 Results

3.1 EEG analysis results

Figure 3 depicts the EEG mapping results for 13 patients with 
PD-MH, 13 patients with PD, and 13 HCs across various frequency 
ranges. The color scheme in the figure represents the average intensity, 
with red indicating high intensity and blue indicating low intensity.

In comparison to the healthy controls, the PD-MH patients 
exhibited an elevated power ratio in the α and θ frequency bands, 
particularly at the junction of the frontal lobe, occipital lobe, fronto-
parietal junction, and occipital-parietal junction. Conversely, a 
decrease in power was observed in the γ frequency band, specifically 
in the frontal lobe, parietal lobe, and occipital lobes.

FIGURE 2

LSTM network model.
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3.2 MRI analysis results

Table  2 presents the results of a multiple-comparison test 
conducted on three groups of subjects in the analysis of MRI 
functional network. The table records the connections between brain 
regions, denoted as Node-a and Node-b. The term “excellent” indicates 
that the functional connectivity of the PD-MH group has a significant 
advantage, while the absence of this term suggests a significant 
disadvantage in functional connectivity for the PD-MH group.

The PD-MH group exhibited significantly enhanced connectivity 
between the frontal gyrus and middle frontal gyrus compared to the 
HC group. These connections also involved the Calcarine, and 
enhancements were observed in the parietal and occipital lobes. In 
comparison to the PD group, the PD-MH group showed 
enhancements in a limited number of brain regions, such as 
Occipital gyrus.

Table  2 displays complex network nodes that require further 
investigation to establish their functional connections. To this end, 
seven functional networks were selected for significance analysis, and 
the results are presented in Table 3. The second and third columns of 
Table 3 indicate the p-values associated with the significance of the 
functional networks.

Table 3 reveals substantial differences among the DMN, DAN, and 
VAN networks for the three groups of subjects, prompting a specific 
investigation into these networks.

In the analysis of the DMN, the functional connections of the 
posterior cingulum, medial prefrontal cortex, angular gyrus center 
dorsal medial subsystem, and medial temporal subsystem were 
compared among the three groups of subjects. The results are 

displayed in Table 4. It was observed that the DMN network in the 
PD-MH group exhibited significant enhancement, particularly in the 
dorsal medial subunit centered on the medial prefrontal cortex.

Given the connection strength is close between the PD-MH group 
and the HC and PD groups, a connection strength above 0.8  in 
functional connectivity was considered an effective threshold. 
Consequently, the average DMN of the PD-MH group with 
hallucinations and the HC group was determined. The network 
connection traces are depicted in Figures  4A–D. Figures  4A,B 
represent the network diagrams of the dorsal-medial subsystems, 
while Figures 4C,D represent the temporal-medial subsystems. The 
default network of PD-MH patients exhibited greater connection 
complexity than that of the HC group, particularly in the 
dorsal subsystem.

For the functional sub-networks, DAN, and VAN of visual 
information processing, the average connection result with DMN also 
used 0.8 as the threshold, and the network connection is depicted in 
Figures 5A–D. This figure only includes the connection between the 
visual information processing sub-network and the DMN network, 
not includes the connection of the DMN network itself. As can be seen 
from the figure, the VAN network was more closely connected with 
the DMN network than the DAN network, while in the connection 
with the DMN network, the dorsal-medial system was more closely 
connected with the attention network, namely PD  - MH In the 
network connection of group patients, the connection between DMN 
network and DAN network was weakened, and the connection with 
VAN network was more intimate, and it was more dependent on DAN.

In the analysis of functional sub-networks involved in visual 
information processing, the threshold of 0.8 was utilized to determine 

FIGURE 3

(A) δ frequency band (B) θ frequency band (C) α frequency band (D) β frequency band (E) γ frequency band.
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the average connection strength with the DMN. The resulting network 
connections are illustrated in Figures 5A–D, which specifically focuses 
on the functional sub-networks associated with visual information 
processing. It is important to note that the connections shown in the 
figure do not include the connections within the DMN network itself. 
The figure reveals that the VAN exhibited a stronger connection with 
the DMN network compared to the DAN. Furthermore, within the 

connection to the DMN network, the dorsal-medial system 
demonstrated a closer association with the attention network, 
specifically the posterior-dorsal and medial-hemispheric regions. In 
the network connections observed in the group of patients, the 
connection between the DMN network and DAN network was 
weakened, while the connection with the VAN network became more 
prominent, indicating a greater reliance on the DAN network.

TABLE 2 Results of significant differences in functional networks.

PD-MH:HC PD-MH:PD

Node-a Node-b Frontal_Mid_L Frontal_Inf_Tri_R

Enhanced Frontal_Sup_L

Frontal_Sup_R

Frontal_Mid_L

Calcarine_L

Cuneus_L

Calcarine_R

Occipital_Inf_R

Calcarine_R

Frontal_Inf_Tri_R Supp_Motor_Area_L

Postcentral_L

Heschl_L

Calcarine_L

Cuneus_L

Occipital_Mid_R

Occipital_Inf_R

Temporal_Sup_L

Temporal_Pole_Sup_L

Frontal_Mid_R Supp_Motor_Area_R

Postcentral_L, Postcentral_R

Temporal_Mid_R

Occipital_Inf_R

Calcarine_L, Calcarine_R

Putamen_L

Amygdala_R

Cingulum_Ant_R Temporal_Pole_Sup_L

Frontal_Sup_Medial_R Olfactory_R

Occipital_Inf_R

Angular_R

Occipital_Inf_R Frontal_Inf_Oper_R

Frontal_Inf_Tri_L

Frontal_Inf_Tri_R

Occipital_Inf_R Frontal_Inf_Oper_L

Supp_Motor_Area_L, Supp_

Motor_Area_R

Insula_R

SupraMarginal_R

Fusiform_R

Hippocampus_L, Hippocampus_R

Lingual_L, Lingual_R

Caudate_R

Putamen_L, Putamen_R

Pallidum_L, Pallidum_R

Thalamus_R

Cingulum_Ant_L, Cingulum_

Ant_R

Cingulum_Mid_R

Cingulum_Post_L

Attenuated Temporal_Pole_Mid_L Temporal_Pole_Sup_R

Amygdala_L

Temporal_Pole_Mid_L Hippocampus_L

Hippocampus_R

ParaHippocampal_L

Amygdala_L

Temporal_Sup_R

Temporal_Pole_Sup_R

Frontal_Sup_Orb_R Occipital_Sup_R

Occipital_Mid_R
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3.3 DTI analysis results

Fiber tracts were delineated based on the findings of brain regions 
exhibiting significant differences in certain functional brain networks, 
as presented in Table 2. The visualization figures were generated using 
Mrtrix 3 software on a Linux ubuntu 16.04 platform. A total of 5,000 
fiber tracts were sampled for both groups. Figure 6 illustrates that, in 
comparison to the HC group, the PD-MH group displayed a lower 
density and more dispersed arrangement of fiber bundles, whereas the 
HC group exhibited a higher density and more compact configuration.

3.4 Visual reconstruction analysis results

Based on the findings from the analysis of fMRI and EEG data, 
we identified specific channels within the DMN that are located near 
the dorsal subsystem. Additionally, we  selected electrodes in the 
frontal lobe region associated with the VAN, electrodes in the occipital 
lobe region situated in the inferior occipital gyrus, and electrodes in 
the temporal lobe region linked to memory recall. These channels 

were utilized for the visual reconstruction of a PD-MH subject who 
experienced persistent hallucinations of being stared at. To minimize 
any potential disturbance to the subject, we  opted for a slightly 
complex scene consisting of one person at a close distance and another 
person at a greater distance. Throughout the experiment, the person 
would either face the subject directly or have their side face visible. 
The actual experimental scenes are depicted in Figure 7A (subject 
facing) and Figure 7B (side face).

To classify the two scenarios (i.e., whether the partner’s face was 
directed toward the subject or not), we employed a deep learning 
network, as illustrated in Figure 8. The SSIM of Figure 8 is 0.747. 
However, the findings indicate that the reconstructed images 
consistently depict the subject facing forward and are unable to 
differentiate between the two scenarios.

In the case of healthy subjects, when playing a previously recorded 
video of the same scenarios, we  were able to reconstruct the two 
scenarios using a deep learning network. Figure  9 displays the 
reconstructed image of the side face scenario. Although the facial 
image of the distant collaborator is not highly distinct, it is evident that 
the subject’s face is not facing forward. The classification of the two 

TABLE 3 Comparison results of functional network sub-connections of the three groups of subjects.

PD-MH:HC PD-MH:PD

Sensorimotor system 0.076 0.105

Central executive network

Central executive network

0.547 0.621

DMN 0.008 0.025

Highlight the network

Salience network

0.681 0.775

DAN _ 0.017 0.032

VAN _ 0.011 0.028

Limbic/paralimbic system 0.057 0.348

TABLE 4 Comparison of results of DMN network connection among three groups of subjects.

PD-MH: HC PD-MH: PD

Node - a Node - b Node - a Node - b

Cingulum_Post Frontal_Sup_Medial

Temporal_Sup

Temporal_Mid_R

Temporal_Inf_R

Cingulum_Post Frontal_Sup_Medial

Temporal_Sup_L _ _

Temporal_Pole_Sup_L

Frontal_Sup_Medial Angular

Temporal_Sup

Temporal_Mid_R

Temporal_Inf_R

Temporal_Pole_Sup

Frontal_Sup_Medial Angular

Temporal_Sup

Temporal_Mid

Temporal_Inf

Temporal_Pole_Sup

Angular_L Temporal_Mid_L

Temporal_Inf_L

Temporal_Pole_Sup_L

Angular_L Temporal_Sup

Temporal_Mid_L

Temporal_Pole_Sup

Cingulum_Post Parietal_Inf_L Cingulum_Post Parietal_Inf_L

Frontal_Sup_Medial Hippocampus

ParaHippocampus

Parietal_Inf

Frontal_Sup_Medial Hippocampus

ParaHippocampus

Parietal_Inf
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scenarios (face or not face subject) can be achieved by utilizing EEG 
data from HC subjects. The SSIM of Figure 9 is 0.759, indicating that 
the results obtained from HC subjects are superior to those obtained 
from individuals with PD-MH.

4 Discussion

After conducting an analysis of EEG and fMRI data, significant 
findings were observed in the activity of different frequency bands 
among the three groups of subjects. Specifically, the α and θ bands 
exhibited enhanced activity, while the power of the Gamma γ band 
was weakened.

The attentional networks model proposes that CVH in PD patients 
are associated with impaired activation of the DAN when interpreting 
ambiguous percepts. This finding aligns with our own results in MH, 
which indicate that the DAN is weakened in individuals with MH.

The analysis of DTI data shows that MH has a more dispersed 
arrangement of fiber bundles in the DAN related brain regions 
compared to HC. The location of abnormal fiber bundles related to 

DAN provide a basis for choosing EEG channels containing 
hallucinatory information.

To establish a correlation between abnormal EEG signal and MH, 
we conducted an study on a PD-MH participant who experienced 
hallucinations of being stared at during the experiment. The EEG data 
from this PD-MH participant were unable to differentiate between two 
scenarios (presence or absence of a face) using visual reconstruction 
techniques. In contrast, the EEG data from a HC participant successfully 
distinguished between these two scenarios. This suggests that visual 
reconstruction techniques may offer a means of evaluating hallucinations.

Future research should explore the relationship between MH and 
more complex visual hallucinations. Further analysis of MH could 
potentially facilitate early identification of PD patients who are at risk 
of developing hallucinations.

5 Limitations

In the visual reconstruction experiment, only one subject with 
PD-MH was included due to the challenges associated with obtaining 

FIGURE 4

(A) dorsal medial subsystem network of PD-MH group (B) dorsal medial subsystem network of HC group (C) temporal -medial subsystem network of 
PD-MH group (D) temporal -medial subsystem network of HC group.
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FIGURE 6

(A) dorsolateral superior frontal gyrus-cuneus of PD-MH group (B) suboccipital gyrus-insula of PD-MH group (C) middle temporal gyrus-amygdala of PD-MH 
group (D) dorsolateral superior frontal gyrus-cuneus of HC group. (E) suboccipital gyrus-insula of HC group (F) middle temporal gyrus-amygdala of HC group.

FIGURE 5

DMN subsystem network connection. (A) Dorsal attention network and dorsal medial subsystem. (B) Ventral attention network and dorsomedial 
subsystem. (C) Dorsal attentional network and temporal - medial subsystem. (D) Ventral attention network and temporal - medial subsystem.
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FIGURE 8

Reconstructed images of hallucinating subjects.

FIGURE 7

Real experimental scene of visual reconstruction. (A) Partner in the distance faces the PD-MH subject. (B) Partner in the distance does not face the 
PD-MH subject.

FIGURE 9

Reconstructed images of healthy subjects.
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data on ongoing hallucinations. As a result of several participants’ inability 
to recall the specifics of their hallucinations, their MH characteristics are 
documented as unknown in Table 1. The analysis of different types of MH 
is limited by the small number of patients in each category.
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