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Background: Parkinson’s disease is a neurological disorder that can cause gait

disturbance, leading to mobility issues and falls. Early diagnosis and prediction of

freeze episodes are essential for mitigating symptoms and monitoring the disease.

Objective: This review aims to evaluate the use of artificial intelligence (AI)-

based gait evaluation in diagnosing and managing Parkinson’s disease, and to

explore the potential benefits of this technology for clinical decision-making and

treatment support.

Methods: A thorough review of published literature was conducted to

identify studies, articles, and research related to AI-based gait evaluation in

Parkinson’s disease.

Results: AI-based gait evaluation has shown promise in preventing freeze

episodes, improving diagnosis, and increasing motor independence in patients

with Parkinson’s disease. Its advantages include higher diagnostic accuracy,

continuous monitoring, and personalized therapeutic interventions.

Conclusion: AI-based gait evaluation systems hold great promise for managing

Parkinson’s disease and improving patient outcomes. They offer the potential to

transform clinical decision-making and inform personalized therapies, but further

research is needed to determine their effectiveness and refine their use.

KEYWORDS

Parkinson’s disease (PD), artificial intelligence, freezing of gait, motor evaluation,
machine learning
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GRAPHICAL ABSTRACT 1

For the gait analysis based on AI technology, the data is collected first with the non-wearable or wearable devices. Afterward, the collected data is
preprocessed, including sliding windows, denoising, normalization, etc. Subsequently, features are extracted with multiple methods. Finally, different
classification algorithms are applied for the automatic recognition of FOG prediction, detection, and PD diagnosis and staging. Created with
BioRender.com.

Introduction

Parkinson’s disease (PD) is one of the most frequent
neurodegenerative disorders that presents various life-altering
symptoms, such as upper-limb trembling. The number of people
affected by PD has doubled from 2.5 to 6.1 million between
1990 and 2016 (GBD 2016 Neurology Collaborators, 2019). The
characteristics of advanced stages of PD (the Hoehn and Yahr Scale)
are sever motor or non-motor complications, as well as limited
mobility and decreased independence (Pedersen et al., 2017). The
upper body postures of these patients are flexed, and their mass
center is anteriorly shifted, with a small shuffle of steps, decrease
of walking speed, and increase of gait variability (Hausdorff et al.,
1998; Sofuwa et al., 2005; Baltadjieva et al., 2006; Hausdorff, 2009;
Macht et al., 2010). As PD progresses, locomotion can deteriorate
into freezing of gait (FOG), which is defined as the sensation that
one’s feet are likely glued to the floor and unable to initiate the next
step (Snijders et al., 2008; Macht et al., 2010). Notably, FOG can lead
to poor balance and falls, obviously reducing quality of life (Adkin
et al., 2003; Bloem et al., 2004; Young and Mark Williams, 2015).
Therefore, early diagnosis and intervention of FOG is crucial for
PD patients.

At present, clinical features serve as core basis of PD diagnosis
(Loh et al., 2021). These clinical criteria mainly depend on the
expertise of a neurologist, but are still not perfect with several

limitations. For instance, the diagnostic accuracy of them has
been reported to be slightly above 80% even in a specialist
neurology center, compared to pathological examination (the gold
diagnostic standard for PD) (Rizzo et al., 2016). Furthermore, a
wide shortage of neurologists extends the waiting time for patients
to get identified with PD, especially in countries with a large
aging population and a high prevalence of neurological disorders
(Burton, 2018). In addition, the dopaminergic neurons have been
reportedly lost by 60% at the time of diagnosis (Balestrino and
Schapira, 2020). Accordingly, early diagnosis is the goal of a large
number of global research, to ensure optimal functional outcomes
of PD patients (Loh et al., 2021).

In the last decade, PD pharmacological therapy has made great
progress, yet without curative treatments (Bloem et al., 2021).
Drugs may induce motor complications, including dyskinesia,
and individuals may exhibit motor features of resistance for
levodopa, such as treatment-resistant tremor, swallowing and
speech disorders, and postural instability (Balestrino and Schapira,
2020). In order to overcome the shortcomings of single therapy,
comprehensive guidelines consists of pharmacological treatment,
non-pharmacological treatments, rehabilitation, and psychosocial
supports have been widely applied for PD therapy. Among them,
exercise management has been demonstrated to be able to improve
both motor and non-motor features of PD and is particularly
crucial for current and future treatment of PD (van der Kolk and
King, 2013).
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In recent years, artificial intelligence (AI)-based technologies,
which have produced a marked effect in automated detection
of seizures, atrial fibrillation, or computer-aided diagnosis, are
emerging as one of the most promising way to ameliorate
diagnosis and prognosis of PD (Tran et al., 2019). Besides,
medical tools based on machine learning or deep learning can
utilize PD biomarkers, particularly posture analysis in the gait
cycle, to perform automated detection (Tuncer et al., 2019).
Moreover, AI-based gait evaluation has emerged for predicting
and preventing imminent FOG episodes, contributing to reduced
fall-related injury and fear, and increased independence of PD
patients (Nieuwboer, 2008; Ginis et al., 2018). Occurring FOG
can be overcome by cueing devices based on AI that provide
an external stimulus, including auditory, visual, and tactile;
(Nieuwboer, 2008), for example, wearable sensors have been
used to detect PD symptom to prevent freezes or reduce their
effect using gait monitoring and assistive devices (Pardoel et al.,
2019). Gait management referring to robotic systems is helpful
for patients to maintain independent motor function and walk
ability, improving the quality of life (Perju-Dumbrava et al.,
2022).

Current studies have preliminarily reported the widespread
use and effectiveness of gait evaluation AI-based systems in
PD (Silva de Lima et al., 2017). However, automatic and
reliable methods for clinical practice is far from resolved.
A systematic search was conducted on PubMed and WOS
for studies published before October 2022 using predefined
keywords (“advanced PD,” “AI,” “machine learning,” “Freezing of
Gait,” “deep learning” or “home-based telemedicine”) searching
for studies published until October 2022. The purpose of this
review is to present an up-to-date information and to elaborate
the critical roles of AI-based gait evaluation in the early
diagnosis, prediction, and management of PD (shown in Graphical
abstract). Furthermore, details on the study populations, features
used, and classification methods are also provided to promote
clinical translation. By assessing the current state of the art
and highlighting challenges and limitations, this review also
identify knowledge gaps that need to be filled for future AI-
based technologies, thus improving the quality of PD patients’
lives.

Diagnosing PD with AI-based gait
evaluation

As involuntary motor control is a major characteristic in
PD, an assessment of gait can be utilized for PD diagnosis. In
theory, gait is considered as the walking patterns of a person.
In the case of PD, the disease progresses as the stiffness of
the body and postural instability are increased, resulting in gait
disturbance (di Biase et al., 2020). In this respect, deep learning
models can be trained with the gait features and then used for
the detection of PD. Kinetic and kinematics features are key
features of gait. The former includes ground reaction force, and
the latter includes stance and swing phase of the foot (Xia et al.,
2020).

Methods for FOG detection vary in complexity, and a variety
of models have been used in wearable sensor based on AI

(Maachi et al., 2020). To better distinguish the FOG gait of
a typical PD patient, some features have been attempted to
improve classification performance, such as Fourier transforms,
Moore et al. (2008, 2013); Delval et al. (2010); Zach et al.
(2015); Capecci et al. (2016) freeze index, Moore et al. (2008)
wavelet transforms, Handojoseno et al. (2015); Rezvanian and
Lockhart (2016); Punin et al. (2019) freezing of gait detection
on glasses, Ahn et al. (2017) and the widely used freezing
of gait criterion; (Coste et al., 2014) also, multiple machine-
learning techniques have been applied to improve detection
performance, such as neural networks, Ahn et al. (2017); Camps
et al. (2018) random forests, Tripoliti et al. (2013) nearest
neighbor, Mazilu et al. (2012) decision trees, Mazilu et al. (2016);
Camps et al. (2018) naïve Bayes, Tripoliti et al. (2013) and
support vector machines (SVM) (Ahlrichs et al., 2016; Rodríguez-
Martín et al., 2017a,b; Sama et al., 2017). Apart from that,
unsupervised machine learning and anomaly detection have
also been attempted without extensive exploration (Pham et al.,
2017b).

Decision trees are composed of series of binary selections
which can form branch structures resembling a tree. Currently,
more complex decision trees, such as boosting techniques and
ensembles of trees, have improved the performance in FOG and
PD detection with the sensitivity ranging from 66.25 to 98.35%
while specificity ranging from 66.00 to 99.72% (Tripoliti et al.,
2013; Mazilu et al., 2016; Camps et al., 2018; Pardoel et al., 2019).
SVM is a binary (two class) classifier which trace a plane and
can separate data points from each class, then it can classify new
data points based on their side of the plane. SVMs for FOG
detection have been reported to perform results ranging from 74.7
to 99.73% for sensitivity and 79.0–100% for specificity (Ahlrichs
et al., 2016; Rodríguez-Martín et al., 2017a,b; Sama et al., 2017;
Pardoel et al., 2019). Since freezing and motor symptom manifest
differently in PD for each person, for AI-based gait evaluation,
person-specific models are always reported to outperform person-
independent models (Mazilu et al., 2016; Rodríguez-Martín et al.,
2017b). However, obtaining enough data to develop an individual
model is difficult in clinical practice. Unsupervised learning may
have the powerful ability to address this small dataset problem,
as FOG episodes labeled by experts are not needed for these
methods. Instead that, the classes are defined by clustering
techniques, or the normal class is firstly defined using anomaly
detection approach and then abnormalities that do not conform
to that class, such as FOG, are identified (Mohammadian Rad
et al., 2018). Although unsupervised FOG detection approaches
are appealing, as data labeling is not required, Mohammadian
Rad et al. (2018) have suggested that the performance of
unsupervised models is worse than that of supervised models.
More recently, transfer learning and semi-supervised learning have
been proposed to establish partly personalized FOG detection
approaches without large amounts of data (Torvi et al., 2018).
The former uses a network that has been previously trained
as a base to adapt the model to a new task, and the latter
was trained using both labeled and unlabeled data. Torvi et al.
(2018) used transfer learning to train a neural network based
on group data, and then they added an additional network layer
trained with an individual’s data. By this way, the automatic
and personalized detection has been realized. Some studies have
reported the performance of semi-supervised learning applied to
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FOG detection are ranged from 89.2 to 95.9% in the sensitivity
and 93.1 to 95.6% in the specificity (Mikos et al., 2017; Pardoel
et al., 2019). Advantages of both supervised and unsupervised
learning are combined in semi-supervised learning, indicating
that semi-supervised learning allows person-specific tuning while
preserving the generalization ability from a multiple person data
set. Nevertheless, the value of semi-supervised learning for FOG
detection in patients with PD remains unclear, more studies are
needed to clarify the clinical potential of it for FOG detection in
the future.

Handwriting and speech are also movement-related tests in
PD detection. Micrographia refers to the phenomenon where
the typefaces is smaller than normal due to a reduction in
handwriting, which is a possible symptom in most PD patients
(McLennan et al., 1972). The spiral drawing test is the most
common test used in the literature for PD detection based AI
(Drotár et al., 2016; Pereira et al., 2016). Kamran et al. (2021)
have tested and fine-tuned the transfer learning architectures of
CNN (convolutional neural networks) to differentiate handwritten
drawings of PD from normal individuals, with the model accuracy
of 99.22%. Besides, PD patients may exhibit slurred speech
and lower voice volume (Tjaden, 2008). In two recent studies,
using voice aberration has achieved higher than 99% accuracy
to diagnose PD based on AI technique (Nagasubramanian and
Sankayya, 2020; Goyal et al., 2021). Moreover, Ali et al. (2019)
have proposed a genetically optimized neural network termed
as LDA-NN-GA comprising linear discriminant analysis (LDA)
for dimensionality reduction and genetic algorithm (GA) for
hyperparameters optimization of neural network (NN) which is
used as a predictive model. By using all the extracted features
from the dataset collected by Sakar et al. (2013), the novel
LDA-NN-GA achieved 95% classification accuracy on training
database and 100% on testing database. Furthermore, in order
to obtain unbiased results, the gender dependent features were
eliminated, and the accuracy for training and testing database
were 80 and 82.14%, respectively, indicating that LDA-NN-GA
could well classify PD patients from healthy individuals. The above
findings indicate that AI-based handwriting and speech recognition
has great diagnostic accuracy for PD patients, however, more
clinical studies with large populations are urgent before its clinical
application.

Considering that single modality has certain limitations, multi-
model analysis of PD, not limited to single type of modality,
may be a useful tool for neurologists. By combing three input
signals, including gait, handwriting, and speech, Vasquez-Correa
et al. (2019) reported a CNN model with the accuracy of
97.6% for the diagnosis of patients with PD. In addition, Oung
et al. (2017) have used both motion and speech data as input
signals for PD early detection, and proposed an extreme learning
machine with only one hidden layer in its network, which reached
95.9% classification accuracy and comparable to that obtained by
Vasquez-Correa et al. (2019). Moreover, by introducing appropriate
features deletion or addition, the performance of this proposed
methodology might be strengthened in the furutre. Notably, the
extreme learning machine can randomly select the most optimal
hidden neurons and only needs a single iteration for model
training, leading to a faster training and a less overfitting problem
(Ding et al., 2015). Accordingly, to develop methods dependent on
multiple input signals, instead of single modality for PD detection

should be the focus of future studies, thus shedding light on the
clinical transformation of multi-model analysis for PD patients.
Table 1 has summarized the essential features of the above related
studies.

Predicting FOG with AI-based gait
evaluation

Freezing of gait is frequently encountered in Parkinsonian
disorders, certain studies in recent years have thus made
a great attempt to predict its occurrence and development.
These studies varied in approach and performance and focused
more on understanding the complexity of FOG prediction.
In addition to factors that are considered in FOG detection
studies, such as dataset size, FOG definitions, medication state,
and contextual or study-specific performance metric definitions,
data before freeze onset must be collected to define the pre-
FOG class in FOG prediction studies. In other words, the data
from the pre-FOG class is recognized by a machine-learning
model to typically predict FOG. However, the subtle transition
from walking to FOG makes it difficult to label the start
of pre-FOG, which is a single fixed duration predetermined
to select data prior to the FOG episode and identified from
visual observation. Generally, a pre-FOG segment duration of
1–6 s has been widely accepted in FOG prediction studies
(Handojoseno et al., 2015; Pardoel et al., 2019). For example,
Handojoseno et al. (2015) used a 5 s period and Palmerini et al.
(2017) applied a 2 s period as the pre-FOG segment. Notably,
distinguished from other studies, Mazilu et al. (2015) used an
assumed 3 s period for pre-FOG feature selection and created a
person-specific, anomaly detection model based on multivariate
Gaussian distribution, which could be manually tuned for each
participant.

Despite that, the optimal pre-FOG segment duration is still
not clear at present. There exists a hypothesis that the pre-
FOG segment is a linear degradation of gait resulting in FOG
(Heremans et al., 2013). According to this threshold theory, data
closest to the FOG would resemble freeze, while data farther
from the FOG would represent typical PD walking. For this
reason, when using a two-class classifier to discriminate pre-
FOG from typical PD walking, pre-FOG segment should be short
(Torvi et al., 2018). However, Mazilu et al. (2013b) proposed
that for a three-class classifier composed of FOG, pre-FOG,
and typical PD walking classes, a short segment before FOG
might not be ideal, because it was much difficult to distinguish
between the pre-FOG and FOG classes if pre-FOG segments is
very short. Although a longer pre-FOG segment can improve
the classification of pre-FOG, the accuracy of FOG and typical
walking classification is greatly reduced. Hence, how to determine
the pre-FOG period in a three-class classifier is urgent to balance
the classification accuracy among pre-FOG, FOG and typical
walking. Across different participants or different FOG episodes
for the same individual, the optimal pre-FOG duration varies with
best performance (Mazilu et al., 2013b). In their observational
studies, Mazilu et al. (2015) and Palmerini et al. (2017) also
supported that a single pre-FOG segment duration is inadequate.
Therefore, pre-FOG detection and prediction performance can
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TABLE 1 Diagnosing PD with AI-based gait evaluation.

Sample size Objective Data acquisition Machine learning
algorithms

Outcome variables References

21 PD patients Detecting FOG episodes in PD
patients

A single IMU with three tri-axial sensors:
accelerometer, gyroscope and magnetometer

Tree bagging, AdaBoost,
LogitBoost, RUSBoost,
RobustBoost and SVM

The deep learning model
achieved 90% for the geometric
mean between sensitivity and
specificity

Camps et al., 2018

16 (5 healthy, 5 PD patients with
FOG, and 6 PD patients without
FOG

To detect FOG events in patients
suffering from PD

Wearable sensors (six accelerometers and two
gyroscopes)

Naïve Bayes, Random Forests,
Decision Trees and Random Tree

81.94% sensitivity, 98.74%
specificity, and 96.11% accuracy

Tripoliti et al., 2013

18 PD patients with a history of
FOG

Investigating whether wrist
motions during walking are
correlated with FOG, and
whether wrist-attached wearable
sensors can be used to detect FoG
episodes

Wrist mounted IMUs C4.5 classification models FOG can be detected by using
wrist motion and machine
learning models with a FOG hit
rate of 0.9, and a specificity
between 0.66 and 0.8

Mazilu et al., 2016

20 PD patients (8 patients
presented FOG episodes and 12
did not)

To monitor FOG episodes based
only on acceleration
measurements obtained from a
waist-worn device

Waist-mounted sensor SVM for training or classification Using a linear SVM kernel
provides 98.7% accuracy and a
geometric mean of 96.1%

Ahlrichs et al., 2016

21 PD patients To develop a machine learning
approach to monitor FOG during
the daily life of PD patients

A single tri-axial accelerometer worn at the waist. SVM Enhancement in the specificity
and sensitivity GM of 7.2%.

Rodríguez-Martín et al., 2017b

25 PD patients Designing an IMU, called 9 × 3 to
assess PD symptoms at homes
during long periods

A single waist mounted system A leave-one-patient-out with an
SVM based on a radial basis
function kernel

Exhibiting a sensitivity and
specificity over 80%

Rodríguez-Martín et al., 2017a

15 PD patients Presenting a new methodology to
detect FOG

A single inertial system located at the waist SVM and Logistic regression 91.7% of sensitivity and 87.4% of
specificity, enhancing the results
of former methods between a 5%
and 11% and providing a more
balanced rate of true positives and
true negatives

Sama et al., 2017

/ To study domain adaptation
algorithms to predict FOG
episodes in patients with PD

Daphnet freezing of gait dataset LSTMs, RNNs The LSTM networks
outperformed RNNs, with
accuracy around 80%

Torvi et al., 2018

/ Presenting a method for early
diagnosis of PD using patients
handwriting samples.

Parkinson’s Handwriting Datasets, including
PaHaW, HandPD, NewHandPD and Parkinson’s
Drawings dataset

Transfer learning architectures of
CNN

Achieving PD identification
performance with 99.22%
accuracy

Kamran et al., 2021

/ Using acoustic-based DL
techniques to detect PD
symptoms

Parkinson telemonitoring dataset and
multi-variate sound record dataset

DMVDA System combining
ADNN, ADRNN, and ADCNN

DMVDA produced 3 to 5%
increase than the existing
techniques

Nagasubramanian and Sankayya,
2020
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be improved by a person- or episode-specific pre-FOG duration.
This will be beneficial for reducing the overlap with walking
class and elevating the purity of class containing only pre-FOG
data.

In PD-related studies, neural networks have been frequently
used for FOG prediction based on gait evaluation. They are
inspired by neuron structure in the brain and are composed of
interconnected layers of nodes (Parisi et al., 2019). Compared with
neural networks for FOG detection, prediction performance tended
to slightly worse. Recently, the performance of neural networks
model has been reported to achieve 72.2–99.8% sensitivity and
48.4–99.9% specificity for FOG detection, with sensitivity of up to
86%, specificity of 80.3%, and precision of 89% for FOG prediction
(Handojoseno et al., 2015; Saad et al., 2017; Camps et al., 2018;
Pardoel et al., 2019). CNN, recurrent neural networks (RNN), and
other different subtypes of neural networks have also been widely
used in FOG prediction (Camps et al., 2018; Mohammadian Rad
et al., 2018; Torvi et al., 2018). CNN can identify local patterns
within images but without the requirement of features selection
prior to implementation (Anwar et al., 2018; Yamashita et al.,
2018). They have become popular in numerous FOG detection
studies (Shalin et al., 2020; Filtjens et al., 2021). For instance, a
deep learning based on CNN for FOG detection in PD patients
by using a waist-worn IMU exhibited 91.9% sensitivity and 89.5%
specificity (Camps et al., 2018). RNN utilizes both current inputs
and previous data during classification, thus giving the network
with the ability of “memory” to help recognize sequences (Sak et al.,
2014; Anwar et al., 2018). Since RNN is suitable for time-series
data, it has been employed for the prediction of FOG, especially in
recent years. Torvi et al. (2018) have applied a special type of RNN,
long short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997), to predict FOG, with a reported accuracy of more than
90% for predicting FOG 5 s in advance. In recent years, several
novel and efficient algorithms have been continuously attempted.
Arami et al. (2019) proposed a binary classification by a feature
time series prediction and suggested it as a standard, since a
significant improvement has been demonstrated when comparing
with the conventional three-class prediction model. Another useful
approach, involving plantar pressure data in a 2D-image form
and evaluated by CNN, has been proved accurate to predict the
aforementioned incident (Shalin et al., 2020).

The continued development of FOG prediction systems plays a
critical role in long-term monitoring and real-time cueing, as well
as in implementation in gait-assist systems. While high-performing
methods have been steadily increasing for FOG prediction, there
still some great challenges. The representation of inconsistent
nature of FOG will benefit from a set of diverse characteristics
in both the time and frequency domains. Besides, supplying
an element of personalization upon the established prediction
methods for FOG may be a promising approach for future
research. Furthermore, the sample size of the gait database is
relatively small, and there is an imbalance of gender, age and
stages in the dataset. Notably, the data is always collected with
the patient’s knowledge, which may cause unconscious posture
changes and affect the accuracy of the final data. Therefore, how
to obtain gait information of subjects in their natural state is
very essential for improving the quality of database. Table 2
illustrated these research for predicting FOG with AI-based gait
evaluation.
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TABLE 2 Predicting FOG with AI-based gait evaluation.

Sample size Objective Data acquisition Feature extraction Pre-FOG segment Outcome variables References

16 PD patients with a FOG
history

Evaluating the potential of
Electroencephalography (EEG)
Brain Dynamics in analyzing and
predicting FOG

The EEG was recorded using a
4-channel wireless EEG system
with gold cup electrodes

EEG Linear Univariate
Measurements, EEG Non-Linear
Univariate Measurements, and
EEG Bivariate Measurements

5 s This combination resulted in a
sensitivity of 86.0%, specificity of
74.4%, and accuracy of 80.2%
when predicting episodes of
freezing, outperforming current
accelerometry-based tools for the
prediction of FOG

Handojoseno
et al., 2015

11 PD patients with a FOG
history

Presenting a new approach for
the prediction of FOG (before it
actually happens)

Wearable inertial sensors,
specifically accelerometers and
gyroscopes

Computed from the signals
recorded by the inertial sensors

2 s Demonstrating a degradation of
gait occurring before freezing,
and providing preliminary
evidence on the feasibility of
creating an automatic algorithm
to predict FOG

Palmerini et al.,
2017

18 PD patients Developing an anomaly based
algorithm for predicting gait
freeze from relevant skin
conductance (SC) features

CuPiD multimodal dataset and
Actiwave1 (for ECG collection)

Features were extracted in a
sliding- window manner

3 s Predicting 71.3% from 184 FOG
with an average of 4.2 s before a
freeze episode happened

Mazilu et al.,
2015

/ To develop feature learning for
detection and prediction of FOG
in PD

DAPHNet dataset Supervised Domain- specific
Feature Extraction, Supervised
Feature Extraction of
Time-domain and statistical
features and unsupervised
Feature Learning

1–6 s For different participants or
different FOG episodes for the
same individual, the optimal
pre-FOG duration varies with
best performance

Mazilu et al.,
2013b

21 PD patients who
manifested FOG episodes

To develop a DL for FOG
detection in PD patients

The inertial data were recorded
using a single IMU with three
tri-axial sensors: accelerometer,
gyroscope and magnetometer

MBFA, Online FOG detection,
Four-stage FOG detection and
FOG detection for home
environments

/ The DL based on CNN for FOG
detection in PD patients exhibited
91.9% sensitivity and 89.5%
specificity

Camps et al.,
2018

/ To study the performance of
advanced DL algorithms to
predict FOG events in short time
durations before their occurrence

Daphnet Freezing of Gait dataset LSTM (RNN) 1, 3, 5 s More than 90% for predicting
FOG 5 s in advance

Torvi et al., 2018

/ Presenting a novel technique to
predict FOG in advance-stage PD
using movement data from
wearable sensors

Daphnet dataset A set of time domain and
frequency domain features were
extracted from the 3D
acceleration data

75 different time- and
frequency-domain features were
extracted from the raw
accelerations. Features were
extracted per sensor or per axis

A sensitivity of 93 ± 4%,
specificity of 91 ± 6%, with an
expected prediction horizon of
1.72 s

Arami et al.,
2019

5 PD patients with a FOG
history

To develop a novel method of
FOG prediction with plantar
pressure data treated as 2D
images and classified using a
CNN

Participants walked a predefined
freeze-provoking path up to 30
times for data collection

CNN. MATLAB R2019b 0.5, 1, 1.5, 2, 2.5, 3 s The model detected FOG before
the event, with good results at 0.5,
1.0, and 1.5 s intervals

Shalin et al.,
2020

FOG, freezing of gait; CNN, convolutional neural network; DL, deep learning; MBFA, Moore-Bächlin FOG algorithm; LSTM, long short-term memory.
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AI-based gait management in PD
patients

Maintaining independent motor function and walking
capability is a primary goal of therapy for moderate to advanced
PD patients. Through this personalized approach, patients are
expected to keep independent for as long as possible, delay entering
a worse condition where they are immobilized, and improve their
quality of life. Specifically, muscle strength can be enhanced by
resistance training, and the gait performance will be improved;
(Picelli et al., 2012) shortening of flexor muscles can be reduced
by stretching, thus the abnormally flexed posture will be alleviated
in PD; postural control can be improved by balance exercise
(alone or together with other training modalities), thus decreasing
the falls risk. As a rhythmic motor activity, gait management
is regarded as a specific intervention in physical therapy trials
for PD. Previous studies have shown that improvements in gait
measures, such as step length, cadence, etc., are helpful for postural
control and falls risk reduction (Tomlinson et al., 2013, 2014;
Mehrholz et al., 2015). These enjoyable methods offer the
advantage to favor social engagement for PD patients.

In fact, physical intervention, including gait management,
could not only help motor complications of PD but also facilitate
neuroplasticity and behavior. Studies on animal models of PD
have revealed the mechanism of a dynamic interplay between
degeneration and regeneration, which could be induced by
exercise and learning (Hirsch and Farley, 2009); dopaminergic
and glutamatergic neurotransmission may be linked to activity-
dependent processes, thus modulating cortically driven hyper-
excitability. Fisher et al. (2013) recorded neuroplasticity of
dopaminergic signaling in 4 individuals with early stage PD
when they were practicing a treadmill exercise, and found that
exercise-induced an increase in the dopamine D2 receptor (DA-
D2R), as well as improved postural control in PD patients.
The above findings suggested that exercise is responsible for
the neuroplasticity in dopaminergic signaling and the improved
postural control function in early stage PD. In mild to moderate
PD subjects, learning-dependent gray matter changes in balance
training are correlated with performance improvements shown
in voxel-based morphometry, while the changes induced by
forced exercise were comparable to medication (Beall et al., 2013;
Sehm et al., 2014). Moreover, growing evidence has uncovered
that by physical exercise, neurotransmitters and trophic factors
synthesis are stimulated, and chronic oxidative stress are relieved
as mitochondria biogenesis are increased and autophagy are
enhanced; these neurochemical phenomena are closely associated
with the improvement of neuroplasticity (Monteiro-Junior et al.,
2015). Therefore, exercise management and training may induce
brain plasticity, increased synaptic strength and potentiated
functional circuitry, to improve behavior of PD patients (Petzinger
et al., 2013).

In the past decade, AI-based applications for gait management
and high-performing robotic systems have emerged exclusively
for advanced PD. A pilot study revealed that robot-assisted gait
training is a prospective method to against FOG and improve gait
of PD patients (Lo et al., 2010). Nevertheless, more evaluations of
the long-term effects with a further follow-up are recommended.
Nardo et al. (2014) performed the same therapy sessions as in the

aforementioned study on patients who have underwent deep brain
stimulation (DBS) previously, and suggested that robot-assisted
gait training might be constructive only for space-temporal gait
parameters and motor score, but not for kinetic and kinematic
gait parameters. Although PD patients may benefit from a robotic-
assisted treadmill training, it is still need further investigation
to compare their effects with conventional treadmill training.
Encouragingly, trials on comparison between conventional and
robot-assisted gait training have been started. Picelli et al. (2012)
compared robotic stepper training with physiotherapy with active
joint mobilization, and found a more positive effect of the robotic
training. This statistically significant difference lasted for at least
1 month in favor of the robotic system and indicated the need
for future comparison between robot-assisted gait training and
the same amount of treadmill training or overground walking.
The first study aimed at quantitatively comparing the effects of
robot-assisted gait training (RAGT) in PD and treadmill training
was conducted by Galli et al. (2016), in which gait kinematics
and spatiotemporal parameters were evaluated . The intensive
treadmill therapy group (IG) showed no obvious changes in either
gait profile score (GPS) or gait variable scores (GVSs), whereas
improved gait kinematics were identified, especially in the frontal
plane at the pelvic and hip joint level in subjects undergoing robotic
training. However, to better describe the effects of this training
approach, more studies with a larger number of PD patients, and
the assessment of gait kinematics are needed. Later, Kang et al.
(2019) designed a comparative clinical trial to specifically assess
the effects of robot-assisted gait training (Walkbot-STM). Positive
roles of AI-based applications in gait speed and automaticity were
revealed, as well as in balance function, fall risk, disease severity,
and quality of life. In addition, by monitoring gait automaticity
changes and brain functional network fluctuations, new light was
shed on possible pathways through which these effects occur (Kang
et al., 2019). Nevertheless, this study only carried out in one center
which might not be consistent with other centers, thus various
centers should be included to obtain more general results.

As for self-selected speed gait training, differences between
robot-assisted gait training (Lokomat plus VR) and conventional
gait training overground were not significant in a previous study
(Fundarò et al., 2019). However, Capecci et al. (2019) took walking
speed, endurance, number of FOG episodes, and general attitude
toward the disease into consideration to compare robot-assisted
gait training with treadmill training, and found that the frequency
of daily FOG episodes was significantly decreased in the robot-
assisted group, suggesting the great advantages of robot-assisted
gait training in improving gait and endurance for PD patients. For
a customized use of AI-based applications and robotic systems, as
well as to add benefits to this treatment option, adjustment for body
weight support, guidance force, and other parameter settings are
warranted for future investigations.

Owing to prolonged exercise has been proven beneficial for
motor learning retention, medium to long-term follow-up studies
are valuable. Bevilacqua et al. (2020) enrolled 195 subjects, to
explore the gait and balance improvement in older PD patients
at 2 years following a 5-week rehabilitation. Briefly, all patients
were divided into three groups in which 50-min traditional therapy
programs were followed in the control group. The Tymo system
was used in one technological intervention group, and the Walker
View was applied in another intervention group with a traditional
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rehabilitation session for 30 min together with a robot-assisted
treatment for 20 min. Finally, the evaluation of step length and
asymmetry, walking and functional status, as well as acceptance
of the technology will be employed for the efficacy of this novel
treatment. This clinical trial focused on the utilization of robotic
device, and examined the results both at the end and in the long
term of the treatment, providing an innovative approach for the
rehabilitation of patients with PD.

Another use of movement assessment devices may lie in
differentiating distinct states of pharmacological treatment, such
as under- or over-treatment of levodopa, coupled with gene
expression data from patients diagnosed with PD (Turner et al.,
2016). By these systems, key dysregulated modules could be
identified and drugs that help for restoring homeostasis would
be suggested (Yue et al., 2017). Other sensor-based devices may
identify non-adherence to drug treatment and aid in decreasing
its prevalence (Tucker et al., 2015). Consequently, AI-based gait
evaluation has great potential in automatic management of PD
patients with significant advantages on improving quality of care
and reducing the cost of patients as well as healthcare systems
(Table 3).

Features used in AI-based gait
evaluation in PD

Parkinson’s disease applications have used a variety of features
in detection, prediction, and management, while the majority were
previously proposed in non-PD applications (Caby et al., 2011;
Shany et al., 2012; Howcroft et al., 2016, 2017). In general, K-index,
Lorenzi et al. (2015, 2016); Kita et al. (2017); Suppa et al. (2017)
R-index, Mazzetta et al. (2019) freeze index, Moore et al. (2008) K
freeze index, Pham et al. (2017a) multichannel freeze index, Pham
et al. (2017a) freezing of gait detection on glasses, Ahn et al. (2017)
and the widely used freezing of gait criterion (Coste et al., 2014)
are all custom features created for PD. Maximum acceleration
amplitude within a window and rotation about a single axis are
time domain features that are simply fast to compute (Palmerini
et al., 2017). Gait-based features, including step length, cadence,
and stride duration, are calculated from time domain data, Delval
et al. (2010); Djuriæ-Jovici et al. (2014) as well as statistical features
such as mean, standard deviation, and root mean square (Mazilu
et al., 2016; Rodríguez-Martín et al., 2017a,b; Saad et al., 2017; Sama
et al., 2017). Frequency domain features include peak amplitude
and corresponding frequency, Ahlrichs et al. (2016) spectral density
center of mass, Handojoseno et al. (2015); Sama et al. (2017)
standard deviation in frequency domain, Rodríguez-Martín et al.
(2017b) power of the signal in specific frequency bands, Bachlin
et al. (2010) and freeze index were the most commonly used (Moore
et al., 2008). Due to the limitations of Fourier transform, wavelet
approaches are used more in recent years which are typically used
for signal conversion from time domains to frequency domains
(Rezvanian and Lockhart, 2016).

A wide range of gait manifestations can be better represented
by a feature set, as better performance has been observed in studies
combining time and frequency domains features compared with
either individual type of feature (Handojoseno et al., 2015). Time
domain features account for cadence, asymmetry, step length, peak

limb angular velocity, and other gait parameters; (Delval et al.,
2010) more subtle patterns of FOG, including trembling in specific
frequency bands, however, are extracted by frequency domain
features (Moore et al., 2008). The combined use of multiple features
can always achieve the best performance.

It is of great importance to choose appropriate features for
a real-time system where both classification performance and
classification speed are required. For example, detection of a FOG
episode could be delayed due to the calculated stride duration
of approximately 1 s at the end of the stride. This limitation
may also exist in other features, including cadence, step length,
stride peaks, cadence variation, and freezing of gait criterion,
depending on the method of feature calculation. Capturing features
from windowed data with an appropriate size do not have this
problem, since the calculation can be quickly performed at the
time the data window is available. Calculation delay together with
the step size of the sliding window determine the availability of
features to the classifier. If processing power is sufficient, real-
time applications could utilize almost all window-based features.
However, given a limited computing power, complex features
requiring excessive calculation stages may lead to unacceptable
delays, which always occurs in multiple wearable systems. Although
it is desirable to use a minimal quantity of easily calculated
features, classification performance may become worse if features
are too few or too simple. To balance classification performance
and running speed, implementing feature selection algorithms is
suggested for determination of the optimal features extracted from
a larger set (Mazilu et al., 2015; Palmerini et al., 2017). Relief-
F and related approaches have been reported to be able to rank
features according with their relevance and to eliminate the least
relevant (Saeys et al., 2007). Moreover, other numerous methods
to select features have been reported in the literature to improve
classifier models, such as feature filtering, and other techniques
producing fewer redundant features (Pardoel et al., 2019). Up
to now, the best feature set has yet to be clear. Future studies
may begin with multiple features and using section algorithms
to tune and eliminate features, by which the best set will be
produced.

Limitations and challenges of
AI-based gait evaluation in PD

As well known, the PD diagnosis is mainly reliant on clinical
features. However, current AI-related studies on gait evaluation
have not adopted current diagnosis criteria. Instead, most studies
focused on a single modality rather than multimodal approaches.
This is not useful for clinical practice, due to PD features cannot
be recognized by deep learning models with the same way as by
a human neurologist. For instance, deep learning models detect
PD from vectorized brain images instead of clinical characteristics,
which does not meet the existing diagnosis criteria (Panch et al.,
2019). In addition, the mechanisms behind an AI system, called the
“black box,” are unclear when it performs a given prediction (Lee
et al., 2017; Varghese, 2020). Neurologists are not encouraged to
diagnose PD without concrete evidence. More explainable studies
for future clinical practice are warranted, thus offering a clinically
trusted AI framework.
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TABLE 3 AI-based gait management in PD patients.

Sample size Objective Training system Intervention Analysis Outcome variables References

5 patients with idiopathic
PD

To examine the potential effect of
continuous physical cueing using
RAGT on reducing FOG episodes
and improving gait.

Lokomat (a robot-assisted gait
training system)

Participants received 10 sessions
of robot-assisted body
weight-supported treadmill
training (BWSTT) on the
Lokomat

With FOG-Q, FOG and falls diary,
posture and gait score, gait parameters,
CV, GA, PCI, PDQ-39 and vFOG

Reduction in FOG, and
improvements in gait
velocity, stride length,
rhythmicity, and
coordination

Lo et al., 2010

9 PD patients treated with
DBS

Assessing the effects of a
Robotic-Assisted Rehabilitation
Protocol (RARP) on gait patterns

Lokomat (a robot-assisted gait
training system)

All patients had 45 min session of
Lokomat rehabilitation every day
for 5 weeks

Gait assessment was performed 1 day
before the first training session
(PRE-RARP), and 1 day after the end
of the rehabilitation protocol
(POST-RARP) using an optoelectronic
system with passive markers

Significant improvements on
spatio-temporal gait
parameters, but not
kinematic and kinetic gait
parameters

Nardo et al.,
2014

41 PD patients To compare the walking
improved effect between RAGT
and conventional physiotherapy

Robotic stepper training device
(RST) group and physiotherapy
group

A training program consisting of
twelve 45-min sessions (including
rest periods), 3 days, a week
(Monday, Wednesday, and
Friday) for 4 consecutive weeks

Primary evaluation: 10MWT and the
6MWT. secondary evaluation: The
GAITRite system was used to evaluate
spatio temporal gait parameters

RST group showed improved
walking speed and distance

Picelli et al.,
2012

55 PD patients To compare the effects of
end-effector robotic rehabilitation
locomotor training versus
intensive training with a treadmill

G-EO robot system, and intensive
treadmill therapy

A cycle of outpatient
rehabilitation treatment,
consisting of at least one daily 3-h
cycle

Clinical examination and 3D
quantitative gait analysis at the
beginning (T0) and at the end (T1) of
the treatment

The end-effector robotic
rehabilitation locomotor
training improved gait
kinematics and seems to be
effective for rehabilitation in
patients with mild PD

Galli et al., 2016

44 PD patients Investigating the effects of RAGT
on gait velocity and the
underlying mechanisms

Walkbot-S robot system and
treadmill training

RAGT group will receive gait
training with the Walkbot-S for
12 sessions and treadmill training
group receive gait training on the
treadmill for 12 sessions

10MWT for primary outcome; the
dual-task interference, BBS, TUG test,
KFES-I, NFOG-Q, and MDS-UPDRS
for secondary outcomes

This trial will compare the
effects of RAGT with those of
treadmill training on gait
performance in patients with
PD

Kang et al., 2019

96 PD patients To compare the effects of RAGT
and treadmill training on
endurance and gait capacity in
PD patients

The end-effector robotic device
G-EO system

RAGT and treadmill training
participant completed 20 sessions
(5 days/week for 4 weeks)

6MWT, Timed Up and Go test,
Freezing of Gait Questionnaire,
Unified Parkinson’s disease Rating
Scales and Parkinson’s Disease Quality
of Life Questionnaire-39 administered
before (T0) and after treatment (T1)

With RAGT, endurance and
gait capacity were enhanced
by 18% and 12%, respectively,
and motor symptoms and
quality of life were improved
by 17% and 15%

Capecci et al.,
2019

195 PD patients Evaluating the effectiveness of
robotic-based intervention of the
older adults with PD

Tymo system or Walker View
robot system and a traditional
rehabilitation program

The control group performs
traditional therapy sessions
lasting 50 min. The Tymo system
or Walker View group underwent
30 min of traditional therapy and
20 min with a robotic system

MMSE, RA, SHY, BI, FAC, SF-12,
POMA, FES-I, PIADS, ATDPA, GDS,
CDR and gait analysis and
instrumental postural analysis

Proposing a new approach in
the PD rehabilitation

Bevilacqua
et al., 2020

RAGT, robot-assisted gait training; CV, GA, PCI, Gait Rhythmicity, Asymmetry, and Coordination; PDQ39, Parkinson’s disease questionnaire-39; vFOG, visual FOG; 10MWT, 10-minute walk test; 6MWT, 6-minute walk test; BBS, Berg Balance Scale; TUG, timed up
and go; KFES-I, Korean version of the falls efficacy scale-international; NFOG-Q, new freezing of gait questionnaire; MDS-UPDRS, movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale; MMSE, mini-mental state examination;
RA, Rankin Scale; SHY, Hoehn and Yahr scale; BI, Barthel Index; FAC, functional ambulation categories; SF-12, SF-12 health survey; POMA, performance-oriented mobility assessment; FES-I, falls efficacy scale – international; PIADS, psychosocial impact of assistive
devices scale; ATDPA, assistive device predisposition assessment; GDS, geriatric depression scale 5-items version; CDR, clinical dementia rating scale.
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The medication state of participants (ON and OFF) affects
FOG detection and prediction deeply by altering the motor control,
physical abilities, and especially the gait patterns. More FOG
occurs with smaller shuffling steps in the OFF state than ON
state. If A machine-learning model was trained in an optimal
medication state of a subject, it would perform worse when
the medication wears off and gait changes. Hence, contextual
information about medication state is crucial for PD detection and
prediction research.

For training data, its availability and quality may be limited by
a difficult recruitment of participants and unpredictability of FOG
events. Studies involving machine-learning algorithms may not
adequately validate an AI-based FOG detection method with few
subjects. On the other hand, datasets cannot be guaranteed to be
unbiased even for studies including a large number of participants,
since freeze may occur in some specific participants for many times
during data collection while no FOG occurs in others. In a detection
model proposed by Kwon et al. (2014), only 6 of 20 subjects
froze, leading to a person-biased model that over-represent the
few participants with FOG data. With the prevalence of machine-
learning algorithms, data augmentation techniques and additional
tests with more individuals are required for the development of
models with unbiased data.

Freezing of gait episodes are visually identified and labeled
following data collection as ground truth for detection method
validation. Although FOG has been well defined, the criteria
for determining the beginning and end of a FOG episode was
not identical in different models, which makes between-study
comparison problematic (Bachlin et al., 2010; Palmerini et al., 2017;
Pardoel et al., 2019). Bachlin et al. (2010) and Mazilu et al. (2013a)
have used consistent datasets for input, however, both of them are
fewer than 250 FOG episodes. For deep learning, dataset size may
be a non-negligible issue.

Feature calculation from AI-based device data is typically
performed using data windows. For gait evaluation, window
lengths have been reported to range from 0.2 to 32 s (Kwon et al.,
2014; Punin et al., 2019). Since the output frequency bin resolution
is determined by the number of sample points in the input signal,
long windows with more points are desirable for calculation of
frequency-based features. Nevertheless, long windows will not
permit differentiating within-window short events due to decreased
temporal resolution, and may introduce unwanted lags in data
classification due to slower process. In general, as found in most
studies, 1–4 s windows are preferable (Kwon et al., 2014; Rezvanian
and Lockhart, 2016).

Different performance metrics have been used in FOG
detection, leading to a more difficult comparison among these
methods. For example, a real-time system might emphasize onset
detection of freeze, so every data point or window might be
classified as FOG or no freeze (Bachlin et al., 2010). Contrarily,
a long-term monitoring system evaluates whether the FOG
occurrence has been successfully detected, so each freeze episode
is regarded as a binary event (Rodríguez-Martín et al., 2017a,b).
Experimental procedures and fundamental definitions also varied
among studies, such as specificity calculation with features from
subjects without FOG or exclusion of FOG events which are shorter
than 3 s (Tripoliti et al., 2013; Ahlrichs et al., 2016).

Future studies involving AI-based gait evaluation should detail
study population, including sample size, sex, PD severity or stage,

the number of FOG episodes and the related duration of each
person, as well as medication state. For methods, researchers should
clearly state the FOG labeling criterion and basis for calculating
performance metrics.

Conclusion and perspectives

Gait analysis is involved in quantitative evaluation of walking
parameters in the study of human movement. In recent times,
the development of AI-based techniques has revolutionized the
gait evaluation approaches, which was initially conducted just in
laboratory conditions and relied on multi-camera motion capture
systems with force plates. For example, a variety of wearable
sensors with a light weight have allowed clinicians to collect
indoor and outdoor moving data conveniently, without being
limited by laboratory environments. In addition, the wearable
devices have lower costs and power consumption, making them
suitable for long-term dynamic monitoring of the gait condition
of PD patients. However, this method requires patients to wear
corresponding sensor devices on their limbs, which can to
some extent impair their daily activities. By contrast, the non-
wearable devices can comprehensively access patients information
without wearing any equipment. Nonetheless, it is susceptible to
external interference such as light and surrounding environment
during data collection, and it cannot be tracked and identified
for a long term. Therefore, designing novel devices combing
the advantages of wearable and non-wearable devices is very
necessary in the future. At present, a growing number of AI
based applications have been widely used in PD detection, FOG
prediction, and gait management to minimize the impact of
degenerative condition, relying on their great capability to deal
with large datasets and identify intricate patterns in pathological
gait. A PD suspects can take a video of their walking event and
cycle by using their smartphones for an automatic evaluation
of gait, providing valuable information to confirm a diagnosis.
Furthermore, AI-based gait-assist systems are potential tools
for PD management, which may be beneficial for preventing
freezes and decreasing fall-related injury. Although current models
efficiency has been steadily increased with more and more complex
deep-learning algorithms combined with multiple feature sets,
important challenges remain because of the lack of large freezing
datasets and highly personalized FOG manifestation, thereby
improving gait collection methods and gait analysis methods
are urgently. Built upon the already created methods, adopting
transfer learning and semi-supervised learning models and adding
person-specific elements while preserving model generalization are
promising approaches for future research, which will provide an
intelligent decision-making system for the auxiliary diagnosis and
management of PD patients.
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