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Background: Alzheimer’s disease (AD) diagnosis in its early stages remains 
difficult with current diagnostic approaches. Though tau neurofibrillary tangles 
(NFTs) generally follow the stereotypical pattern described by the Braak staging 
scheme, the network degeneration hypothesis (NDH) has suggested that NFTs 
spread selectively along functional networks of the brain. To evaluate this, 
we implemented a Bayesian workflow to develop hierarchical multinomial logistic 
regression models with increasing levels of complexity of the brain from tau-
PET and structural MRI data to investigate whether it is beneficial to incorporate 
network-level information into an ROI-based predictive model for the presence/
absence of AD.

Methods: This study included data from the Translational Biomarkers in Aging and 
Dementia (TRIAD) longitudinal cohort from McGill University’s Research Centre for 
Studies in Aging (MCSA). Baseline and 1 year follow-up structural MRI and [18F]MK-
6240 tau-PET scans were acquired for 72 cognitive normal (CN), 23 mild cognitive 
impairment (MCI), and 18 Alzheimer’s disease dementia subjects. We constructed 
the four following hierarchical Bayesian models in order of increasing complexity: 
(Model 1) a complete-pooling model with observations, (Model 2) a partial-pooling 
model with observations clustered within ROIs, (Model 3) a partial-pooling model 
with observations clustered within functional networks, and (Model 4) a partial-
pooling model with observations clustered within ROIs that are also clustered within 
functional brain networks. We  then investigated which of the models had better 
predictive performance given tau-PET or structural MRI data as an input, in the form 
of a relative annualized rate of change.

Results: The Bayesian leave-one-out cross-validation (LOO-CV) estimate of the 
expected log pointwise predictive density (ELPD) results indicated that models 

OPEN ACCESS

EDITED BY

Constantino Carlos Reyes-Aldasoro,  
City, University of London, United Kingdom

REVIEWED BY

Miriam Vignando,  
King’s College London, United Kingdom  
Marisa Koini,  
Medical University of Graz, Austria

*CORRESPONDENCE

Clyde J. Belasso  
 clyde.belasso@gmail.com  

Habib Benali  
 habib.benali@concordia.ca

RECEIVED 19 May 2023
ACCEPTED 26 September 2023
PUBLISHED 18 October 2023

CITATION

Belasso CJ, Cai Z, Bezgin G, Pascoal T, 
Stevenson J, Rahmouni N, Tissot C, Lussier F, 
Rosa-Neto P, Soucy J-P, Rivaz H and 
Benali H (2023) Bayesian workflow for the 
investigation of hierarchical classification 
models from tau-PET and structural MRI data 
across the Alzheimer’s disease spectrum.
Front. Aging Neurosci. 15:1225816.
doi: 10.3389/fnagi.2023.1225816

COPYRIGHT

© 2023 Belasso, Cai, Bezgin, Pascoal, 
Stevenson, Rahmouni, Tissot, Lussier, Rosa-
Neto, Soucy, Rivaz and Benali. This is an open-
access article distributed under the terms of 
the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Original Research
PUBLISHED 18 October 2023
DOI 10.3389/fnagi.2023.1225816

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2023.1225816%EF%BB%BF&domain=pdf&date_stamp=2023-10-18
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1225816/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1225816/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1225816/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1225816/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1225816/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1225816/full
mailto:clyde.belasso@gmail.com
mailto:habib.benali@concordia.ca
https://doi.org/10.3389/fnagi.2023.1225816
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2023.1225816


Belasso et al. 10.3389/fnagi.2023.1225816

Frontiers in Aging Neuroscience 02 frontiersin.org

3 and 4 were substantially better than other models for both tau-PET and 
structural MRI inputs. For tau-PET data, model 3 was slightly better than 4 with an 
absolute difference in ELPD of 3.10  ±  1.30. For structural MRI data, model 4 was 
considerably better than other models with an absolute difference in ELPD of 
29.83  ±  7.55 relative to model 3, the second-best model.

Conclusion: Our results suggest that representing the data generating process in 
terms of a hierarchical model that encompasses both ROI-level and network-level 
heterogeneity leads to better predictive ability for both tau-PET and structural 
MRI inputs over all other model iterations.

KEYWORDS

Alzheimer’s disease, Bayesian workflow, classification, hierarchical modeling, 
tau-positron emission tomography (PET), magnetic resonance imaging (MRI)

1. Introduction

Alzheimer’s disease (AD) dementia is a fatal neurodegenerative 
disease that accounts for 60–80% of dementia cases worldwide 
(Boughey and Graff-Radford, 1987; DeTure and Dickson, 2019). The 
progressive nature of the disease makes for deficits in one or more 
cognitive domains to occur beyond what one might be expected to 
incur from normal aging (Boughey and Graff-Radford, 1987). 
Alzheimer’s disease exists on what is known as the “Alzheimer’s 
disease spectrum” (ADS), which is characterized by three distinct 
stages (Yamasaki and Tobimatsu, 2018): (1) The preclinical stage, 
wherein abnormal lesions peculiar to AD pathology appear across the 
brain, but clinical symptoms are not yet present (Dubois et al., 2016; 
Khan, 2018). (2) The mild cognitive impairment (MCI) stage, wherein 
objective memory impairment takes place without impeding a 
person’s daily functioning (Neugroschl and Wang, 2011). (3) The AD 
dementia stage, wherein clinical manifestations of dementia impede a 
person’s ability to function normally and independently. The clinical 
detection and diagnosis of AD occur in its end phase, by which time 
the disease has already taken its course and caused significant brain 
damage (Schultz et al., 2004).

Pathophysiological AD hallmarks such as extracellular amyloid-
beta protein (Aβ) plaques and intracellular aggregation of tau proteins, 
among others, play a role in the onset of AD (Saint-Aubert et al., 2017; 
Kim et al., 2021). In particular, tau proteins form into paired helical 
filaments (PHFs), which ultimately leads to the generation of 
neurofibrillary tangles (NFTs) that disrupt healthy neuronal function 
and contribute to the eventual death of the neuron (Palop et al., 2006; 
Seeley et al., 2009; Wolfe, 2012; Kandel, 2013; Bloom, 2014; Jones et 
al., 2016; Saint-Aubert et  al., 2017; Drzezga, 2018; DeTure and 
Dickson, 2019). NFTs tend to form and propagate in stereotypical 
spatio-temporal patterns, which are defined according to the Braak 
staging scheme (Braak and Braak, 1991; Saint-Aubert et al., 2017; 
DeTure and Dickson, 2019). Throughout the disease, the repeated and 
sustained loss of neurons results in structural changes to the brain, 
wherein we observe shrinkage in the cerebral cortex (gray matter), a 
process known as cerebral atrophy.

The interplay between the NFTs and the ever-changing anatomical 
characteristics of the brain serve as important indices of AD-related 
neurodegeneration. Neuroimaging modalities such as T1-weighted 
magnetic resonance imaging (MRI) and tau positron emission 
tomography (PET) play a central role in capturing and quantifying the 

abovementioned features (Ewers et  al., 2011; Márquez and Yassa, 
2019). MRI and tau PET produce important measures that quantify 
disease progression, and they offer complementary information 
regarding the disease process.

Resting-state functional connectivity studies have led to 
understanding AD pathology from a different spatial scale with 
respect to the brain’s functional and structural organization. 
Functional brain networks are composed of brain regions that exhibit 
correlated fluctuations in their resting state activity, though they may 
be physically distributed in space (van den Heuvel and Hulshoff Pol, 
2010; Seitzman et al., 2019). Recent hypotheses have proposed an 
alternate view to the stereotypical anatomical propagation of 
neuropathological tau in Alzheimer’s disease as suggested by Braak & 
Braak. Indeed, the network degeneration hypothesis (NDH) suggests 
that neurodegenerative disorders, such as Alzheimer’s disease, 
progress along functional networks, ultimately leading to a cascade-
like failure of these networks (Drzezga, 2018)–(Seeley et al., 2009). The 
NDH therefore suggests that tau pathology evolves along functionally 
connected brain regions. This establishes functional networks as 
important structures to take into account in a statistical model of the 
AD neurodegenerative process.

While the Braak staging scheme offers region-wise description of 
tau propagation, the NDH offers a network-wise description of tau 
propagation. Though they may be competing views, they nonetheless 
offer two avenues on how to go about classifying AD stages along the 
spectrum. The clustering of brain regions into overarching functional 
networks gives rise to a hierarchical description of the brain’s 
organization. It becomes evident through the latter description of the 
brain’s organization that interdependencies exist across elements at 
different spatial scales. As such, this provides an opportunity to take a 
consolidative approach to AD classification. That is, to develop 
statistical models that consider both regions of interest (ROI) and 
network-level information. However, undertaking such a task 
necessitates a versatile framework that enables us to construct, 
evaluate, and carry out our investigations in a principled and 
robust manner.

The many advances in the Bayesian approach to data analysis have 
made working with Bayesian models more accessible and efficient. 
Indeed, the advent of powerful sampling algorithms such as 
Hamiltonian Monte Carlo (HMC) and the development of a 
principled methodology known as the Bayesian workflow have greatly 
facilitated probabilistic analysis under the Bayesian paradigm 
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(Betancourt, 2017; Gelman et al., 2020). To this end, we employed a 
hierarchical modeling (partial-pooling) strategy within the Bayesian 
inference framework to investigate whether a statistical classification 
model’s prediction would benefit from having both ROI-level and 
network-level information in its model specification. More specifically, 
we  developed four Bayesian hierarchical multinomial logistic 
regression models, each with increasing levels of complexity in terms 
of describing the data-generating process. We hypothesized that a 
model that incorporated ROI-level and network-level would have a 
better ability to perform classification across diagnostic groups as 
compared to all other competing models. The hierarchical Bayesian 
modeling strategy was employed to represent the underlying 
hierarchical structure of the data and to account for sources of 
heterogeneity inherent to the observed data. Additionally, a 
hierarchical structure profits from the effects of partial pooling. Partial 
pooling enables the sharing of information across clusters and levels 
to improve parameter estimates through a process known as 
shrinkage, a regularization mechanism that is a consequence of the 
hierarchical structure (Gelman, 2014; McElreath, 2020). We assessed 
each model’s out-of-sample predictive ability and goodness of fit using 
the leave-one-out cross-validation and posterior predictive check 
procedures (Gelman et al., 2013; Vehtari et al., 2017).

2. Materials and methods

2.1. Participants

The data for this study was provided by McGill University’s 
Research Centre for Studies in Aging (MCSA). The data set is part of 
the Translational Biomarkers in Aging and Dementia (TRIAD) 
cohort.1 One hundred and thirteen participants were included in the 
data set, of which 72 (26 males, 46 females) were cognitively normal 
(CN), twenty-three (11 males, 12 females) had mild cognitive 
impairments (MCI), and 18 (8 males, 10 females) had AD. Subjects 
had undergone a baseline, and follow-up structural MRI and tau-PET 
scan with the median (inter-quartile range) interval between visits was 
378 days (356–440) and 418 days (360–476) for MRI and tau-PET, 
respectively. The participants undertook detailed cognitive and clinical 
assessments, including the Clinical Dementia Rating (CDR) and 
Mini-Mental State Examination (MMSE) and neuropsychological 
tests for memory, attention, executive function, visuospatial 
processing, psychomotor speed processing and language. Taking into 
account the clinical presentation, physical examination and 
aforementioned tests, a multidisciplinary team, including physicians, 
nurses and neuropsychologists, provided a consensus diagnosis for all 
participants. Cognitively unimpaired individuals showed no objective 
cognitive impairment, had a CDR score of 0, and were asked to report 
any subjective cognitive decline in a questionnaire given during 
screening. Patients with MCI had subjective and objective cognitive 
impairment, relatively preserved activities of daily living, and a CDR 
score of 0.5. Patients with mild-to-moderate sporadic Alzheimer’s 
disease dementia had a CDR score of between 0.5 and 2 and met the 
National Institute on Aging and the Alzheimer’s Association criteria 

1 https://triad.tnl-mcgill.com/

for probable Alzheimer’s disease as determined by a physician. Table 1 
shows a detailed clinical and demographic description of the cohort.

2.2. Image acquisition and preprocessing

PET data were acquired using a Siemens High-Resolution 
Research Tomograph (Therriault et  al., 2020). 18F-MK-6240 was 
selected for in vivo quantification of tau NFTs due to its high affinity 
of binding to pathological tau in clinical AD populations (Therriault 
et al., 2020; Pascoal et al., 2021). Preprocessing was carried out using 
the protocols described in Therriault et al. (2020) and the inferior 
cerebellar gray matter was used as a reference region to generate the 
18F-MK-6240 standardized uptake value ratio (SUVR) images 
(Therriault et al., 2020). Structural MRI data were acquired on a 3T 
Siemens Magnetom using a standard head coil (Therriault et al., 
2021). Preprocessing was carried out using the protocols described 
in Therriault et al. (2021) with cortical thickness measures extracted 
using Freesurfer (v6.0) (Fischl, 2012; Therriault et al., 2021). The 
Desikan-Killiany-Tourville (DKT) and the Freesurfer subcortical 
atlases were used to define the regions of interest (Fischl, 2012; Klein 
and Tourville, 2012). Cortical thickness and SUVR measures were 
extracted for 62 cortical regions defined by the DKT atlas. 
Additionally, SUVR measures were extracted for 14 subcortical 
regions defined by the Freesurfer atlas for a total of 76 ROIs. The 
DKT cortical ROIs were also mapped to the Yeo 7 resting-state 
networks (Thomas Yeo et  al., 2011; Bhagwat et  al., 2021). The 
functional networks Yeo 7 explored the organization of large-scale 
distributed networks in the human cerebral cortex using resting-
state functional connectivity MRI. A clustering approach was 

TABLE 1 Subjects’ demographic information.

Diagnostic group

Demographics AD, 
N =  181

CN, 
N =  721

MCI, 
N =  231

Sex

 F 10 (56%) 46 (64%) 12 (52%)

 M 8 (44%) 26 (36%) 11 (48%)

Age 66 (62, 71) 73 (68, 77) 76 (69, 79)

BORB 27.00 (24.50, 

29.50)

31.00 (30.00, 

31.00)

31.00 (29.00, 

31.00)

Boston 24.00 (15.50, 

27.00)

30.00 (29.00, 

30.00)

28.00 (25.00, 

30.00)

D-KEFS 16 (7, 20) 38 (33, 44) 32 (27, 38)

LMDS 0 (0, 0) 17 (15, 19) 9 (6, 13)

LMIS 2 (0, 4) 18 (15, 20) 13 (8, 15)

MMSE 22.0 (13.0, 23.0) 30.0 (29.0, 30.0) 29.0 (27.0, 29.0)

MOCA 13.0 (4.0, 14.0) 28.0 (26.0, 29.0) 25.0 (23.8, 27.0)

WASI-II 82 (76, 88) 113 (106, 122) 106 (94, 111)

1n (%); Median (IQR).
BORB, Birmingham Object Recognition Battery; Boston, Boston Naming Test; D-KEFS, 
Delis-Kaplan Executive Function System; LMDS, Logical Memory Delayed Score; LMIS, 
Logical Memory Immediate Score; MMSE, Mini Mental State Examination; MoCA, 
Montreal Cognitive Assessment; WASI-II, Wechsler Abbreviated Scale of Intelligence, 
Second Edition.
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employed to identify and replicate networks of functionally coupled 
regions across the cerebral cortex. There are several bordering 
regions belonging to different large-scale networks. Functional 
network parcellations of the cerebral cortex into 7 networks (i.e., 
control, default, dorsal attention, somatomotor, visual, ventral 
attention and limbic networks) were considered in this paper. 
Subcortical ROIs are assumed to be clustered at the network level as 
an additional entity since a well-established mapping of said ROIs 
are not defined. The ROIs feature the Desikan-Killiany-Tourville 
cortical and Freesurfer subcortical ROI labels (1–38), each matched 
with their corresponding Yeo 7 resting-state networks (1–7) for the 
right hemisphere. The assignment of ROIs to Yeo 7 network is 
provided by the parcellation of the Yeo 7 network. The details are 
shown in Table 2.

2.3. Metrics to assess disease progression

For every subject, the annualized rate of change in 18F-MK-6240 
SUVR in each ROI was computed as the difference between the 
follow-up and baseline SUVR uptake values within a given ROI 
divided by the time interval between scans in years (Equation 1):

 

SUVR SUVR

time

Follow up Baseline� �
�

�

�
�

�

�
�

 
(1)

The relative annualized rate of change in 18F-MK-6240 SUVR was 
computed by dividing the annualized rate by the baseline SUVR 
uptake (Equation 2):

 

SUVR SUVR

time SUVR

Follow up Baseline

Baseline

� �
�

�

�
�

�

�
��

�

�
�

�

�
�

1

 
(2)

Similarly, relative annualized rate of change in cortical thickness 
for each ROI was computed as (Equation 3):

 

�
�

�
�Cortical Thickness Cortical Thickness

time

Follow up Baseline��

�
�

�

�
�

�
�

�
�

�

�
�

1

Cortical ThicknessBaseline  
(3)

The minus sign in front equation 3 was added to help interpret the 
metric more intuitively. A positive rate indicates more cortical 
thinning, whereas a negative rate indicates cortical growth.

2.4. Bayesian hierarchical models

The Bayesian inference and modeling paradigm are used to fit a 
probability model to a data set and explicitly quantify uncertainty 
about parameters of interest through probability distributions 
(Gelman et  al., 2013). Given that the task was classification for 
multiple classes, it was fitting to implement a multinomial regression 
model. Let us begin by providing some definitions to the multinomial 
likelihood function (Equation 4):

 
yi ij� � � � �Multinomial likelihood�

 
� �ij i

jy j� �� �p |

where

 
� � �j j

k

K

k
j
kx� � � �

�

� �� � � ��0

1

4linear model ( )

where yi is a response variable for the ith  observation that follows 
a multinomial likelihood and can take on a given nominal value from 
the set of categorical outcomes j J� �� �1 2, , , . We let π ij denote the 
probability that the ith  observation will fall into the jth  category 
conditional on the underlying linear propensity of the jth  outcome. β0 
is the intercept parameter and k  denotes the index of the K  predictor 
variables xk and their corresponding slope parameters βk in the linear 
model. Superscripted terms in between round brackets indicate their 
association to the jth  categorical outcome and to reduce confusion with 
other subscripts in the linear model. Furthermore, the softmax function, 
a generalization of the logistic function, is used as the inverse link 
function to map the linear model to the outcome scale (Equation 5):

 
� �ij J

j� � �� �� �
softmax

where
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j
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5

The equation states that the probability of the ith  observation 
falling in the jth  category is the obtained by exponentiating the linear 
propensity of the jth  outcome and normalizing it by the sum of 
exponentiated linear propensities across the set of all possible 
categorical outcomes (Barry, 2011).

Before fitting the models, we normalized the relative annualized 
SUVR and cortical thickness rates to keep the range of inputs between 
−1 and 1. The latter normalization further enabled us to set priors 
more easily within the models. The brms package (Version 2.17.0) in 
R (Version 4.2.1) was used to specify the models, prior predictive 
simulations, and generate samples from their posterior distributions 
via Hamiltonian Monte Carlo (HMC), an efficient Markov chain 
Monte Carlo (MCMC) sampling method (Bürkner, 2017). Results 
were based on running four parallel chains with 2000 total iterations 
per chain, including 1,000 warmup (burn-in) iterations, for a total of 
4,000 post-warmup draws. To validate our choice of priors for the 
parameters of each model, we conducted a prior predictive simulation. 
We manually tuned the values of the priors to ensure an objective 
output distribution. The result of the prior predictive simulation for 
model 1 can been seen in Figure 1, illustrating the desirable qualities 
that were also exhibited by all other subsequent model simulations 
once their respective priors were tuned.
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TABLE 2 Desikan-Killiany-Tourville cortical and Freesurfer subcortical ROI labels (1–38) present in the data set as well as their correspondence to the 
Yeo 7 resting-state networks (1–7) for the right hemisphere.

Yeo 7 Network Braak stage

Subcortical (SUBC)

[1] Hippocampus (HIPP) – Stage 2

[3] Amygdala (AMYG) – Stage 3

[4] Thalamus Proper (THALP) –

[5] Caudate (CAUD) –

[6] Putamen (PUT) –

[7] Pallidum (PAL) –

[8] Accumbens Area (ACUM) –

Temporal Lobe (TEMP)

[2] Entorhinal (ENT) [5] Limbic (LIM) Stage 1

[12] Fusiform (FUS) [1] Visual (VIS) Stage 3

[14] Inferior Temporal (IT) [5] Limbic (LIM) Stage 4

[20] Middle Temporal (MT) [7] Default Mode (DM) Stage 4

[21] Parahippocampal (PARH) [7] Default Mode (DM) Stage 3

[35] Superior Temporal (ST) [2] Somatomotor (SOM) Stage 5

[37] Transverse Temporal (TT) [2] Somatomotor (SOM) Stage 3

Cingulate Cortex (CING)

[9] Caudal Anterior Cingulate (CAC) [4] Salience/Ventral Attention (SAL) Stage 4

[15] Isthmus Cingulate (ISTC) [7] Default Mode (DM) Stage 4

[28] Posterior Cingulate (PC) [7] Default Mode (DM) Stage 4

[31] Rostral Anterior Cingulate (RAC) [7] Default Mode (DM) Stage 4

[38] Insula (INS) [4] Salience/Ventral Attention (SAL) Stage 4

Frontal Lobe (FRNT)

[10] Caudal Middle Frontal (CMF) [6] Control (CTL) Stage 5

[17] Lateral Orbitofrontal (LORB) [5] Limbic (LIM) Stage 5

[19] Medial Orbitofrontal (MORB) [5] Limbic (LIM) Stage 5

[22] Paracentral (PARC) [2] Somatomotor (SOM) Stage 6

[23] Pars Opercularis (POPE) [4] Salience/Ventral Attention (SAL) Stage 5

[24] Pars Orbitalis (PORB) [7] Default Mode (DM) Stage 5

[25] Pars Triangularis (PTRI) [7] Default Mode (DM) Stage 5

[29] Precentral (PREC) [2] Somatomotor (SOM) Stage 6

[32] Rostral Middle Frontal (RMF) [6] Control (CTL) Stage 5

[33] Superior Frontal (SF) [7] Default Mode (DM) Stage 5

Occipital Lobe (OCC)

[11] Cuneus (CUN) [1] Visual (VIS) Stage 6

[16] Lateral Occipital (LOCC) [1] Visual (VIS) Stage 5

[18] Lingual (LIN) [1] Visual (VIS) Stage 3

[26] Pericalcarine (PCAL) [1] Visual (VIS) Stage 6

Parietal Lobe (PAR)

[13] Inferior Parietal (INFP) [7] Default Mode (DM) Stage 5

[27] Postcentral (PSTS) [2] Somatomotor (SOM) Stage 6

[30] Precuneus (PCUN) [7] Default Mode (DM) Stage 5

[34] Superior Parietal (SP) [3] Dorsal Attention (DA) Stage 5

[36] Supramarginal (SMAR) [4] Salience/Ventral Attention (SAL) Stage 5

The abbreviation for each label is also shown. Although omitted from the table, left hemisphere mappings are identical, with the cortical and subcortical ROI labels ranging from (39–76). 
Moreover, ROI correspondence to a given Braak stage is also shown.
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2.4.1. Hierarchical Bayesian model #1: complete 
pooling model

Model 1 is the most basic model wherein we assume that all data 
points stem from a single overarching data distribution. The 
mathematical description of model 1 is as follows (Equation 6):
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The input to the model is either the tau-PET rates or cortical 
thickness rates. The multinomial model requires a categorical 
reference outcome, and as such, the CN category was designated as 
the reference category. All parameters in the model require the 
specification of a prior distribution. The Gaussian prior was assigned 
to both the intercept and slope parameters since it properly reflects 

our state of knowledge regarding the regression parameters: they will 
lie within a plausible range of values consistent with our understanding 
of the pathophysiological process of the disease. In other words, 
assuming the parameters have finite variance warrants the use of the 
Gaussian distribution, as it represents the most objective and 
conservative probability distribution consistent with our partial 
scientific knowledge of our parameters (McElreath, 2020).

2.4.2. Hierarchical Bayesian model #2: 
observations within ROIs

Model 2 implements a hierarchical structure at a basic level. In 
this model, subjects’ observations are clustered within ROIs. Each 
ROI’s distributional parameters are assumed to come from an 
overarching probability distribution. The mathematical description of 
model 2 is as follows (Equation 7):

FIGURE 1

Prior predictive simulation for model 1 using relative annualized SUVR as input. The x-axis of the plot indicates the probability of being classified in a 
particular diagnostic group. The distributions are color coded according to the corresponding diagnostic group, where the green, red, and blue colors 
represent the AD, MCI, and CN diagnostic groups, respectively.
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In model 2, both the intercept and slope parameters within the 
linear MCI and AD linear models are indexed by a subscript u  in 
square brackets. This notation emphasizes that the inputs (relative 
annualized SUVR or cortical thickness) to the model are labeled 
according to their membership of a particular ROI. In the case of 
SUVR data, u  ranges from 1 to 76. In the case of cortical thickness 
data, u  ranges from 1 to 62. Next, the priors at the ROI level are 
described by Gaussian distributions specified by parameters as 
input arguments. This follows from the assumption that 
observations are mutually representative of the clusters they are 
grouped in (in this case, a given ROI). The group-level parameters 
are also estimated and given a set of priors. Since the group-level 
parameters are described by a Gaussian distribution, there needs 
to be a specification of the prior for both the mean and the standard 
deviation. These group-level priors are specified in the four last 
lines of Equation 7. The group-level prior for the standard 
deviation is chosen to be a Half-Normal distribution since variance 
is constrained to be  positive. Although choices such as the 
exponential distribution are also common as a choice of prior, the 
Half-Normal was chosen due to its gradual decay rate compared to 
the exponential distribution.

2.4.3. Hierarchical Bayesian model #3: 
observations within functional networks

In this model, subjects’ observations are clustered within 
networks. Each network’s distributional parameters are assumed to 
come from an overarching probability distribution. Similar to model 
2’s subscript notation, the subscript v indicates membership of a 
particular network. The mathematical description of model 3 is as 
follows (Equation 8):

In the case of SUVR data, v ranges from 1 to 8. As was previously 
mentioned, subcortical ROIs are assumed to be  clustered at the 
network level as an additional entity. In the case of cortical thickness 
data, u  ranges from 1 to 7.

2.4.4. Hierarchical Bayesian model #4: 
observations within ROIs, within functional 
networks

Model 4 implements the complete hierarchical description of 
the data-generating process. In this model, subjects’ observations 
are clustered within ROIs that are also clustered within functional 
networks. As such, the distributional parameters of each ROI are 
assumed to come from a specific overarching network distribution, 
which in turn is assumed to come from an overarching distribution 
for all networks. The mathematical description of model 4 is 

described below in an alternate but equivalent form for simplicity 
(Equation 9):

The level 4 model can be  seen as the level 3 model, with an 
additional ROI-level intercept parameter 

�
0

net v roi u� � � �

� �
,

j  and ROI-level slope 

parameter �1
net v roi u� � � �

� �
,

j
. The indexing subscripts indicate that ROIs are 

specific to a given network. As such, these parameters describe 
ROI-specific deviations within a given network and are assigned a set 
of priors.

2.5. Model evaluation and comparison

2.5.1. Posterior predictive checks
A method used to assess model adequacy and the fit of the model 

to the data is the posterior predictive check (PPC) (Vehtari et al., 
2017). The idea behind the PPC is the following: if a model adequately 
represents the underlying data generating process, then it should 
be able to generate data that resemble the initial data observations 
(Gelman et al., 2013). To conduct a PPC, we first select a model fit to 
the data. We  then draw many replications (e.g., 1,000) from the 
parameters in the fitted model to create simulated data sets whose size 
is equal to that of the observed data set. We then visually compare the 
observed data set and the replicated data sets and make an assessment 
of any discrepancies. Any major discrepancies between the simulated 
data and the observed data indicate potential model misspecification 
(Gelman et al., 2013). The posterior predictive checks for all four 
models were performed for both relative annualized SUVR and 
cortical thickness rates inputs.

2.5.2. Leave-one-out cross-validation
Another evaluation criteria to assess model adequacy as well as 

predictive performance is leave-one-out cross-validation. In essence, it is 
a method used to determine how well a model generalizes to new data. 
Cross-validation is a well-known strategy to estimate a given model’s 
out-of-sample predictive accuracy. At times, we may not have new data 
to use as an input to a model. However, it is possible to partition the 
initial data set into a set with which we train and fit the model and use 
the remaining data to evaluate model performance. Bayesian evaluation 
techniques utilize leave-one-out cross-validation (LOO-CV), wherein 
the training set contains all but one of the samples and the remaining 
point is used as a test set (Gelman et al., 2013). All four models’ cross 
validation scores were assessed for both relative annualized SUVR and 
cortical thickness rates inputs. Models were then ranked from worst to 
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best in terms of the Bayesian estimate of the leave-one-out expected log 
point-wise predictive density (elpdloo) value.

2.6. Posterior predictions

Given a fitted model, posterior predictions can be made given a 
set of input data. Though posterior predictions could be performed 
using each model, we chose to perform the predictions using the 
winning model determined from the results of the evaluation and 
comparison steps. We simulated predictions for relative annualized 
SUVR and cortical thickness rate inputs. We selected the inputs to 
range between the observed minimum and maximum relative 
annualized rates of SUVR and cortical thickness across the entire data 
set, respectively. The range is between −0.42 and 0.71 for tau-PET, and 
between −0.26 and 0.23 for cortical thickness.

2.7. Data and code availability statements

The data used in this study (see text footnote 1) was provided by 
the McGill University’s Research Centre for Studies in Aging (MCSA) 
and is available upon reasonable request to the corresponding authors. 
The corresponding R code for brms models is available upon 
reasonable request to the corresponding author.

3. Results

3.1. Prior predictive simulation

The results of the prior predictive simulation of model 1 using 
relative annualized SUVR as an input is shown in Figure  1. The 
distributions of the prior predictive simulation for model 1 shows that 
all three diagnostic groups are centered around 0.33 with minimal 
spread. This means that the prior implies fairness being classified into 
any of the three diagnostic outcomes. In other words, in the absence 
of any evidence (the data observations), the priors of the model treat 
all outcomes as equally likely. As such, our model does not show any 
bias or preference to any one diagnostic group a priori. As was 
mentioned previously, similar simulations were conducted for all 
other hierarchical models to ensure that the models did not have any 
a priori bias of classification toward a particular diagnostic group.

3.2. Model diagnostics

All models were successfully fit with no reported divergent 
transitions from the brms diagnostics. The results indicate the models 
were properly parametrized and that the HMC chains had successfully 
explored the target distribution, which is further validated by an 
R


 < 1.05 asserting the chains’ convergence (Betancourt, 2017; Gelman 
et  al., 2020). Moreover, the diagnostics for Pareto smoothed 
importance sampling (PSIS) for leave-one-out cross-validation 
showed that all Pareto shape parameter k estimates are good (k < 0.5), 
indicating that the elpdloo  was estimated with high accuracy. 
Moreover, the Monte-Carlo standard error (MCSE) assessing the 
computational accuracy of the Markov-Chain Monte-Carlo and 

importance sampling used to compute the elpdloowas between 0.0 and 
0.1 across all models (Vehtari et al., 2015; Gabry et al., 2019).

3.3. Posterior predictive checks

Posterior predictive checks were performed for all models. The 
PPCs for models 3 and 4 seem to have a better ability to replicate the 
initial data better than models 1 and 2. Between the models 3 and 4, 
model 4 seems to be able to best generate data that resemble the initial 
data observations. This is shown by model 4’s simulated replications 
having the tightest spread around the center of the observed data for 
both relative annualized SUVR and cortical thickness rate inputs, as 
compared to the other models’ PPC plots. The posterior predictive 
checks for all four models for both tau-PET and cortical thickness 
predictors (referred to as tau and MRI for brevity) are shown in 
Figures 2, 3, respectively. For both figures, the orange lines depict the 
observed data while the blue lines indicate the posterior 
predictive replications.

3.4. Leave-one-out cross-validation

The leave-one-out cross-validation results indicate that models 3 
and 4, models that both incorporate network level information, 
outperform models 1 and 2 for tau-PET and cortical thickness inputs. 
Model 3 is the best model for tau-PET inputs while model 4 is the best 
model for cortical thickness inputs. The results for all models given 
either the relative annualized SUVR or cortical thickness rates are 
displayed in Table 3. The table displays the out-of-sample performance 
for each model relative to model with the lowest elpdloo value (third 
column) that is placed at the first row for each of the inputs. As such, 
the difference in elpd (first column) and difference in standard error 
(second column) are displayed relative to the model with the lowest 
elpdloo  value for each input. The fourth column shows the standard 
error of the elpdloo value for each model.

3.5. Posterior predictions

Model 4 posterior probabilities for the pericalcarine cortex within 
the left and right hemispheres are displayed in Figures 4, 5, respectively, 
revealing laterality in prediction between hemispheres. The top panel of 
the plots shows the posterior probabilities of the region being classified 
into a particular diagnostic group for a range of relative annualized 
cortical thickness rates. The solid curve represents the mean posterior 
probability with the uncertainty in prediction shown by 60 and 89% 
credible intervals around the mean prediction. The bottom panel shows 
the distribution of the data observations for each diagnostic group in 
the form of a box plot overlaid with a jitter plot. Moreover, Figure 5 
illustrates the posterior probabilities for regions in the visual network 
(also labeled according to their corresponding Braak stage) within the 
right brain hemisphere for a range of relative annualized SUVR rates. 
Mean posterior probabilities as well as the uncertainty around the mean 
are also shown for each diagnostic group prediction curve. In both 
figures, the horizontal dashed line shows the points along the y-axis 
where the probability corresponds to 33%. The vertical dashed line 
shows the point along the x-axis where the input is 0.
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4. Discussion

4.1. Model evaluation, comparison, and 
selection

Using the Bayesian hierarchical modeling strategy and the 
Bayesian workflow, we  aimed to assess whether a model that 

included both network-level and ROI-level information would 
improve diagnostic classification performance. Following the 
Bayesian workflow strategy, we took an iterative model building 
approach to develop four statistical models with increasing 
complexity to be able to modularly encapsulate the underlying 
data-generating process as well. Moreover, by taking an iterative 
approach to model building, we  are able to understand the 

FIGURE 2

Posterior predictive checks for models 1–4 with relative annualized SUVR as the predictor. The orange line represents the observed data for each 
diagnostic group, whereas the blue lines represent the posterior predictive replications.

FIGURE 3

Posterior predictive checks for models 1–4 with relative annualized cortical thickness as the predictor. The orange line represents the observed data for 
each diagnostic group, whereas the blue lines represent the posterior predictive replications.
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implications of each model at each stage (Gelman et al., 2020). 
For instance, given that model 1 is a completely pooled model, it 
assumes that all data points stem from a single underlying data 
distribution thereby suppressing any sources of variation specific 
to particular clusters at various levels within the data hierarchy. 
As such, a single slope and intercept parameter is estimated and 
applied globally to all data points. As a result, the model is 
underfit and any residual error is attributed to measurement 
noise rather than known sources of variation within the data 
(Gelman and Hill, 2006). Though models 2 and 3 explicitly model 
sources of heterogeneity in the data through the specification of 
a hierarchical structure, they nonetheless lack the ability to 
perform predictions at both the ROI and network levels 
simultaneously, as is the case with model 4. Given that model 4 
describes the underlying data generating process in a more 

detailed manner, it benefits from a richer mutual sharing of 
information across all levels of the model.

We performed posterior checks as well as utilized out-of-sample 
predictive performance methods to help compare and evaluate the 
models and ultimately pick the winning model for each input. 
Referring to Figures 2, 3, we can notice how the PPC plots for models 
3 and 4 seem to have an overall better fit to the data for both tau-PET 
and cortical thickness inputs, as compared to the PPC plots of models 
1 and 2. The PPC plot of model 1 displays the highest amount of 
discrepancy, which is expected given that it is a very basic model that 
does not take into account the many interdependencies that the 
partially-pooled models do. The PPC plots for model 3 and 4 show 
that the simulated replications are increasingly tightly spread around 
the observed data. Though this visual assessment can serve as a sanity 
check with regard to the modeling decisions made at every model 

FIGURE 4

Model 4 posterior predictions with prediction uncertainty for the pericalcarine cortex in the left hemisphere of the brain given relative annualized 
cortical thickness rates as an input.

TABLE 3 Leave-one-out cross-validation results for all four statistical models given either the relative annualized SUVR (top half of table) or cortical 
thickness (bottom half of table) rates.

elpd_diff se_diff elpd_loo se_elpd_loo

Tau-PET Models

Model 3 (Network only) 0.000000 0.000000 −7542.332 60.51120

Model 4 (Network & ROI) −3.834226 1.303660 −7546.166 60.53048

Model 2 (ROI only) −151.583124 10.910374 −7693.915 58.34978

Model 1 (Complete-pooling) −209.893005 23.797981 −7752.225 40.27197

Cortical Thickness Models

Model 4 (Network & ROI) 0.000000 0.000000 −6247.263 51.25579

Model 3 (Network only) −29.832498 7.554926 −6277.096 51.02425

Model 2 (ROI only) −79.467189 4.115720 −6326.731 49.94705

Model 1 (Complete-pooling) −188.390642 19.481006 −6435.654 33.98546

The first two columns express the difference in elpd as well as standard error relative to the model will the lowest elpdloo value (third column). The fourth column shows the standard error of 
the elpdloo value for each model.
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iteration, we nevertheless need to use an evaluation method that can 
help us objectively determine a winning model.

Leave-one-out cross-validation results were used to select the 
best model for each input. Given that it is hard to compare 
models based on their nominal elpd and standard error values, 
we take the difference between the two models and look at the 
difference of their elpd (elpd diff ) as well as the standard error 
(se diff ). When comparing multiple models to one another, 
we compare every other model to the best fitting model according 
to the cross-validation results. By computing the difference in 
standard error between two models, we implicitly assume that the 
sampling distribution of the difference of elpd is asymptotically 
normal. As a rule of thumb, a difference in standard error less 
than four indicates that two models have comparable predictive 
ability (Sivula et al., 2020).

Referring to Table 3, we see that model 4 is deemed the best 
model for cortical thickness inputs. This assurance comes with the 
fact that all other models have a value of standard error difference 
greater than four and large elpd differences from model 4. As for 
tau-PET inputs, the cross-validation results indicate that model 3 
is the best. However, we can notice that model 4 marginally trails 
behind model 3 by a very small difference in elpd and standard 
error with the difference in standard error not bring greater than 
four. Though the ranking of models was based on the nominal 
elpd values, we still opt for model 4 over model 3 for tau. The 
reason is that model 4 allows us to perform predictions at both the 
ROI and network levels, whereas model 3 can only perform 
network-level predictions. Furthermore, model 4 describes the 
underlying data generating process in its most complete form, 
where observations are clustered into ROIs that are subsequently 
clustered into networks. We regard model 4 to be the best model 
for both tau-PET and cortical thickness inputs, and confirm that 
models constructed with both network-level and ROI-level 
information improve prediction performance.

4.2. Model posterior predictions

4.2.1. Laterality of predictions
As model 4 was chosen as the best model for both tau and cortical 

thickness predictors, we  proceeded to using it to perform posterior 
predictions. Numerous peculiarities were observed from the predictions. 
Referring to Figures 2, 3, we see that the prediction curves of the left and 
right hemispheres for the pericalcarine cortex are not in agreement with 
one another. In particular, we notice a decreasing trend in the CN curve 
for the left hemisphere as the rate of cortical thinning increases. In 
contrast, there is an increasing trend in the AD curve as the rate of 
cortical thinning increases. On the other hand, the right hemisphere 
does not exhibit the same behavior. The right hemisphere shows a flat-
like trend for both CN and AD prediction curves across the range of 
inputs. We refer to this phenomenon as a leftward-biased lateralization 
in prediction. Hemispheric asymmetry and lateralization of structure 
and function in the brain are commonplace in humans and asymmetries 
can certainly be present in the course of diseases such as AD (Minkova 
et al., 2017). Moreover, some studies have shown the left hemisphere to 
be  particularly vulnerable in AD and have also reported cortical 
thickness reductions in areas such as the pericalcarine cortex (Thompson 
et al., 2001; Yang et al., 2019; Lubben et al., 2021). We also observed a 
pattern of leftward-biased laterality across the salience network. The 
salience and default mode networks are two networks that are known to 
sustain damage from AD (He et al., 2014). Though laterality was not 
explicitly modeled, it is interesting to observe such patterns emerge in 
the posterior predictions at both the ROI and network levels.

4.2.2. ROI prediction heterogeneity within 
functional networks

Observations were made on the tau-PET predictions across ROIs 
within the left and right hemisphere and their relationship with the Braak 
staging scheme. Referring to Figure 6, we observe a sub-pattern as we go 
from the entorhinal cortex (stage 1 region) to the medial and lateral 

FIGURE 5

Model 4 posterior predictions with prediction uncertainty for the pericalcarine cortex in the right hemisphere of the brain given relative annualized 
cortical thickness rates as an input.
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orbitofrontal cortices (stage 5 regions). In both hemispheres (but more so 
in the left hemisphere), we notice an increase in the mean probability of 
AD, and an increase in specificity for distinguishing it from other 
diagnostic classes for higher rates of tau SUVR increases as we move 
further away (in terms of Braak stages) from the entorhinal cortex. The 
reason for this growing departure in mean AD prediction relative to the 
entorhinal cortex can be explained by the fact that all other regions within 
the limbic network are late-stage Braak regions. The entorhinal cortex 
being a region affected by AD at an early stage may not incur as much 
change in tau-SUVR from 1 year as it will likely have a reached a plateau 
earlier on. Tau-SUVR accumulation in late-stage regions within the limbic 
system have likely not yet plateaued and will have more room to 
experience a larger swing in tau-SUVR from 1 year to the next. Given that 
a larger relative annualized rate of change would be expected for late-stage 
regions, we  suspect that this feature is for this reason a clearer 
discriminator between AD and non-AD classes at the higher range of 
inputs. More notably, though tau propagation may certainly occur along 
certain functional networks, the prediction curves display region-specific 
progression patterns. Although ROIs may be clustered into functional 
networks, the network as a whole does not progress homogeneously. In 
other words, ROIs within a particular functional network are not all 
affected simultaneously.

4.3. Limitations and perspectives

One of the limitations of this work was the imbalance in the size 
of data across diagnostic groups. Though Bayesian methods are well 
suited to handle small data sets, it would nevertheless be beneficial to 
have a larger number of subjects in both the MCI and AD groups. 
Within the Bayesian framework, this would inevitably lead to better 
inferences for the parameters of the statistical model and better 
quantification of the uncertainty in model predictions due to a more 
representative data set.

Another extension of this study could be to develop a model with 
a different likelihood function to perform classification. Though 
we used a multinomial logistic regression for our work, we could also 
treat the underlying diagnostic groups as ordered instead of 
unordered. The underlying ordering of diagnostic groups would give 
rise to an ordinal or ordered probit regression, where we  would 
employ a thresholded cumulative normal distribution as the inverse-
link function (Barry, 2011).

While we only assessed the advantages of incorporating ROI and 
network hierarchical structure into classification using a multinomial 
logistic regression, it is plausible that this hierarchical regularization 
could prove beneficial for other classification models in the context of 
AD research, especially considering the variability among the cohort. 
Our primary objective is to compare model performance across 
different hierarchical structures. As a result, we opted not to delve into 
potential clinical applications, for instance, exploring associations 
between specific network patterns and AD characteristics. Such 
interpretations of the model require further investigation.

Aging effects may potentially influence the prediction accuracy. 
In this study, we  simply assumed a linear aging effect which can 
be addressed when computing the annual rate changes of the measure 
of interest. If focusing on the main message of this study, which 
highlights the benefits of the hierarchical structure in the prediction 
model, we believe that these advantages likely persist as long as the 
measurements across brain regions are not entirely being 
homogeneous or heterogeneous. Nonetheless, upcoming research 
should explore the value of this hierarchical structure when 
incorporating a specific aging effect modeled in the prediction.

5. Conclusion

In this work, we  aimed to investigate whether a statistical 
classification model for diagnosing AD could benefit from integrating 

FIGURE 6

Model 4 posterior predictions with prediction uncertainty for ROIs within the limbic network within the right brain hemisphere with relative annualized 
SUVR rates as an input. The plots are ordered by increasing Braak stages.
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information at the ROI level and network level in its model 
specification. The underlying hypothesis was motivated by both the 
Braak staging scheme and the network degeneration hypothesis. The 
former describes an ROI-based neurodegeneration pattern while the 
latter suggests a network-based neurodegeneration pattern. 
We developed four statistical models using a hierarchical approach 
within the Bayesian framework to best incorporate the various levels 
of heterogeneity present in the data. We applied a modular modeling 
technique, where models were built with increasing levels of 
complexity. Leave-one-out cross-validation was used to assess out-of-
sample model prediction, whereas posterior predictive checks were 
used to assess the model’s goodness of fit to the observed data. It was 
then determined that the model that incorporated both ROI-level and 
network-level information was the best, thus allowing us to confirm 
our initial investigation hypotheses. In addition to the latter, 
we observed patterns of physiological interest while performing model 
predictions. The first pattern was that of laterality, mainly exhibited for 
cortical thickness inputs. We observed how regions within a particular 
network differed in their predictions in the case of tau-PET inputs. This 
suggested that though the disease may globally affect functional 
networks, the regions that comprise a given network display their own 
patterns of heterogeneity and progression.
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