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Background: Little research exists on how individual risk factors for Alzheimer’s 
disease (AD) affect the intermediate phenotype after transcranial direct current 
stimulation (tDCS), despite the importance of precision medicine-based 
therapeutic approaches.

Objective: To determine how an application of sequential tDCS (2  mA/day, left 
dorsolateral prefrontal cortex, 10 sessions) affects changes in white matter (WM) 
microstructure integrity in 63 mild cognitive impairment (MCI) patients with 
effect modifiers such as Aβ deposition, APOE ε4 carrier status, BDNF Val66Met 
polymorphism status, and sex.

Methods: We examined individual effect modifier-by-tDCS interactions and 
multiple effect modifiers-by-tDCS interactions for diffusion metrics. We  also 
evaluated the association between baseline Aβ deposition and changes in WM 
microstructure integrity following tDCS.

Results: We found that APOE ε4 carrier status and sex had a significant interaction 
with tDCS, resulting in increased fractional anisotropy (FA) in the right uncinate 
fasciculus (UF) after stimulation. Additionally, we  observed multiple effect 
modifiers-by-tDCS interactions on WM integrity of the right UF, leading to a more 
pronounced increase in FA values in APOE ε4 carriers and females with Val66 
homozygotes. Finally, baseline Aβ deposition was positively associated with a 
difference in FA of the left cingulum in the hippocampal area, which showed a 
positive association with the changes in the score for delayed memory.

Conclusion: Our study shows the differential impact of individual AD risk 
factors on changes in the early intermediate phenotype after sequential tDCS 
in MCI patients. This research emphasizes the importance of precision medicine 
approaches in tDCS for the prodromal stages of AD.
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Introduction

Alzheimer’s disease (AD) is a representative neurodegenerative 
disorder characterized by the deposition of amyloid beta (Aβ) and tau 
proteins, leading to impairment of cognitive function and the ability 
to perform daily activities (Scheltens et  al., 2016). Mild cognitive 
impairment (MCI) is a prodromal stage of AD and approximately 
10–15% of patients with MCI have been reported to convert to 
dementia each year (Gauthier et al., 2006). Despite the high risk of 
progression to dementia, treatment options for MCI are limited. 
Although several drugs have been investigated in clinical trials, their 
efficacy in delaying or preventing progression to dementia is modest 
and uncertain (Anderson et al., 2017). Therapeutic approaches such 
as cognitive intervention (Jean et  al., 2010), physical exercise 
(Lautenschlager et  al., 2010), and dietary modification have 
demonstrated some promising outcomes in terms of changes in 
cognitive function and biomarkers (Singh et  al., 2014). However, 
further research is required to establish these interventions as effective 
strategies for preventing AD. Additionally, the complexity of these 
interventions can make them challenging for individuals with MCI to 
implement and maintain consistently (Coley et al., 2019), highlighting 
the need for a simple, fixed intervention that can be sustained over a 
specific period. In this regard, there is currently a need for alternative 
interventions that are accessible to individuals with MCI and can 
improve cognitive function and mitigate neurodegenerative changes. 
An interest in non-invasive brain stimulation treatment methods is 
also increasing, and in particular, transcranial direct current 
stimulation (tDCS), which is highly accessible in terms of cost and 
portability, is proposed as one of the appropriate treatment options for 
MCI (Liu et al., 2017). tDCS modulates the excitability of cortical 
neurons depending on the current flow direction and has synaptic 
after-effects through long-term potentiation (LTP), affecting 
neuroplasticity (Nitsche et al., 2003). It is also suggested to normalize 
brain function in patients with AD and facilitate the clearance of Aβ 
by modulating the integrity of the brain–blood barrier (Meinzer et al., 
2015; Shin et al., 2020). Previous studies have shown that cognitive 
function can be improved through single or multi-session tDCS in 
patients with AD and MCI (Lu et al., 2019; Manenti et al., 2020). 
Moreover, long-term application of this technique is expected to 
modulate disease progression (Im et al., 2019; Yang et al., 2019).

Among intermediate phenotypes related to AD, changes in white 
matter microstructure have been demonstrated to occur earlier in 
dementia than changes in brain function, making it a useful early 
warning sign for the development of the disease (Zhang et al., 2009). 
Additionally, advanced imaging techniques, such as diffusion tensor 
imaging (DTI), can be  used to quantify white matter assessment, 
allowing for more precise and objective measurement of changes over 
time (Le Bihan and Johansen-Berg, 2012). Patients with MCI have 
shown a reduced fractional anisotropy (FA) value, which reflects white 
matter integrity, in multiple posterior white matter regions, as well as 
in frontal, temporal, parietal, and occipital white matter and 

association fibers compared to normal subjects (Medina et al., 2006). 
Moreover, lower FA values of the splenium of corpus callosum and 
crus of fornix have accurately differentiated between amnestic MCI 
patients and control subjects (Medina et al., 2006). Furthermore, the 
deterioration of white matter microstructure has predicted a more 
rapid transition to MCI in cognitively intact older adults (Shafer et al., 
2022). Additionally, prior research has indicated that the white matter 
microstructure changes in a non-linear manner as the clinical 
phenotype progresses and the extent of Aβ deposition increases (Dong 
et  al., 2020; Pereira et  al., 2021). In this regard, a connection to 
compensatory mechanisms has been proposed (Raghavan et al., 2021).

Despite the clinical evidence of white matter microstructure as an 
intermediate phenotype in the prodromal AD phase, few studies have 
examined changes in white matter microstructure after tDCS in MCI 
patients. In other vascular and neurodegenerative diseases, previous 
studies have shown that FA values increase in the frontal lobe after 
tDCS application in stroke patients with memory impairment (Hua 
et al., 2022). The white matter integrity of ventral language pathways 
has also predicted letter accuracy in primary progressive aphasia after 
tDCS application (Zhao et al., 2021).

Precision medicine, which involves personalized strategies based 
on an individual’s genetic, biomarker, and clinical profile, has gained 
traction as a promising approach in the management of AD (Isaacson 
et al., 2018). It can help optimize tDCS treatment response and lead to 
more effective and efficient AD management by considering individual 
AD risk factors. Aβ deposition has been shown to affect the rate of 
cognitive decline and intermediate phenotype of brain structure and 
function, as well as the risk of transitioning to dementia in patients 
with MCI (Lukiw et al., 2020). In addition, APOE ε4 allele has been 
shown to affect the likelihood and severity of the Aβ pathophysiological 
cascade and is responsible for the greatest proportion of genetic risk 
factors for sporadic AD (Harrison et  al., 2020). Brain-derived 
neurotrophic factor (BDNF) is a protein that impacts the growth and 
maintenance of neurons and has been known to play an important role 
in LTP-like neuroplasticity induced by tDCS (Chaieb et al., 2014). 
Previous studies have shown that its levels are decreased in AD (Ng 
et al., 2019). Moreover, research has suggested that BDNF Val66Met 
polymorphisms may modulate the risk of AD by affecting BDNF levels 
(Du et al., 2018). In regard to sex, research suggests that there are 
distinct differences in the clinical and intermediate phenotype patterns 
of males and females with AD (Ferretti et al., 2018). Specifically, studies 
have shown that females with MCI and dementia tend to experience a 
more rapid cognitive decline and brain atrophy after diagnosis (Ferretti 
et al., 2018). However, there have been few studies examining the 
impact of tDCS treatment based on individual AD risk factors, which 
would allow for more precise medical treatment strategies using tDCS 
in the prodromal stage of AD. In our previous pilot study in MCI 
patients, we  have found that brain functional integration and 
segregation parameters differ after sequential tDCS to the left 
dorsolateral prefrontal cortex (DLPFC) depending on Aβ deposition 
and APOE ε4 carrier status (Kang et al., 2021). The BDNF Val66Met 
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polymorphism has been reported to have a duration-dependent effect 
on tDCS-induced motor cortex plasticity in older adults (Puri et al., 
2015). However, other studies have exhibited inconsistent results on 
the impact of BDNF Val66Met polymorphism on cortical excitability 
(Antal et al., 2010; Teo et al., 2014). Regarding sex, previous research 
has reported a differential impact of tDCS on practice-related executive 
function in older adults, with higher current density observed in 
female older adults (Fehring et al., 2021). Therefore, it is worthwhile to 
investigate how the impact of tDCS on white matter microstructure 
integrity in the AD prodromal phase is modified by representative 
individual AD risk factors as effect modifiers.

In this context, we aimed to evaluate whether a 2-week application 
of sequential tDCS alters white matter microstructure integrity in 
patients with MCI and whether it depends on effect modifiers 
consisting of individual risk factors for AD. Furthermore, for white 
matter microstructure tracts that exhibit a significant association with 
baseline Aβ deposition, we assessed the correlation with the differences 
in cognitive function scores to elucidate the nature of the alteration.

Materials and methods

Participants

Participants were recruited through paper postings at the Brain 
Health Center, Yeoui-do St. Mary’s Hospital, College of Medicine, the 
Catholic University of Korea, Republic of Korea. Inclusion criteria 
included the following: (1) participants who met Peterson’s criteria for 
MCI (Petersen, 2004); (2) a Clinical Dementia Rating (CDR) score of 
0.5. Potential participants were excluded for the following: (1) a history 
of alcoholism, drug abuse, head trauma, or psychiatric disorders; (2) 
taking any psychotropic medications (e.g., cholinesterase inhibitors, 
antidepressants, benzodiazepines, and antipsychotics); (3) 
contraindications to receiving tDCS or undergoing a MRI scan 
(ferromagnetic or coiled metal implants); (4) any skin disorder that 
compromised skin integrity over the scalp. The assessment process for 
inclusion and exclusion criteria was conducted by two geriatric 
psychiatrists. All potential participants consented to medical chart 
reviews. Additionally, all assessments were performed at the Brain 
Health Center, Yeoui-do St. Mary’s Hospital, College of Medicine, the 
Catholic University of Korea, Republic of Korea. Study procedures were 
conducted in accordance with the Declaration of Helsinki and was 
approved by the Institutional Review Board of the Catholic University 
of Korea (SC19DEST0012). Informed and written consent was 
obtained from all participants. This study is registered with the Clinical 
Research Information Service of Korea Disease Control and Prevention 
Agency (KCT0006020). The study was conducted from May 2020 to 
February 2022, and all on-site study procedures were performed at the 
Brain Health Center, Yeoui-do St. Mary’s Hospital, College of Medicine, 
the Catholic University of Korea, Republic of Korea. The investigators 
have no ethical or financial conflict of interests with respect to the 
manufacturers of any of the equipment used in the study.

Study protocol

This study was conducted as a single-arm prospective trial, without 
the use of a sham condition. In this study, patients received 10 tDCS 

sessions at the patient’s residence (five times per week for 2 weeks, 
totaling 10 sessions). We selected 10 sessions based on the results of 
previous clinical studies that used 10 sessions of tDCS to treat patients 
with AD and MCI (Cotelli et al., 2014; Khedr et al., 2014; Manenti et al., 
2016; Roncero et al., 2017). We also considered the treatment adherence 
of older patients. The participants were assessed with a 
neuropsychological battery and underwent MRI scanning within 
2 weeks before the first tDCS session and after the 10th session at the 
Brain Health Center of Yeouido St. Mary’s Hospital. Subjects also 
underwent [18F] flutemetamol (FMM) positron emission tomography–
computed tomography (PET-CT), as well as APOE, and BDNF 
genotyping within 4 weeks before the first tDCS session. We  have 
assessed side effects using the Udvalg for Kliniske Undersogelser side-
effect rating scale at the end of each session (Lambert et al., 2003). In 
addition, participants and the psychologists who performed the 
neuropsychological battery were blinded to the results of amyloid-PET, 
APOE, and BDNF genotyping. Figure 1 displays a schematic diagram 
that illustrates the experimental procedures.

Transcranial direct current stimulation 
application

A constant direct current (2 mA, 20 min) was administered by an 
MRI-compatible stimulator (YDS-301 N, YBrain, Seoul, Republic of 
Korea). The anode was attached over the left DLPFC (F3  in the 
International 10/20 electroencephalogram system). The cathode was 
positioned over the right supraorbital region. The electrodes touched 
a saline-soaked sponge (disk type, radius = 3 cm) placed on the scalp. 
The staff skilled in the use of the device visited the patient’s residence 
for each stimulus session to guide device application. To ensure that the 
electrodes were placed in the same location throughout the 10 
stimulation sessions per participant, the staff used the international 
10/20 electroencephalogram system, as well as electrode center 
locations relative to anatomical landmarks (nasion, inion, left and right 
preauricular points and vertex) identified on the participants’ faces and 
heads. A vertex is defined as the intersection of the line connecting the 
nasion and inion and the line connecting both preauricular points. 
Position one end of a tape measure starting at one preauricular point 
and passing through the center of the electrode and note the 
intersection of that line with the line from the vertex to nasion. We also 
recorded the distance from the bilateral preauricular point to the center 
of the electrode and checked its position and distance to landmarks 
before the start of each session. Finally, to ensure the accuracy of the 
positioning, the staff double-checked the position of the electrodes 
15 min after the start of the session. Additionally, the staff for each 
participant was kept unchanged throughout the 10 sessions.

Neuropsychological assessment

Cognitive function was assessed in all subjects using the Korean 
version of the Consortium to Establish a Registry for AD (CERAD-K; 
Lee et  al., 2002). The measurements included assessments of the 
Korean version of the verbal fluency (VF) test, the 15-item Boston 
Naming Test, Mini-Mental State Examination (MMSE-K; Park, 1989), 
word list memory (WLM), word list recall (WLR), word list 
recognition (WLRc), constructional praxis, and constructional recall. 
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In addition, total memory (TM) scores were obtained by summing the 
respective scores from the WLM, WLR, and WLRc tests. The total 
CERAD-K scores were calculated by summing all subcategory scores, 
excluding the MMSE-K and constructional recall cores. Higher Trail 
Making Test B scores indicate lower executive function. Details 
regarding the use of specific tests and the reviewing process are 
described in the Supplementary Material.

Processing procedures of the DTI images

The procedures for magnetic resonance imaging acquisition are 
described in the Supplementary Material. The data was preprocessed 
using Statistical Parametric Mapping 12 (SPM12)1 running on 
MATLAB version 2018b, the PANDA toolbox,2 and the FMRIB 
software library v6.0.3 The main procedure of PANDA includes (1) 
preprocessing; (2) producing diffusion metrics. The workflow of 
preprocessing includes five steps: (1) estimating the brain mask; (2) 
cropping the raw images; (3) correcting for the eddy-current effect; 
(4) averaging multiple acquisitions; and (5) calculating diffusion 
tensor (DT) metrics. We used FA, mean diffusivity (MD), and RD 
(radial diffusivity) as the DT metrics. Then, the images of the 
diffusion metrics were normalized to the MNI standard space for 
further analysis. For diffusion metrics images with voxel size of 
1.0 × 1.0 × 1.0 mm3 in the standard space, the regional averages were 
calculated according to prior white matter tract atlas (WM probtract 
atlas). This atlas comprises 20 regions, which are identified 
probabilistically by averaging the results of running deterministic 
tractography on 28 normal subjects (Hua et al., 2008). The WM 
probtract atlas includes the following WM tracts; (1) anterior 
thalamic radiation; (2) cingulum in the cingulate cortex area; (3) 
cingulum in the hippocampal area; (4) corticospinal tract; (5) 
forceps major; (6) forceps minor; (7) inferior fronto-occipital 
fasciculus; (8) superior longitudinal fasciculus (SLF); (9) the 
temporal projection of the SLF; (10) inferior longitudinal fasciculus; 
(11) uncinate fasciculus (UF). We obtained statistics result files for 
each WM tract in the left and right hemisphere (excluding forceps 
major and minor). These files contain several diffusion measures, 

1 https://www.fil.ion.ucl.ac.uk/spm/software/spm12

2 https://www.nitrc.org/projects/panda/

3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

including FA, MD, and RD. Each DT metric reflects a different 
aspect of white matter integrity (Mori and Zhang, 2006). (1) FA: This 
parameter represents the degree of anisotropy or directionality of 
water molecule diffusion within a voxel. Higher FA values usually 
signify greater directionality and are indicative of better white matter 
microstructure integrity; (2) MD: MD is a measure of the overall 
magnitude of water diffusion, irrespective of direction, within a 
voxel. Higher MD values typically indicate increased overall water 
movement, which can be  suggestive of less dense white matter, 
potential injury, or degradation; (3) RD: RD is a measure of water 
diffusion perpendicular to the principal direction of diffusion. RD 
is often considered as a potential index of myelin integrity, with 
higher RD values interpreted as representing potential 
demyelination. Details regarding the main procedure of PANDA are 
described in the previous study (Cui et al., 2013).

APOE genotyping

The procedures for APOE genotyping are described in the 
Supplementary Material. Considering the protective effect of APOE 
ε2 allele (Li et al., 2020), we excluded participants with the APOE ε2 
allele. If a participant had at least one APOE ε4 allele, they were 
categorized as an APOE ε4 carrier; if they had no APOE ε4 allele, they 
were categorized as an APOE ε4 non-carrier.

BDNF genotyping

The procedures for BDNF genotyping are described in the 
Supplementary Material. For BDNF Val66Met polymorphism 
(rs6265), the genotype groups were divided into Met66 allele carrier 
and Met66 allele non-carrier (Val66 homozygote) groups according 
to previous genetic studies on this genotype (Carballedo et al., 2012; 
Han et al., 2015). If a participant had at least one Met66 allele, they 
were categorized as a Met carrier; if they had no Met66 allele, they 
were categorized as a Met non-carrier.

SUVR calculation

Information on PET scanners and the procedures for [18F]-FMM 
PET image acquisition and processing are described in the 

FIGURE 1

Schematic diagram showing timeline of experimental procedures. FMM, flutemetamol; BDNF, Brain-derived neurotrophic factor.
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Supplementary Material. The semi-quantification of [18F] FMM 
uptake on PET/CT scan was performed by obtaining the standardized 
uptake value ratios (SUVRs). The volumes of interest (VOIs) were 
restricted to gray matter, covering the frontal, superior parietal, 
lateral temporal, anterior, and posterior cingulate cortex/precuneus 
regions. These VOIs are known to be preferentially affected by Aβ 
deposition in the early stages of AD (Thal et al., 2002) and were also 
considered in a previous study (Thurfjell et al., 2014). The reference 
region for SUVR calculations was pons. The pons does not typically 
show significant Aβ deposits even in later stages of AD (Thal et al., 
2002) and has been utilized as a reference area for SUVR 
measurements (Landau et al., 2014). The mean uptake counts of each 
VOIs and reference region were measured on the preprocessed 
image. A regional SUVR was calculated as the ratio of each cortical 
regional mean count to the pons mean count (SUVRPONS). The global 
cortical average (composite SUVR) was calculated by averaging 
regional cortical SUVRs weighted for size. We used a cut-off of 0.62 
for “positive” versus ‘negative’ neocortical SUVR, consistent with the 
cut-off values used in a previous [18F] FMM PET study (Thurfjell 
et al., 2014). PET scans classified with negative Aβ accumulation also 
exhibited normal visual reading.

Statistical analysis

Statistical analyzes were performed using R software (version 
2.15.3), jamovi (version 1.6.23),4 and SPM 12. Assumptions of 
normality were tested for continuous variables using the Kolmogorov–
Smirnov test in R software; all data demonstrated a normal distribution 
and were standardized by z-score transformation for the analysis.

Repeated-measures ANOVA was used to predict the impact of 
effect modifier-by-tDCS interaction (effect modifier*tDCS) for 
diffusion metrics (i.e., FA, MD, and RD), with tDCS (pre- and post-
tDCS) as repeated-measures factor and APOE ε4 carrier status, 
BDNF Val66Met polymorphism status, and sex as the between-
subject factor (effect modifier), with covariates of age, years of 
education, and global [18F] FMM SUVRPONS. Using four between-
subject factors did not allow for a suitable repeated-measures 
ANOVA. To address this issue, we evaluated Aβ deposition using 
global [18F] FMM SUVRPONS, which provides a continuous variable 
for Aβ deposition. This allowed us to reduce the number of between-
subject factors. We  examined not only individual effect 
modifier*tDCS interaction, but also multiple effect modifiers*tDCS 
interaction (effect modifier1*effect modifier2*tDCS) for diffusion 
metrics. With respect to Aβ deposition, we evaluated global [18F] 
FMM SUVRPONS*tDCS interaction.

In addition, partial correlation analysis was performed to 
evaluate the association between baseline [18F] FMM SUVRPONS and 
differences in diffusion metrics (i.e., FA, MD, and RD), adjusting for 
age, sex, education years, APOE ε4 carrier, and BDNF Val66Met 
polymorphism status. For the differences in diffusion metrics of WM 
probtract atlas displaying a significant association with [18F] FMM 
SUVRPONS, we  evaluated a relationship with a difference in 

4 https://www.jamovi.org

neuropsychological performances by partial correlation analysis, 
adjusting for age, sex, education years, Aβ deposition, APOE ε4 
carrier, and BDNF Val66Met polymorphism status. Furthermore, 
we explored the association between baseline [18F] FMM SUVRPONS 
and differences in diffusion metrics in each subgroup stratified by AD 
risk factors, adjusting for age, education years, and AD risk factors 
except for Aβ deposition, and the other AD risk factors we used to 
stratify subgroups. For the differences in diffusion metrics of WM 
probtract atlas displaying a significant association with [18F] FMM 
SUVRPONS in each subgroup, we also examined an association with a 
difference in neuropsychological performances by partial correlation 
analysis, adjusting for age, education years, and AD risk factors 
except for the risk factors we used to stratify subgroups. All statistical 
analyzes used a two-tailed p-value <0.05 to define statistical 
significance. For the results of partial correlation analyzes in 
subgroups stratified by AD risk factors, a p-value <0.01 was 
considered statistically significant given the small sample size.

Results

Baseline demographic and clinical data

A total of 70 participants who met the inclusion and exclusion 
criteria were enrolled. Seven participants dropped out of the study due 
to refusal (N = 6) and a tDCS-related adverse event (N = 1, tingling 
under the electrode). Sixty-three subjects completed the study and 
were included in the analysis (Figure 2). Table 1 shows the baseline 
demographic data for the participants who completed the study.

Changes in white-matter microstructure 
integrity according to effect modifiers

We observed several important interactions in our study. First, a 
significant interaction was found between APOE ε4 carrier status and 
tDCS, manifesting as increased FA in the right UF (Rt. UF) of the 
APOE ε4 carriers (p = 0.01; Figure  3A). Moreover, a sex*tDCS 
interaction was also identified, which was shown by an increased FA 
in the Rt. UF of female participants (p = 0.019; Figure  3B). 
Interestingly, our study revealed a BDNF polymorphism*tDCS 
interaction. This was evidenced by decreased MD and RD in the left 
cingulum of the cingulate cortex and increased MD in the Rt. UF of 
the Met non-carriers (MD in Lt. cingulum of the cingulate cortex, 
p = 0.024; RD in Lt. cingulum of the cingulate cortex, p = 0.027; MD 
in Rt. UF, p = 0.038; Figure 3C).

Regarding multiple effect modifiers, our results showed a BDNF 
polymorphism*APOE ε4 carrier status*tDCS interaction, this was 
seen as increased FA in Rt. UF of Met non-carriers with APOE ε4 
carrier status (p < 0.001; Figure  3D). Furthermore, a BDNF 
polymorphism*Sex*tDCS interaction was found, contributing to 
increased FA in Rt. UF of female participants with Met non-carrier 
status (p < 0.001; Figure 3D).

Despite these significant findings, no interaction between Aβ 
deposition and tDCS was observed for any of the diffusion metrics of 
each WM tract. A table containing all statistical comparisons shown 
in Figure 3 can be found in the Supplementary Results.
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Association between baseline Aβ 
deposition and changes in white matter 
microstructure integrity

Concerning the relationship of difference in diffusion metrics with 
baseline Aβ deposition, there was a positive association in difference 
in FA of Lt. cingulum in the hippocampal area (Figure 4A; r = 0.282, 
r2 = 0.08, p = 0.034), which showed a positive relationship with a 
difference in CERAD-K WLR (Figure 4B; r = 0.28, r2 = 0.08, p = 0.037). 
Additionally, we found a positive association between Aβ deposition 
and the difference in FA of the left cingulum in the hippocampal area, 
which was observed not only in the overall group but also in APOE ε4 
carriers (r = 0.518, r2 = 0.268, p = 0.007). Table showing the association 
between Aβ deposition and changes in white matter microstructural 
integrity in APOE ε4 carrier is provided in the Supplementary Results. 
However, for the difference in FA of this track of interest, there was not 
a significant association with a difference in neuropsychological 
performances in the APOE ε4 carriers. In subgroups excluding APOE 
ε4 carriers, we could not identify a significant association between 
baseline Aβ deposition and differences in diffusion metrics.

Safety and tolerability

Among the enrolled 70 participants, one subject complained of 
tingling under the anode in the 4th session and withdrew informed 
consent (Figure  2). After dropping out, the subject reported 
improvement in tingling and recovered.

Discussion

The present study was designed to investigate how the effect of 
2 weeks of tDCS on white matter microstructural integrity in MCI 
patients varies according to an effect modifier composed of individual 
factors of AD, including Aβ deposition, APOE ε4 carrier status, BDNF 
Val66Met polymorphism status, and sex.

This study found a significant interaction between AD risk factors 
and tDCS for white matter microstructural integrity in tracts at risk 
for AD. The interaction between APOE ε4 carrier status and tDCS was 
attributed to increased FA in Rt. UF of APOE ε4 carriers after 
sequential tDCS sessions. The UF is a white matter tract involved in 
cognitive functions such as episodic memory and language (Von Der 
Heide et al., 2013), and previous studies have shown that FA levels in 
the UF decrease with the progression of AD (Liu et al., 2011; Qin et al., 
2021). APOE ε4 carrier status has been found to differentially affect 
the integrity of white matter microstructure depending on age and 
severity of AD (Kljajevic et al., 2014), inducing better integrity of the 
UF compared with APOE ε4 non-carrier without a family history of 
AD (Adluru et al., 2014). However, there is a paucity of research on 
the effects of tDCS on white matter integrity at any stage of AD, 
including MCI, and there is also a lack of research on potential 
interactions with effect modifiers such as APOE ε4 carrier status. 
Taken together, the increased white matter microstructural integrity 
of the UF observed in APOE ε4 carriers after 10 sessions of sequential 
tDCS may reflect a compensatory mechanism for AD progression. 
However, given that white matter integrity is an intermediate 
phenotype for AD progression, further work is needed to clarify that 

FIGURE 2

The flowchart of the study.
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changes in this metric are compensatory for the cognitive and 
functional deterioration. Given that the transition from MCI to AD 
takes 4–5 years (Vermunt et al., 2019), it is important to assess the 
impact of long-term changes in white matter microstructural integrity 
on changes in cognitive function and the risk of transition from 
MCI to AD.

In the present study, sequential tDCS led to increased FA in the 
Rt. UF of female subjects due to the sex*tDCS interaction. This may 
be due to the fact that white matter microstructure deterioration in 
females begins later and progresses more gradually than in males 
(Toschi et al., 2020), and older females receive a higher intensity of 
tDCS current at the target site compared to males, which may be due 
to the age-dependent sex difference in tDCS current intensity resulting 
from cerebral atrophy (Bhattacharjee et al., 2022).

The BDNF Val66Met polymorphism status of participants in the 
research interacted with the tDCS application, resulting in increased 
MD in the Rt. UF and decreased MD and RD in the Lt. cingulum of 
the cingulate cortex of the Met non-carriers after sequential tDCS. The 
BDNF has been shown to affect white matter microstructure by 

modulating myelinogenesis (Du et al., 2003), but its impact varies 
depending on factors such as age and type of tract (Voineskos et al., 
2011; Tost et  al., 2013). A previous study found that the BDNF 
Val66Met polymorphism interacts with age to affect white matter 
microstructure, particularly in corticocortical association tracts and 
late-myelinating fiber tracts in the brain, suggesting that older Val66 
homozygotes may be more susceptible to changes in white matter 
microstructure (Voineskos et al., 2011). However, in the present study, 
the Rt. UF and Lt. cingulum of the cingulate cortex showed differential 
changes after tDCS application in Val66 homozygotes, despite both 
being the latest-myelinated fibers. Furthermore, changes in the 
microstructural integrity of the Rt. UF were found to be different 
between APOE ε4 carriers and older Val66 homozygotes, although 
both groups are susceptible to AD. Relative to APOE ε4 carrier status, 
the BDNF Val66Met polymorphism has shown inconsistent effects on 
white matter integrity, with both increased and decreased FA and RD 
reported in different brain tracts (Soliman et al., 2010; Chiang et al., 
2011; Tost et  al., 2013). This highlights the complexity of the 
interaction between BDNF Val66Met polymorphisms, white matter 
integrity, and the response to tDCS. Further research is therefore 
needed into the factors that may contribute to this inconsistency.

This study also found that tDCS interacts with multiple factors to 
affect white matter integrity who were Val66 homozygotes and APOE 
ε4 carriers following sequential tDCS. Similarly, female with Val66 
homozygosity showed a significant improvement in white matter 
integrity in the Rt. UF after tDCS sessions. Previous studies have shown 
accelerated Aβ deposition in APOE ε4 carriers with BDNF Met carriers 
(Stonnington et al., 2020; Riphagen et al., 2022), but there is limited 
investigation into the impact on the white matter integrity. Regarding 
the sex, although some studies suggest a sexually dimorphic effect of 
the BDNF Met66 allele on AD susceptibility (Fukumoto et al., 2010), 
others contradict this (Voineskos et al., 2011). In the prodromal phase 
of AD, Val66 homozygotes with a higher susceptibility to age-related 
decline in white matter integrity (Voineskos et al., 2011) are assumed 
to induce a greater increase in integrity in the AD susceptible tract in 
response to sequential tDCS in the presence of AD risk factors. In 
addition, the UF that shows an interaction between tDCS and AD risk 
factors in this study is a pathway that connects the anterior temporal 
lobe to the orbitofrontal cortex and is involved in cognitive functions 
such as episodic memory and language (Von Der Heide et al., 2013). It 
is therefore worth investigating how improved integrity in this pathway 
affects the clinical course of AD in the long term.

In this investigation, we observed a significant correlation between 
baseline Aβ deposition and enhanced FA in the left cingulum within 
the hippocampal region, following the administration of sequential 
tDCS. This aligns with prior research that reported diminished fiber 
connections in this specific area among patients in the early stages of 
AD and those with MCI (Zhou et al., 2008). Moreover, we identified 
a positive association between the increase in FA of the Lt. cingulum 
in the hippocampal region and improvements in delayed memory 
performance, corroborating earlier findings (Zhou et al., 2008). In 
subgroups stratified by AD risk factors, we  also found a positive 
association between Aβ deposition and the difference in FA of the left 
cingulum in the hippocampal area in APOE ε4 carriers. However, 
regarding the FA of this tract, there was not significant relationship 
with the differences in neuropsychological performances. Taken 
together, these observations suggest a potential compensatory 
mechanism whereby Aβ deposition triggers alterations in the white 

TABLE 1 Baseline demographic and clinical characteristics of the study 
participants.

Demographic and clinical characteristics (N  =  63)

Age (years) 73.2 ± 7.9

Gender

- Male 21 (33.3%)

- Female 42 (66.7%)

Years of education 12.0 ± 5.0

[18F] Flutemetamol deposition (positivity, %) 26 (41.3%)

Global [18F] Flutemetamol SUVRPONS 0.62 ± 0.15

APOE ε4 carrier status (carrier. %) 30 (47.6%)

BDNF polymorphism (Val/Met or Met/Met, %) 52 (82.5%)

CERAD-K

VF 12.1 ± 5.1

BNT 10.7 ± 3.1

MMSE 23.2 ± 5.0

WLM 14.6 ± 4.6

CP 10.1 ± 1.5

WLR 3.7 ± 2.6

WLRc 6.8 ± 2.8

CR 4.5 ± 3.4

TMT B (seconds) 224.1 ± 77.7

Stroop word-color 26.0 ± 14.2

Total memory 25.2 ± 8.8

Total CERAD-K 58.1 ± 15.2

Data are presented as the mean ± SD unless indicated otherwise. SUVRPONS, standardized 
uptake value ratio of [18F] Flutemetamol, using the pons as a reference region; CERAD-K, 
Korean version of Consortium to Establish a Registry for Alzheimer’s Disease; VF, verbal 
fluency; BNT, Boston Naming Test; MMSE, the Korean version of the Mini-Mental Status 
Examination; WLM, Word List Memory; CP, Constructional Praxis; WLR, Word List Recall; 
WLRc, Word List Recognition; CR, constructional recall; TMT B, Trail Making Test B; Total 
memory, composite score summing scores of the WLM, WLR, and WLRc tests; Total 
CERAD-K, composite score summing scores of the CERAD-K VF, BNT, WLM, CP, WLR, 
and WLRc domains.
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FIGURE 3

Differential impact of tDCS on white matter microstructural integrity according to effect modifiers: (A) APOE ε4 carrier status, (B) Sex, (C) BDNF 
polymorphism, and (D) Multiple effect modifiers. Repeated-measures ANOVA was used to predict the impact of effect modifier-by-tDCS interaction 
(effect modifier*tDCS) for white matter microstructural integrity (Between-subject factors: APOE ε4 carrier status, BDNF polymorphism, and sex), with 
covariates of age, years of education, and global [18F] FMM SUVRPONS. FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity.
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matter integrity of the Lt. cingulum in the hippocampal area, especially 
in the APOE ε4 carriers. This change could be  catalyzed by the 
application of sequential tDCS during the prodromal phase of 
AD. Nonetheless, further research with larger sample size is warranted 
to substantiate these preliminary insights.

A limitation of this study is the duration of sequential tDCS. As 
this study only involved a 10-session application of tDCS, conducting 
a long-term study would offer a more comprehensive understanding 
of the clinical implications of the compensatory changes in white 
matter microstructure integrity that were inferred from this study. 
Furthermore, conducting a study that includes a sham stimulation 
group would enhance our understanding of the role and clinical 
implications of the effect modifiers identified in the present study with 
MCI patients.

The purpose of this research was to assess the impact of a 2-week 
application of sequential tDCS on changes in white-matter 
microstructure integrity of MCI patients, taking into account 
individual factors for AD. Additionally, we examined the association 
between baseline Aβ deposition and changes in white matter 
microstructure integrity, as well as the relationship between changes 
in cognitive function and those in white matter integrity. The study 
revealed a significant effect of the effect modifiers*tDCS interaction 
on the white matter microstructure integrity of the AD vulnerable 
tract. Furthermore, there was a positive association between Aβ 
deposits and changes in the integrity of the white matter tract which 
reflects the AD progression. Finally, the changes in the tract of 
interest also exhibited a positive relationship with the differences in 
the memory performance in the prodromal stage of AD. AD is a 
multi-faceted neurodegenerative disease that elicits various responses 
to treatments among patients diagnosed with MCI. Therefore, it is 
essential to apply a precision medicine therapeutic approach that 
takes into account individual AD-related factors, especially regarding 
non-invasive brain stimulation. In this regard, this study provides a 
cornerstone for the clinical importance of precision medicine 
approaches in tDCS and in the field of non-invasive brain stimulation 
therapy for patients on the AD trajectory. Additionally, conducting 
additional research to address the limitations of the current study 
would provide an opportunity to reassess the therapeutic potential of 
tDCS in the prodromal AD phase, which has limited treatment 
options available.
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FIGURE 4

Associations (A) between amyloid-beta deposition and changes in 
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white matter microstructural integrity and those in 
neuropsychological performances. Partial correlation analysis 
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Word List Recall; FA, fractional anisotropy; Cgh, cingulum in the 
hippocampal area.
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