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There is an urgent need to improve the translational validity of Alzheimer’s

disease (AD) mouse models. Introducing genetic background diversity in AD

mouse models has been proposed as a way to increase validity and enable the

discovery of previously uncharacterized genetic contributions to AD susceptibility

or resilience. However, the extent to which genetic background influences the

mouse brain proteome and its perturbation in AD mouse models is unknown.

In this study, we crossed the 5XFAD AD mouse model on a C57BL/6J (B6)

inbred background with the DBA/2J (D2) inbred background and analyzed the

e�ects of genetic background variation on the brain proteome in F1 progeny.

Both genetic background and 5XFAD transgene insertion strongly a�ected

protein variance in the hippocampus and cortex (n = 3,368 proteins). Protein

co-expression network analysis identified 16 modules of highly co-expressed

proteins common across the hippocampus and cortex in 5XFAD and non-

transgenic mice. Among the modules strongly influenced by genetic background

were those related to small molecule metabolism and ion transport. Modules

strongly influenced by the 5XFAD transgene were related to lysosome/stress

responses and neuronal synapse/signaling. The modules with the strongest

relationship to human disease—neuronal synapse/signaling and lysosome/stress

response—were not significantly influenced by genetic background. However,

other modules in 5XFAD that were related to human disease, such as GABA

synaptic signaling and mitochondrial membrane modules, were influenced by

genetic background.Most disease-relatedmodulesweremore strongly correlated

with AD genotype in the hippocampus compared with the cortex. Our findings

suggest that the genetic diversity introduced by crossing B6 and D2 inbred

backgrounds influences proteomic changes related to disease in the 5XFAD

model, and that proteomic analysis of other genetic backgrounds in transgenic

and knock-in ADmousemodels is warranted to capture the full range ofmolecular

heterogeneity in genetically diverse models of AD.
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Introduction

Alzheimer’s disease (AD) is the leading cause of dementia

worldwide, with limited treatment options currently available.

Clinical trials of potential disease-altering therapies for AD have

had very high failure rates. Evaluation of failings at the preclinical

stage has implicated poor translation between widely used mouse

models of AD and human disease as a potential explanation

(Cummings, 2018). Murine models of AD represent a cornerstone

of disease research and have played a critical role in the preclinical

development process. Traditional modeling of AD in mice has

primarily focused on the overexpression of the amyloid precursor

protein (APP) and presenilins 1 and 2 (PSEN1/2) that harbor

familial AD (FAD) mutations. Such transgenic FAD models

robustly develop β-amyloidosis and have been instrumental in

understanding disease mechanisms and progression (Jankowsky

and Zheng, 2017). However, no single model fully recapitulates

the complex pathobiology of human disease, leading to gaps

in cross-species translation. The need to develop and improve

the validity and translatability of AD mouse models remains an

ongoing challenge.

Mouse models of AD have been almost exclusively developed

on a single inbred strain, the C57BL/6J (B6). The selection of

B6 as the ideal background for developing AD model systems

has been largely due to their desirable behavioral characteristics

and the development of cognitive impairment and amyloid

deposition (Lassalle et al., 2008; Sultana et al., 2019; Forner et al.,

2021; Ammassari-Teule, 2022). For instance, the commonly used

5XFAD transgenic model was developed on the B6 background to

overcome variable phenotypes produced on a hybrid background

(Oblak et al., 2021). However, the utility of inbred strains has come

under question in recent years as research has indicated the lack

of generalizability and often opposing phenotypes across different

strains expressing FAD mutations. Outcome measures of interest

to AD researchers, such as learning and memory-specific task

performance and amyloid pathology, are significantly impacted by

mouse genetic background (Lehman et al., 2003; Ryman et al., 2008;

Sittig et al., 2016).

Genetics contributes strongly to susceptibility and person-

to-person heterogeneity for both familial and sporadic forms of

AD. Twin studies have estimated the heritability of AD to be

approximately 60–80% (Gatz et al., 2006). Even among autosomal

dominant cases, the onset of clinical symptoms can vary across

families that carry the samemutation (Bekris et al., 2010). Together,

these findings highlight the complex interaction between genetic

factors and phenotype in human AD and indicate that there

are undefined genetic factors that contribute to disease risk or

resilience. The complex relationship between genetic composition

and phenotypic variability observed in human populations, which

is lacking within genetically homogenous inbred mouse strains,

has led to the hypothesis that incorporating genetic variability in

AD mouse models could improve translatability. In support of

this hypothesis, an AD transgenic mouse reference panel (AD-

BXD) was recently developed to explore the impact of genetic

complexity on phenotypic segregation and translation with human

disease features (Neuner et al., 2019). The reference panel was

generated by crossing 5XFAD mice on a B6 background with the

BXD recombinant inbred strain series derived from B6 and DBA/2J

(D2) crosses. The results from this study identified improved AD

phenotypes relating to varied age of onset and rates of memory

impairment across the resulting strains. These findings indicate a

high potential value for incorporating genetic variability as a means

to improve the face validity of transgenic mice. However, it is

currently unknown how such genetic diversity influences protein

changes related to disease in such models.

Quantitative proteomics has contributed to an improved

understanding of human brain pathophysiology in AD (Rayaprolu

et al., 2021; Johnson et al., 2022). In this study, we asked how

genetic diversity introduced by crossing B6 and D2 mice (B6xD2),

two fully inbred strains, affects the mouse brain proteome and its

perturbation by the 5XFAD transgene. We found strong proteomic

alterations related to both genetic background and transgene

expression. We then integrated human brain proteomic data to

assess relevant overlap and cross-species relationships. Our findings

serve as a resource for the continued development of AD mouse

models with improved translational power.

Results

Genetic background and AD genotype
strongly contribute to proteomic variance

To address how genetic variation in AD mouse model

systems impacts the brain proteome, label-free quantitation mass

spectrometry (LFQ-MS) analysis was performed on brain tissue

from two brain regions (cortex and hippocampus) from 5XFAD

transgenic and non-transgenic (Ntg) B6 and B6xD2 mouse lines

as previously described (Johnson et al., 2020). The cortex and

hippocampus are both vulnerable in AD and represent relevant

regions of interest for proteomic analysis. Mice (n = 10 B6

5XFAD, n = 10 B6xD2 5XFAD, n = 10 B6 Ntg, n = 10

B6xD2 Ntg; five males, five females per group) were aged 13–

14 months, a time at which significant pathology has developed

in the 5XFAD model (Oakley et al., 2006; Oblak et al., 2021).

Protein abundance data were pre-processed to remove proteins

with higher missing values and sample outliers, resulting in a final

data matrix of 3,368 proteins measured across 70 total samples

(Figure 1, Supplementary Tables 1, 2). The term “line” will be used

throughout to refer to the mouse genetic background (i.e., B6 or

B6xD2), while “AD genotype” is used to denote the transgenic

manipulation of the recipient mouse (Ntg vs. 5XFAD).

To assess the primary contributing features of variance within

the proteome, we calculated the top five principal components

(PCs) of the data for each brain region and correlated the PCs with

a line to assess genetic background effects, and AD genotype to

assess transgene effects, and sex (Figures 2A, B). AD genotype was

strongly correlated with the first PC in both brain regions. More

variance was explained by AD genotype in the hippocampus (23%)

than the cortex (16%). Line significantly correlated with more than

one PC in each brain region, indicating that genetic background

had broad effects on protein variance across the proteome.

Variance partition analysis verified line and AD genotype as the

largest drivers of variation in protein abundance in each brain
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FIGURE 1

Study overview. Schematic representation of the experimental workflow for matched mouse brain tissue samples from the cortex and hippocampus

from 5XFAD and non-transgenic (Ntg) mice on B6 (n = 10 5XFAD, n = 10 Ntg) or B6xD2 (n = 10 5XFAD, n = 10 Ntg) genetic backgrounds (n = 40

total per region). Tissue samples underwent enzymatic digestion and label-free mass spectrometry analysis, followed by co- and di�erential

expression analyses.

region (Figures 2C, D, Supplementary Tables 3, 4). To identify

proteins with the highest total variance attributable to each trait,

variance partition results were sorted and ranked by protein

for both the cortex and hippocampus (Supplementary Figures 1A,

B). Many proteins within the top ten most variable proteins

by trait overlapped between brain regions. Among the proteins

with the highest attributable variance to line, proteins with

significantly higher or lower abundance in B6xD2 compared to

B6 could be observed, as expected (Supplementary Figure 1C).

Conversely, those proteins with the highest attributable variance

to AD genotype were not significantly different between genetic

backgrounds (Supplemenatary Figure 1D). These results suggested

that genetic background variation had a large effect on the mouse

brain proteome in both the hippocampus and cortex. As illustrated

in Figures 2C, D, in the cortex, the effect was comparable to

that observed with 5XFAD transgene expression, whereas in the

hippocampus, the effect of AD genotype on protein expression

variance was greater than the effect of genetic background.

Protein abundances driven by AD genotype
and genetic background

To examine how protein abundances were impacted by either

AD genotype or genetic background, we assessed differential

protein abundance in each brain region. Protein abundance

fold changes and statistical significance between groups were

calculated for all proteins in the dataset. We compared abundance

changes driven by 5XFAD transgene expression in B6 and

B6xD2 backgrounds in both direction and significance of change

(Figure 3A). A comparable number of differentially abundant

proteins was observed for both B6 and B6xD2 backgrounds

when comparing 5XFAD to Ntg groups in both the cortex

and hippocampus, demonstrating a similar overall effect of

the transgene between mouse lines (Supplementary Tables 5, 6).

The overlap of AD genotype-driven protein changes in the

cortex between mouse lines was also determined (Figure 3B,

Supplementary Figure 2, Supplementary Tables 7, 8). We identified

a core group of proteins that were significantly changed in

both mouse lines as well as protein subsets that were uniquely

changed in only one mouse line or the other. Comparable

findings were observed for both the cortical and hippocampal

regions (Supplementary Tables 7–10). To understand the potential

biological relevance of the changed proteins in each subset,

gene ontology (GO) was performed in each brain region with

attention to the direction of change (Figures 3C–E). Notably,

“Amyloid-β binding” was among the GO terms with the highest

enrichment scores from proteins increased in both backgrounds

in the cortex, indicating the consistency of core AD genotype-

driven protein changes regardless of genetic background. The

influence of genetic variation, however, also had clear impacts on

disease-relevant biological pathways. For example, the reactome

term “Metabolism” was enriched in the opposite direction for

each line, with B6 showing an increase and B6xD2 showing

a decrease in proteins corresponding with this term. This

is consistent with a previously published research in which

B6 and D2 mice exhibit significantly different glucoregulatory

phenotypes (Berglund et al., 2008). In addition, the directionality

for some B6xD2-specific terms was unexpected in 5XFAD.

For instance, the term “Aging” was decreased, and the term

“Neurotransmitter release” was increased on the B6xD2 line

only. In summary, we found that the proportion of changed

proteins with 5XFAD transgene expression on each line appeared

comparable and that key proteins affected by the expression

of the transgene were not different between the B6 and

B6xD2 lines. However, the impact of genetic background on

AD genotype expression was significant for other proteins

and pathways.

Correlation network analysis of
multi-region 5XFAD brain proteome

To examine biologically related groups of proteins and

how they are altered by 5XFAD transgene expression and

genetic background in the hippocampus and cortex, we used

the consensus weighted gene correlation network analysis

(cWGCNA) algorithm to build a protein co-expression
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FIGURE 2

Genetic background and AD genotype strongly contribute to proteomic variance. (A, B) Principal component analysis (PCA) in the cortex (A) and

hippocampus (B) was used to examine the relationship between the top five PCs and line, AD genotype, and sex traits using Spearman’s rho

correlation. Heatmaps represent the strength of correlation between traits and PCs (darker color indicates increasing strength of correlation). AD

genotype was the most strongly associated trait with PC1 in the cortex (ρ = 0.83) and hippocampus (ρ = 0.9). P *<0.05, **<0.01, ***<0.001. (C, D)

Variance partition analysis was performed for the cortex (C) and hippocampus (D) to quantify the overall variance explained by each trait. Line and AD

genotypes contributed to the highest percent variance explainable in both brain regions.

network from our proteomic data (n = 3,368 proteins). We

identified 16 clusters (modules) of highly co-expressed proteins

(Figure 4A, Supplementary Tables 11, 12). Modules were very well

preserved across both brain regions (Supplementary Figure 3).

Representative module biology was assigned by the top GO

terms for module protein members (Supplementary Table 13).

Only one module (M9) was assigned as ambiguous based on

the available GO terms. The approximate cell-type contribution

to each module was determined by the enrichment analysis of

neuronal, microglial, astrocyte, oligodendrocyte, and endothelial

cell-type markers (Supplementary Tables 14, 15). There was

at least one module significantly associated with each of the

cell types.

Module eigenproteins (MEs) were correlated with the AD

genotype, line, and sex for each brain region.MEs represent the first

principal component of protein expression within each module,

and thus module—trait correlations can provide information on

how variables of interest are related to these protein groups

(Figure 4A). We also examined ME levels across the different

groups in the hippocampus and cortex (Figure 4B). Within the

network, there were modules strongly driven by the primary

traits line and AD genotype as well as mixed effects. Modules

M1 neuronal synapse/signaling and M2 astrocyte/microglia

lysosome/stress response were highly related to AD genotype,

where 5XFAD transgene expression was significantly associated

with decreased protein abundance inM1members and significantly

associated with increased protein abundance in M2 module

members, regardless of genetic background. Notably, M1 and M2

were the largest modules in the network (M1 = 311 proteins,

M2 = 246 proteins) and represented the strongest cell-type

enrichments for neurons (M1), astrocytes, and microglia (M2).

M9 Ambiguous and M13 small molecule metabolism were the

most significantly driven by genetic background, where M9

constituents were significantly higher in B6xD2 mice compared

to B6 and M13 constituents were significantly lower in B6xD2

mice compared to B6, regardless of the AD genotype. In addition,

modules including M7 GABA synaptic signaling and M14 ion

transport were significantly associated with more than one feature.

ModuleM7was significantly correlated with line and anticorrelated

with AD genotype. Module M14 was correlated with line in

both brain regions and anticorrelated with AD genotype only in

the cortex.
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FIGURE 3

Di�erential protein abundance driven by genetic background and AD genotype. (A) Comparison of di�erential protein abundance between 5XFAD

and Ntg mice on either the B6 or B6xD2 genetic background in the cortex. One-way ANOVA with Tukey’s post-hoc correction was used to generate

p-values (significance was determined as p < 0.05). Log2 fold change (FC) di�erences were plotted to incorporate the directionality of change in

each genetic background. Color scheme: gray, not significantly changed; red, significantly changed in both B6 and B6xD2; gold, significantly

changed only in B6xD2; blue, significantly changed only in B6. (B) Venn diagram representing the overlap of significantly di�erentially abundant

proteins comparing 5XFAD with Ntg on either the B6 or B6xD2 genetic backgrounds (significance was determined as p < 0.05). (C–E) Gene ontology

analysis of protein subsets significantly increased or decreased on both lines (C) or on only B6 (D) or only B6xD2 (E) lines. Ontology analysis was

performed for biological processes, molecular functions, cellular components, and the reactome. A z score of 1.96 or higher is considered significant

(red line, p < 0.05).

In summary, large modules such as M1 neuronal

synapse/signaling and M2 astrocyte/microglia lysosome/stress

response indicate strong AD genotype-driven effects related to

disease unimpacted by genetic background. However, multiple

modules strongly driven by line were also present. Together,

these findings suggest that genetic background may have more

subtle or additive effects on the proteomic changes surrounding

amyloidosis observed in the 5XFAD model. Additional studies

are necessary to understand how modules relating to genetic

background may contribute to or impact the overall AD phenotype

in these mice.

Comparison of 5XFAD and human AD brain
proteomic networks

In order to evaluate the extent to which genetic background

influences model overlap with the human disease, we compared

our AD mouse model network with a human AD frontal cortex

brain proteome network (Johnson et al., 2020). We used two

similar but distinct analyses to compare the mouse network with

the human network: (1) module preservation, which assesses the

presence or absence of mousemodules in the human network based

on measures of network connectivity and (2) overrepresentation
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FIGURE 4

Consensus correlation network analysis of multi-region 5XFAD mouse brain proteome. (A) Consensus-weighted gene correlation network analysis

(cWGCNA) was performed with 3,368 proteins from the cortex and hippocampus, which resulted in 16 co-expression protein modules. (Top)

Correlation of module eigenproteins (MEs) with traits (line, AD genotype, and sex) for each brain region is represented by a heatmap (red, positive

correlation; blue, negative correlation). (Bottom) Enrichment of cell-type markers in each module for astrocytes, microglia, neurons,

oligodendrocytes, and endothelial cell types. Modules are identified by color and number as well as representative biology as determined by top gene

ontology terms. (B) MEs for selected modules of interest grouped according to line—AD genotype pairings evaluated (B6 Ntg, B6 5XFAD, B6xD2 Ntg,

and B6xD2 5XFAD) in each brain region. Hub proteins of each module are provided beside each ME box plot. MEs were compared by group in each

brain region using one-way ANOVA; unadjusted p-values are shown. Box plots represent the median, 25th and 75th percentiles. Box hinges represent

the interquartile range of the two middle quartiles in a group. Error bars are based on data points 1.5 times the interquartile range from the box hinge.
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analysis (ORA), which assesses the enrichment of overlapping

proteins across network modules. A module preservation analysis

found that the majority of modules (10/16) in the mouse network

were preserved with the human network and two of these

(M10 oligodendrocyte/myelin andM1 neuronal synapse/signaling)

were very strongly preserved (Figure 5A). Both M10 and M1

were strongly correlated with AD genotype in both regions and,

to a lesser extent, with line in the hippocampus (Figure 4A).

Modules M6 ER/translation, M9 ambiguous, M11 transmembrane

transport, M12 mitochondrial membrane, M13 small molecule

metabolism, and M14 ion transport were not preserved with

the human network modules based on network connectivity. Of

the mouse modules that did not preserve with human modules,

M9, M13, and M14 in particular were strongly associated with

genetic background. Overrepresentation analysis found greater

overlap with human modules and identified modules in the

mouse network that were closely related to key human AD

biology (Figure 5B, Supplementary Table 16). All but three of

the mouse network modules significantly overlapped with the

human modules. Modules M11 transmembrane transport, M14

ion transport, and M13 small molecule metabolism did not show

significant overlap with any of the human modules, consistent with

the module preservation analysis. Because our mouse cWGCNA

network was a consensus network of hippocampal and cortex

tissues, we also tested whether a cortex-only mouse network

would show better preservation and overlap with the human

cortex-only network (Supplementary Table 17). We found that

11/20 cortex-only modules were preserved in the human network,

and 11/20 modules showed significant overlap by ORA, similar

to the cWGCNA network findings (Supplemenatary Figure 4,

Supplementary Table 18), indicating that the cross-species analyses

were not significantly influenced by the inclusion of hippocampal

tissue in the cWGCNA analyses. The collective results of these

analyses indicate that the majority of protein co-expression

relationships are preserved betweenmice and humans, but they also

suggest there may be significant effects driven by line that are either

species-specific or not well represented in this human network due

to differences in proteome coverage.

To assess how the mouse network modules related to human

AD genetic risk, an enrichment analysis was performed using

the results from AD genome-wide association studies (GWASs)

(Lambert et al., 2013; Kunkle et al., 2019; Bellenguez et al.,

2022). This enrichment strategy previously identified human

modules M2 myelin/oligodendrocytes and M4 astrocyte/microglia

sugar metabolism as enriched with AD risk factor proteins

(Johnson et al., 2020). The same analysis was performed

on mouse modules, which identified M2 astrocyte/microglia

lysosome/stress response as enriched with AD risk factor

proteins (Supplementary Table 19). Importantly, the ORA results

indicated mouse module M2 astrocyte/microglia lysosome/stress

response significantly overlapped with human module M4

astrocyte/microglia sugar metabolism. This finding highlights the

consistency of human disease features represented in the mouse

model. Furthermore, mouse moduleM2 was driven strongly by AD

genotype but not genetic background.

In addition to disease risk, we also used results from a

proteome-wide association study (PWAS) of cognitive resilience

to identify modules in both networks enriched with proteins

shown to relate to cognitive performance over time (Yu et al.,

2020). PWAS results were generated from dorsolateral prefrontal

cortex brain tissue samples analyzed via tandem mass tag

(TMT)–MS, which were adjusted for AD pathologies before

determining the association between cortical protein abundance

and cognitive change over time. Proteins with increased abundance

and a relationship to slower rates of cognitive decline were

considered to confer increased resilience, whereas proteins

with higher abundance and associated with faster rates of

decline were considered to confer decreased resilience. Multiple

modules were identified in both human and mouse networks

for increased and decreased resilience proteins. There were

four mouse modules enriched for proteins associated with

increased cognitive resilience: M1 neuronal synapse/signaling, M9

ambiguous, M8 synaptic cytoskeleton, and M14 ion transport

(Supplementary Table 20). There were also two mouse modules

enriched for proteins associated with decreased resilience: M11

transmembrane transport and M13 small molecule metabolism

(Supplementary Table 21). In the human network, there were

two modules enriched for increased resilience proteins: M1

synapse and M3 mitochondrial (Supplementary Table 22). Only

one module was enriched in the human network for decreased

resilience proteins: M4 astrocyte/microglia sugar metabolism

(Supplementary Table 23).

Finally, because our network did not provide information

on causality beyond that suggested by AD GWAS overlap, we

integrated our mouse network with a directional Bayesian network

of the human brain to infer potential causal changes in the

mouse network related to AD (Ding et al., 2021). We found

88 proteins in the cWGCNA mouse network that overlapped

with key driver proteins in the Bayesian human brain network

(Supplementary Table 24). Interestingly, most of the overlapping

proteins mapped to the M1 neuronal synapse/signaling module,

followed by the M10 myelin/oligodendrocyte module. As noted

above, M1 neuronal synapse/signaling was significantly decreased

by 5XFAD transgene expression and was enriched in proteins that

are associated with resilience to AD. M1 also highly overlaps with

the human M1 synapse module. Therefore, the disruption of M1

neuronal synapse/signaling by the 5XFAD transgene may lead to

many downstream brain proteome changes observed in this model.

Given the strong overlap between mouse and human M1 modules,

the disruption of M1 in humans by mechanisms potentially shared

between 5XFAD transgene manipulation and human AD may also

cause many of the widespread proteome changes observed in the

human AD brain.

In summary, consistency in enrichment results could be

observed between networks; however, there were also distinct,

non-overlapping features. Mouse module M2 astrocyte/microglia

lysosome/stress response, which was enriched for AD GWAS

markers, most strongly overlapped with human module M4

astrocyte/microglia sugar metabolism, which was the top GWAS

module in the human network (Johnson et al., 2020). Mouse

modules M1 neuronal synapse/signaling, M9 ambiguous, and M8

synaptic cytoskeleton were all enriched with increased resilience

markers and strongly overlapped with human module M1 synapse,

which was consistently enriched with increased resilience markers.
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FIGURE 5

Comparison of 5XFAD mouse and human AD brain proteomic networks. (A) Network preservation of mouse protein network modules in a human AD

frontal cortex network as published in Johnson et al. (2020). Modules with Zsummary ≥1.96 (q = 0.05, dashed blue line) are considered preserved,

and modules with Zsummary of 10 or higher (q = 1e−23, dashed red line) are considered highly preserved. The majority (10 out of 16) of consensus

modules from the mouse proteome were found to be preserved in the human network. (B) Heatmap for the overrepresentation analysis (ORA) of

mouse consensus module members with human frontal cortex module members. Red indicates overrepresentation, and blue indicates

underrepresentation. Numbers in boxes are –log10 FDR values. P *<0.05, **<0.01, ***<0.001. Heatmap threshold is set at 10% FDR (0.1). Bar plots in

the heatmap margins show the enrichment of proteins identified from GWAS of AD risk (red) or PWAS of cognitive resilience for both increased

resilience (teal) or decreased resilience (olive) for mouse and human network module members. Dashed red line (z score 1.96 or FDR q ≤ 0.05)

indicates the significance cuto�. Red boxes in the human enrichment bar plot indicate previously identified significantly enriched modules for AD

GWAS proteins.
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Notably, mouse modules M13 small molecule metabolism, M11

transmembrane transport, and M14 ion transport were all

significantly enriched for either increased or decreased resilience

protein markers; however, these modules had no significant overlap

with human modules. Overlap with a Bayesian human brain

network suggested that M1 neuronal synapse/signaling disruption

may drive many downstream proteomic network changes in AD.

Discussion

In this study, we examined the brain proteomes of mice from

two genetic backgrounds across two brain regions of 5XFAD and

Ntg animals to assess the impact of incorporating genetic diversity

on the proteome in mouse models of AD. We found that both

genetic background and transgene expression strongly contributed

to variance in the proteome. The strongest protein changes driven

by the 5XFAD transgene were not significantly altered by genetic

background at either the single protein or protein network levels.

However, genetic background did influence proteins relevant to

disease related to synaptic biology and mitochondrial processes,

among others. Together, these results indicate that, as expected,

the classical disease-relevant changes related to 5XFAD transgene

expression are robust; however, proteins significantly correlated

with genetic background may represent individualized targets

related to novel genetic factors and disease subtypes, and may

also provide insights into resilient and susceptible phenotypes.

Network analysis also facilitated the comparison of mouse and

human co-expression brain proteomes, in which the majority of

the mouse modules were preserved and overlapped with human

network modules. Similar to the 5XFAD transgene findings, mouse

proteome modules that overlapped most strongly with human

disease were largely unaffected by genetic background. Overall,

this study contributes to ongoing efforts to rigorously validate

and characterize AD model systems using multiple different–

omics approaches and illustrates the potential effects on the mouse

proteome of introducing genetic variability for improving cross-

species translation.

Previous studies have documented line-dependent changes in

pathological and phenotypic measures, including Aβ deposition

and learning and memory tasks (Ryman et al., 2008; Sultana et al.,

2019). Consistently, the brain proteome comparing 5XFAD with

Ntg animals demonstrated line-specific differences at the individual

protein and co-expression levels. Among these line-specific

differences, biology relating to synaptic function could suggest

potentially important changes introduced by genetic variability

relevant to human neurodegenerative conditions. Specifically, the

ontology terms “Neurotransmitter release cycle” and “Neurexins

and neuroligins” were significantly changed in B6xD2 animals.

In addition, module M7 GABA synaptic signaling was strongly

correlated with lines. Changes in synaptic integrity and density

are believed to underlie cognitive symptoms in human disease,

and more recently, the ability to maintain functional synaptic

connections has been proposed as a mechanism for supporting

cognitive resilience in AD (Walker and Herskowitz, 2020; Hurst

et al., 2023). Inherent differences in synaptic biology introduced

by genetic variability in mouse models of AD could represent

a novel opportunity to investigate human-relevant alterations in

neuronal communication. The extent to which genetic diversity

affects synaptic changes requires further study.

One important aspect of this study is the inclusion of more

than one brain region for analysis. We found that the hippocampus

was more strongly affected by transgene expression than the cortex.

Principal component and variance partition analyses demonstrated

that both AD genotype and line strongly contribute to variance

in the proteome. However, the strength of this association was

muted when the two brain regions were not separated, in which

region became the strongest explanation of variance in the model

(data not shown). Consensus network analysis also identified

multiple modules strongly influenced by the brain region, including

moduleM10myelin/oligodendrocyte, in which correlation with the

AD genotype was inversed by region. Collectively, these findings

indicate the strength of evaluating multiple brain regions when

validating specific models.

Previous methods of introducing genetic complexity in

AD mouse models include the use of wild-derived lines

(Onos et al., 2019). Genetically diverse, wild-derived transgenic

mice produced strong differentiation of phenotypes associated

with important human disease features, including cognitive-like

changes, neurodegeneration, and amyloid dynamics. However,

this method of introducing genetic diversity has been cautioned

due to the lack of rigorous characterization in the absence of

AD transgenes (Ammassari-Teule, 2022). The use of fully inbred

parental lines, such as B6 and D2, which have been extensively

characterized, overcomes this ambiguity. Therefore, the genetic

variability introduced by crossing the B6 and D2 lines would allow

the differentiation of highly heritable phenotypes and traits relating

to risk and resilience in AD progression (Neuner et al., 2019).

Moreover, this strategy is not limited specifically to the B6 and D2

lines but rather provides an adaptable reference for the utility of this

strategy for future model development and characterization. Taken

together, introducing genetic complexity by crossing widely used

inbred mice represents a potentially advantageous research tool for

both improving the recapitulation of complex human phenotypes

and practical reproducibility.

Comparing the mouse and human networks highlighted

important findings: (1) mouse modules most strongly

representative of human disease were driven by 5XFAD transgene

overexpression and not significantly influenced by genetic

background and (2) certain mouse modules did not overlap with

the human network at all (M11 transmembrane transport, M14 ion

transport, and M13 small molecule metabolism). Mouse module

M2 astrocyte/microglia lysosome/stress response was enriched

for AD GWAS markers and corresponded most significantly

to human module M4 astrocyte/microglia sugar metabolism,

which was also enriched for AD GWAS markers. This overlap of

disease-relevant modules enriched for glial cells is well supported

in the literature (Maria et al., 2022). Similarly, mouse module M1

neuronal synapse/signaling overlapped significantly with human

module M1 synapse, both of which were enriched for markers of

increased cognitive resilience. M1 neuronal synapse/signaling was

enriched for key drivers of brain protein expression and decreased

by 5XFAD transgene expression. These mouse modules (M2

astrocyte/microglia lysosome/stress response and M1 neuronal

synapse/signaling) were significantly correlated with AD genotype,

but not genetic background. These findings suggest that in this
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model, there are core pathologies and features at the proteomic

level related to human disease that are strongly driven by 5XFAD

transgene expression, as expected. As AD genetic risk clusters

in the M2 mouse and the corresponding M4 human module,

dysfunction in these modules may subsequently affect M1 mouse

and human modules enriched in key drivers of brain protein

expression, leading to further downstream pathology. Although

these modules were not affected by genetic background, other

modules that are strongly driven by genetic background could

provide putative targets for understanding individual differences

driven by genetic variants that may inform mechanisms of

resilience or susceptibility. In addition, the lack of overlap between

specific mouse modules (M11 transmembrane transport, M14

ion transport, and M13 small molecule metabolism) might also

be explained by the current transgenic model utilized. Another

consideration for this gap is the comparative depth of LFQ vs. TMT

proteomics. Both mouse and human networks compared here

were analyzed via LFQ proteomics; however, the PWAS results

integrated into the enrichment analysis were generated using

TMT-MS. This offers a potential explanation for the significant

enrichment of M11, M14, and M13 with proteins associated with

cognitive trajectory despite their lack of overlap with human

modules. Future proteomic studies on APP knock-in models

using TMT-MS to increase proteome depth of coverage may allow

for more sensitive detection of genetic background effects on

disease-relevant proteomic changes.

Some potential limitations of our study should be noted.

First, the current cohort of animals was aged 12–14 months, a

timepoint in which significant amyloid pathology has developed

in the 5XFAD model. While evaluating genetic contributions

is valuable at this stage in the lifespan, measuring proteomic

differences at one static timepoint may miss transient or time-

dependent pathological changes. Future studies evaluating multiple

timepoints could, therefore, provide valuable insights into the rates

of proteomic changes that may be influenced by mixed genetic

backgrounds. Second, one of the goals of introducing genetic

complexity in mouse models is to generate phenotypically distinct

substrains that enable the characterization of novel genetic variants

contributing to cognitive impairment. In this study, we analyzed

only one mixed genetic background (B6xD2), and behavioral data

were not included in the analysis. Analysis of larger cohorts of

up to 50 AD-BXD lines that better model the heterogeneity of

humans is underway and will provide sufficient power to interpret

the mediation of the proteome on brain and cognitive phenotypes

(Neuner et al., 2019; Johnson et al., 2023). These rich data are

being generated and shared from consortium initiatives, such as

Resilience-AD and Model Organism Development and Evaluation

for Late-Onset Alzheimer’s Disease (MODEL-AD) (Oblak et al.,

2021).

Mice represent an ideal model system due to their combination

of phylogenetic conservation with humans and their relative ease in

experimental manipulation and management. Currently, there are

approximately 200 (and counting) transgenic models of AD that

have been developed, the majority of which utilize FAD mutations

expressed on the fully inbred B6 genetic background. This schema

for model development has led to invaluable insights into the

core mechanisms of AD progression and risk, but there remains

a need for improvement in the translational validity of AD mouse

models. Proteomics provides one level of analysis into a complex,

polygenic human disease. Incorporation and careful consideration

of other levels of analysis, such as the transcriptome (Maria et al.,

2022), can provide additional insights into the effect of genetic

variability on AD phenotypes for the advancement of both model

translatability and therapeutic target nomination. Our results

suggest that 5XFAD transgene expression induces robust changes

in the mouse brain proteome, but that the addition of genetic

background complexity introduces significant proteomic variance

that may contribute to phenotypic variability and alignment with

the human disease. Therefore, this approach remains a promising

avenue to improve face validity in other AD mouse models, such

as knock-in models, where proteomic changes may be more subtle

than in transgenic models.

Data and code availability

Raw mass spectrometry data and database search results from

cortex and hippocampus mouse brain tissue analysis can be found

at: https://www.synapse.org/B6xD2proteomics Processed data and

code are also provided. HumanMS data were previously shared and

can be accessed at: https://www.synapse.org/consensus and https://

www.synapse.org/DeepConsensus.

Methods and materials

Mice

Female hemizygous 5XFAD mice on a congenic C57BL/6J

background (RRID: MMRC_034848-JAX) were bred to male

C57BL/6J (RRID: IMSR_JAX:000664) or DBA/2J mice (with

corrected Gpnmb mutation, RRID: IMSR_JAX:007048). Animals

were kept on a 12:12 light:dark cycle and were provided food and

water ad libitum. All routine procedures were approved by the

Institutional Care and Use Committee (IACUC) at The Jackson

Laboratory and in accordance with the standards of the Association

for the Assessment and Accreditation of Laboratory Animal Care

(AAALAC) and the National Institutes of Health Guide to the Care

and Use of Laboratory Animals. Mice (n = 10 B6 5XFAD, n = 10

B6xD2 5XFAD, n = 10 B6 Ntg, n = 10 B6xD2 Ntg; five males,

five females per group) at 14 months of age (±2 wks) were deeply

anesthetized with isoflurane, rapidly decapitated, and the brain

removed. The hippocampus and frontal cortices were isolated on an

ice-cold dissecting block and immediately frozen in liquid nitrogen.

Tissue homogenization

Tissue dissections of the cortex and hippocampus were each

homogenized in urea lysis buffer (8M urea, 100mM NaH2PO4,

pH 8.5) at a 1:5 weight-to-buffer ratio with HALT phosphatase

and protease inhibitor cocktail (1X final concentration, Pierce).

Samples were homogenized in RINO sample tubes (Next Advance)

with ∼100mL of stainless-steel beads using a Bullet Blender (Next

Frontiers in AgingNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1239116
https://www.synapse.org/B6xD2proteomics
https://www.synapse.org/consensus
https://www.synapse.org/DeepConsensus
https://www.synapse.org/DeepConsensus
https://scicrunch.org/resolver/RRID: MMRC_034848-JAX
https://scicrunch.org/resolver/RRID: IMSR_JAX:000664
https://scicrunch.org/resolver/RRID: IMSR_JAX:007048
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Hurst et al. 10.3389/fnagi.2023.1239116

Advance) at 4◦ for two full 5-min cycles. The homogenates were

transferred to clean, Eppendorf LoBind tubes and sonicated for

three cycles at 5 s on and 5 s off at 20% amplitude on ice. The

samples were then centrifuged for 5min at 15,000 × g, and the

supernatant was transferred to clean tubes. Protein concentrations

were determined using the bicinchoninic acid assay (BCA, Pierce).

One-dimensional SDS-PAGE gels were run, followed by Coomassie

blue staining as quality control to ensure protein integrity and

equal loading.

SDS-PAGE

A total of 20mg of protein from each sample was mixed with

Laemmli sample buffer (Bio-Rad) and β-mercaptoethanol before

being boiled at 95◦ for 10min, spun briefly to collect volume,

and loaded into Bolt 4–12% Bis-Tris gradient gels (Invitrogen).

Loaded gels were initially electrophoresed at 80mV for the lowest

percentage gradient of the gel, followed by 120mV for the

remainder of the gel. The gels were then submerged in Coomassie

blue staining overnight and destained briefly the following day to

visualize protein banding (Supplemenatary Figure 5).

Western blotting

Two female mouse samples were selected per experimental

group. Cortical mouse brain lysate was normalized to 20 µg

in 12mL of a final concentration of 1X Laemmli sample buffer

(Bio-Rad) and 355mM β-mercaptoethanol (Sigma-Aldrich). The

samples were boiled at 95◦C for 10min prior to loading into

1.0mm 4–12% Bis-Tris NuPAGE 10-well gels (Invitrogen) with

a broad range of 10–250 kDa molecular weight markers (New

England Biosciences, P7719). The gel was run at 80V for 15min,

then increased to 125V until the molecular weight marker reached

the end of the gel. Following gel electrophoresis, proteins were

transferred to a 0.2-mm nitrocellulose membrane at 20V for

7min and prepared in accordance with the iBlot dry transfer

stack system. The membrane was incubated with 0.5% Ponceau

S stain to verify equal protein loading. The membrane was then

washed twice with Tris-buffered saline (TBS) to de-stain. The

membrane was blocked for 30min in StartingBlock Blocking

Buffer (Thermo Fisher Scientific) to reduce non-specific binding.

The membrane was incubated on an orbital shaker overnight at

4◦C with primary antibodies. The following primary antibodies

were used for validation: Dako polyclonal rabbit anti-GFAP (Cat

#Z0334) and Chemicon polyclonal goat anti-ApoE (Cat #AB947).

Abcam ratmonoclonal [YL1/2] (Cat #ab6160) was used as a loading

control. All antibodies were diluted 1:1000 in StartingBlock buffer

prior to incubation. After overnight incubation, the membrane was

washed twice for 10min with TBS-T to remove unbound primary

antibodies. Invitrogen Donkey anti-Rat Alexa Fluor 488, Donkey

anti-goat Alexa Fluor 680, and Donkey anti-rabbit Alexa Fluor 800

conjugated secondary antibodies were used to detect and visualize

proteins of interest. All secondary antibodies were diluted 1:10,000

in a StartingBlock buffer prior to incubation and incubated with

the membrane on an orbital shaker for 1 h at room temperature.

The membrane was washed with TBS-T twice for 10min to remove

unbound antibodies and twice for 5min in TBS before acquiring

images on the Licor Odyssey M system. Relative protein band

intensities were quantified using ImageJ FIJI software. Membrane

images were uploaded in FIJI, and band intensities were obtained

by “Mean Gray Value” measurements. The entire protein band per

lane was selected as the region of interest (ROI). The same ROI

selection area was used for the quantification of bands between

lanes of the same protein. ROIs above or below the band of interest

were used to obtain background intensity values. Pixel density

intensities were inverted by subtracting the band value from 255,

and the net protein value was obtained by subtracting the inverted

background value from the inverted band value. The signal for each

protein was then divided by the α-tubulin signal for its respective

lane for loading normalization. Results of Western blotting for

APOE and GFAP are provided in Supplementary Figure 2.

Protein digestion

A total of 100mg of protein from each sample was aliquoted

and volume normalized to 50mL in a urea lysis buffer before

being reduced with 5mM dithiothreitol (DTT) for 30min at room

temperature, followed by alkylation with 10mM iodoacetamide

(IAA) for 30min under light protection. The samples were

digested overnight with 1:50 (w/w) lysyl endopeptidase (Wako).

The following day, urea concentration for each sample was diluted

to <1M using ammonium bicarbonate (ABC) and digested for an

additional ∼16 h using 1:50 (w/w) trypsin (Promega). Following

digestion, peptides were acidified to a final concentration of 1%

(v/v) formic acid (FA) and 0.1% trifluoroacetic acid (TFA) and

desalted using 30mg HLB columns (Oasis). Prior to sample

loading, each HLB column was rinsed with 1mL of methanol,

washed with 1mL of 50% (v/v) acetonitrile (ACN), and equilibrated

(x2) with 1mL of 0.1% (v/v) TFA. The samples were then loaded

onto the columns and washed (x2) with 1mL of 0.1% (v/v) TFA.

The peptides were eluted with two volumes of 0.5mL of 50%

(v/v) ACN. Eluates were frozen at −80◦C overnight before being

completely dried using a SpeedVac (Labconco).

LC-MS/MS

All samples (∼1mg) were loaded and eluted using an Ultimate

RSLCnano (Thermo Fisher Scientific) with an in-house packed

15 cm, 150mm i.d. capillary column with 1.7mm C18 CSH

(Waters) over a 45min gradient. The gradient went from 1 to 99%

Buffer B (Buffer A: water in 0.1% formic acid and Buffer B: 80%

acetonitrile in 0.1% formic acid). Mass spectrometry was performed

with an Orbitrap Lumos (Thermo) in positive ion mode using

data-dependent acquisition with 3 s top speed cycles. Each cycle

consisted of one full MS scan followed by as many MS/MS events

as could fit within the given 1 s cycle time limit. MS scans were

collected at a resolution of 120,000 (375–1,500 m/z range, 4 ×

105 AGC, 50ms maximum ion injection time). Only precursors

with charge states between 2+ and 6+ were selected for MS/MS.

All higher energy collision-induced dissociation (HCD) MS/MS
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spectra were acquired at a resolution of 15,000 (1.6 m/z isolation

width, 35% collision energy, 1 × 105 AGC target, 22ms maximum

ion time). Dynamic exclusion was set to exclude previously

sequenced peaks for 30 s within a 10-ppm isolation window.

Database searching and protein
quantification

Quantitation was performed as previously published (Seyfried

et al., 2017), with a slight modification: RAW data files from all 80

samples were analyzed using MaxQuant (v1.6.17.0) using a mouse

database (91,415 target sequences, downloaded August 2020).

Methionine oxidation, asparagine and glutamine deamidation,

protein N-terminal acetylation, and serine, threonine, and tyrosine

phosphorylation were variable modifications (up to five allowed

per peptide); cysteine was assigned as a fixed carbamidomethyl

modification (+57.0215 Da). A precursor mass tolerance of ±20

ppm was applied prior to mass accuracy calibration and ±4.5 ppm

after internal MaxQuant calibration. Other search settings included

a maximum peptide mass of 6,000 Da, a minimum peptide length

of six residues, and a 0.05 Da tolerance for high-resolution MS/MS

scans. The false discovery rate (FDR) for peptide spectral matches,

proteins, and site decoy fractions was all set to 1%. Quantification

settings were as follows: re-quantification with a second peak

finding attempt after protein identification has been completed;

match full MS1 peaks between runs; and a 0.7-min retention time

match window should be used after an alignment function was

found with a 20-min retention time search space. Only razor and

unique peptides were considered for protein-level quantitation as

summed intensities.

Data preprocessing

A total of 4,351 high-confidencemaster proteins were identified

and quantified across all 80 samples. Protein abundances were

log2 transformed before sample outlier detection and missingness

filtering. Network connectivity identified five samples as outliers

[samples>3 standard deviations away from themean, as previously

described (Johnson et al., 2020, 2022)] that were removed along

with the matched tissue pairs from the other brain region, and only

proteins with >50% missing values across samples were included.

The final data matrix included 70 samples and 3,368 proteins for

downstream analyses.

Di�erential expression analysis

Significantly differentially changed proteins between groups

were defined using one-way ANOVA with Tukey’s comparison

post-hoc test (significance was determined as p < 0.05). Differential

expressions displayed as volcano plots were generated using the

ggplot2 package (3.3.5).

Consensus weighted gene correlation
network analysis (cWGCNA)

Network analysis was performed using the consensus

configuration of the weighted gene correlation network analysis

(cWGCNA, version 1.69) algorithm to identify co-expression

modules present and shared in both cortex and hippocampal brain

regions. The WGCNA::blockwiseConsensusModules function was

run with soft threshold power at 7.0, a deep split of 4, a minimum

module size of 30, merge cut height at 0.07, a mean topological

overlap matrix (TOM) denominator, bicor correlation, signed

network type, pamStage, and pamRespectsDendro parameters both

set to TRUE and a reassignment threshold of 0.05. This function

calculates pairwise biweight mid-correlations (bicor) between

protein pairs. The resulting correlation matrix is then transformed

into a signed adjacency matrix, which is used to calculate a

topological overlap matrix (TOM), representing expression

similarity across samples for all proteins in the network. This

approach uses hierarchical clustering analysis and dynamic tree

cutting to identify co-expression modules. Following construction,

module eigenprotein (ME) values were defined. The MEs are the

first principle component of a given module and are considered

representative abundance values for a module that also explains

modular protein covariance (Langfelder and Horvath, 2008).

Pearson’s correlation between proteins and MEs was used as a

module membership measure, defined as kME.

Gene ontology (GO) and cell-type marker
enrichment analyses

Gene ontology (GO), WikiPathways, Reactome, and molecular

signatures database (MSigDB) term enrichment in our gene sets

of mouse network module members and significantly differentially

changed protein subsets were determined by gene set enrichment

analysis (GSEA) using an in-house developed R script (https://

github.com/edammer/GOparallel). Briefly, this script performs

one-tailed Fisher’s exact tests (FET) enabled by functions of

the R piano package for ontology enrichment analysis on gene

sets downloaded from http://baderlab.org/GeneSets, which is

maintained and updated monthly to pull in current gene sets from

more than 10 different database sources including those mentioned

above (Varemo et al., 2013; Reimand et al., 2019). Redundant

core GO terms were pruned in the GOparallel function using the

minimal_set function of the ontologyIndex R package (Greene

et al., 2017). Ontology analyses were adjusted using the Benjamini–

Hochberg procedure. Cell-type enrichment was also investigated,

as previously published (McKenzie et al., 2017; Seyfried et al.,

2017; Johnson et al., 2022). An in-house marker list combined

with previously published cell-type marker lists from Sharma et al.

(2015) and Zhang et al. (2014) was used for the cell-type marker

enrichment analysis for each of the five cell types assessed (neuron,

astrocyte, microglia, oligodendrocyte, and endothelial). If, after the

lists from Sharma et al. and Zhang et al. weremerged, a gene symbol

was assigned to two cell types, we defaulted to the cell type defined

by the Zhang et al. list, such that each gene symbol was affiliated

with only one cell type. Fisher’s exact tests were performed using the
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cell-type marker lists to determine cell-type enrichment and were

corrected by the Benjamini–Hochberg procedure.

Network preservation

Network preservation was determined using the

WGCNA::modulePreservation() function. Zsummary composite

preservation scores were calculated using the mouse network as

the test network, the human network, and the reference network.

Parameters included: 500 permutations, a random seed set to 1 (for

reproducibility), and quickCor set to 0.

Enrichment analysis of proteome-wide
association study (PWAS) and
genome-wide association study (GWAS)
results

The proteome-wide association study (PWAS) of the cognitive

trajectory by Yu et al. (2020) tested 8,356 proteins for correlation

with the change in cognition over time. Unique gene symbols

representing protein gene products positively correlated (n = 645)

and negatively correlated (n = 575) with cognitive resilience were

split into lists with corresponding P-values. For GWAS of AD

risk, compiled single-nucleotide polymorphism (SNP) summary

statistics were used [(Lambert et al., 2013; Kunkle et al., 2019;

Bellenguez et al., 2022), MAGMA.SPA/MAGMAinput.zip at main

· edammer/MAGMA.SPA · GitHub]. These lists were separately

checked for enrichment in both mouse and human network

modules using a permutation-based test (10,000 permutations)

implemented in R, with exact P-values for the permutation tests

calculated using the permp function of the statmod package

(1.4.36). Module-specific mean P-values for enrichment were

determined as a Z-score, specifically as the difference in mean P-

value of gene product proteins hitting a module at the level of gene

symbol minus the mean P-value of genes hit in the 10,000 random

replacement permutations, divided by the standard deviation of

P-value means also determined in the random permutations

(Supplementary Tables 19–23).

Mergeomics key driver analysis

Mergeomics v2.0 (http://mergeomics.research.idre.ucla.edu/

runmergeomics.php) weighted key driver analysis (KDA) (Ding

et al., 2021) was run using either hippocampus or cortex network

non-gray gene product proteins (N = 1,897 in either), converted

to human gene nomenclature (HUGO) official gene symbols via

the biomaRt package’s getLDS function in R v4.2.3. Each symbol

was input with its corresponding mouse network module color.

The other input for KDA was the Mergeomics v2.0 sample

human Bayesian brain network consisting of over 29,000 nodes

and ∼140,000 edges as the substrate network. Parameters used

were a search depth of 3 (maximum edge distance starting from

each candidate key driver gene); edge type = directed, thereby

leveraging the edge directionality of the input Bayesian network;

minimum hub overlap of 0.33 (default); and an edge factor of

0.1, allowing the edge weights in the Bayesian network input to

carry into the analysis with low to moderate impact. The table

output of the key driver candidate subset from brain network hubs

was further filtered to report the 88 nodes that were both FDR-

adjusted significant key driver hub nodes and present in the input

hippocampus or cortex gene lists. This output table was unchanged

whether the input for KDA was the hippocampus or cortex module

assignments, where only 34 of the 1,897 gene product proteins

were in a different module comparing the hippocampus to cortex

network non-gray module assignments.

Additional statistical analyses

All proteomic statistical analyses were performed in R (version

4.0.3). Box plots represent the median and 25th and 75th percentile

extremes; the hinges of a box represent the interquartile range

of the two middle quartiles of data within a group. Error bars

extents are defined by the farthest data points up to 1.5 times the

interquartile range away from the box hinges. Correlations were

performed using the biweight midcorrelation function from the

WGCNA package.
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