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Brain-derived neurotrophic factor 
gene polymorphism affects 
cognitive function and 
neurofilament light chain level in 
patients with subcortical 
ischaemic vascular dementia
Xiaojuan Yao 1†, Guotao Yang 1,2†, Tingting Fang 1, Zhuo Tian 1, 
Yunyao Lu 1, Feifan Chen 1, Ping Che 1, Jingshan Chen 1 and 
Nan Zhang 1*
1 Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 
Tianjin, China, 2 Department of Neurology, Cangzhou Central Hospital, Cangzhou, China

Objective: To investigate the effects of brain-derived neurotrophic factor (BDNF) 
gene polymorphism on cognitive function, neuroimaging and blood biological 
markers in patients with subcortical ischaemic vascular dementia (SIVD).

Methods: A total of 81 patients with SIVD were included. According to their BDNF 
gene polymorphism, the participants were divided into the Val/Val (n  =  26), Val/
Met (n  =  35), and Met/Met (n  =  20) groups. A comprehensive neuropsychological 
evaluation and multimodal brain MRI scan were performed. MRI markers for 
small vessel disease were visually rated or quantitatively analysed. Moreover, 52 
patients were further evaluated with blood marker assays, including amyloid beta 
(Aβ), phosphorylated tau at threonine-181 (P-tau181), glial fibrillary acidic protein 
(GFAP), total tau (T-tau) and neurofilament light chain (NfL).

Results: There were no significant differences in demographics, disease duration 
or MRI markers of small vessel disease between the three groups. Compared with 
the Val/Val and Val/Met groups, the Met/Met group showed worse performance 
in the verbal fluency test and higher levels of plasma NfL.

Conclusion: The rs6265 polymorphism of the BDNF gene is associated with 
semantic language fluency in patients with SIVD. The Met genotype may be a risk 
factor for cognitive impairment and neuronal injury.
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Introduction

Subcortical ischaemic vascular dementia (SIVD), which often has an insidious onset and 
manifests as gradual cognitive decline, gait instability, urinary incontinence and abnormal mood 
and behaviour, is the most common subtype of vascular dementia (VaD; Román et al., 2002; 
Wolters and Ikram, 2019). Patients with SIVD usually present subcortical lesions and markers 
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of cerebral small vessel disease on brain magnetic resonance imaging 
(MRI), such as white matter hyperintensities (WMH), lacune, 
enlarged perivascular space and cerebral microbleeds (Tomimoto, 
2011). Both the pathogenesis and mechanism of cognitive impairment 
in SIVD patients are complex and associated with neuroprotective and 
neurodegenerative mechanisms in addition to vascular injury 
(O’Brien and Thomas, 2015; Kara et al., 2023).

Brain-derived neurotrophic factor (BDNF) is a member of the 
neurotrophic factor family, is mainly produced by neurons in the 
hippocampus and cerebral cortex, and is widely expressed in the 
central nervous system. Previous studies have shown that BDNF 
plays a key role in supporting neuronal survival and differentiation, 
enhancing synaptic transmission and plasticity, and consolidating 
memory (Leal et al., 2015). BDNF plays a neuroprotective role in 
dominantly inherited Alzheimer’s disease (AD), suggesting that the 
reduction in its neurotrophic support accelerates tau protein-
induced neurotoxicity (Lim et al., 2022). In addition, BDNF also 
showed a protective effect against cerebral ischaemia and white 
matter injury in elderly depression patients (Taylor et al., 2008). The 
BDNF gene is located on human chromosome 11p13 and has 
multiple gene polymorphism sites. Notably, the rs6265 
polymorphism is of great concern in the field of neurocognition. 
The mutation of guanine at this site into adenine leads to the change 
of codon 66 from valine to methionine. Therefore, BDNF Val 66Met 
has three genotypes, namely, Val/Val, Val/Met, and Met/Met. Most 
previous findings suggested that the Met allele could interrupt the 
cell processing and secretion of BDNF (Egan et al., 2003; Ninan 
et al., 2010).

The cognitive correlation of the BDNF gene has been 
demonstrated in several central nervous system diseases. It has been 
shown that Met allele carriers have a higher incidence rate of AD; in 
contrast, the age of disease onset in AD patients with Val carriers is 
delayed (Vepsäläinen et  al., 2005). Compared with Val/Val 
homozygotes, Met carriers have a higher incidence of hippocampal 
atrophy and accelerated episodic memory decline in patients with 
prodromal AD (Lim et al., 2014). In addition, a higher incidence rate 
of cognitive impairment was also observed in patients with Parkinson’s 
disease (PD) who carried the Met allele (Białecka et al., 2014; Altmann 
et al., 2016). In addition, in patients with relapsing–remitting multiple 
sclerosis, the risk of global grey matter atrophy of Met gene carriers is 
higher than that of Val homozygotes (Liguori et al., 2007). However, 
there have also been contrary findings. An early study showed that 
patients with mild cognitive impairment carrying the Val homozygous 
gene had an increased risk of developing AD compared to that of Met 
carriers (Bessi et al., 2020).

Whilst numerous studies have investigated the association 
between BDNF polymorphism and neurocognitive changes in 
ageing and various pathological backgrounds, the effect of the 
Val66Met polymorphism on cognition and neurodegeneration is 
still not fully understood, particularly in patients with VaD, 
although a previous study found that Val carriers were more quickly 
diagnosed with dementia after ischaemic stroke (Rezaei et  al., 
2016). This study aims to explore the impact of the BDNF Val66Met 
polymorphism on cognitive function in patients with SIVD and its 
possible association with imaging markers of small vessel disease 
and blood biomarkers for AD pathology, neuroinflammation, 
and neurodegeneration.

Materials and methods

Participants

Eighty-one patients with SIVD were enrolled in a longitudinal 
MRI study of Alzheimer’s disease and subcortical ischaemic vascular 
dementia (ChiCTR1900027943) at Tianjin Medical University 
General Hospital. All participants were aged 50~85 years and received 
a systematic evaluation, including medical history collection, physical 
and neurological examinations, neuropsychological evaluation, 
laboratory tests, and brain MRI. This study was approved by the Ethics 
Committee of Tianjin Medical University General Hospital. All 
participants and their legal guardians signed written consent forms.

All SIVD patients were diagnosed according to the criteria for 
major neurocognitive disorder in the fifth edition of the Diagnostic 
and Statistical Manual of Mental Disorders (Sachdev et al., 2015) and 
the diagnostic criteria for vascular cognitive disorders (VASCOG; 
Sachdev et  al., 2014), presenting characteristics of subcortical 
ischaemic small vessel disease on MRI and one or more of the 
following criteria: (1) multiple (≥3) supratentorial subcortical small 
infarcts (3~15 mm in diameter) with or without any degree of WMH; 
(2) the presence of moderate to severe WMH [a score ≥ 2  in the 
periventricular area or deep white matter according to Fazekas rating 
scale (Cedres et al., 2020)] with or without lacunes; and (3) one or 
more small infarctions in the deep grey matter. Meanwhile, there was 
no significant hippocampal atrophy (based on the Scheltens’ medial 
temporal lobe atrophy scale (Ridha et al., 2007) using the criteria of 
<2 for patients ≤ 75 years old or < 3 for patients > 75 years old).

The exclusion criteria were as follows: (1) cognitive impairment 
caused by other central nervous system diseases, such as AD, dementia 
with Lewy bodies, PD, frontotemporal lobar degeneration (FTLD), 
hydrocephalus, and multiple sclerosis; (2) cognitive impairment 
caused by systemic diseases, such as vitamin B12 deficiency, thyroid 
dysfunction, syphilis or HIV infection; (3) cognitive impairment 
caused by mental disorders, such as schizophrenia and severe 
depression; (4) alcohol or drug abuse affecting cognitive assessment; 
(5) inability to cooperate with MRI scan or cognitive assessment.

Neuropsychological assessment

All participants were evaluated with the clinical dementia rating 
(CDR) scale and received a comprehensive neuropsychological battery 
as previously described (Li et al., 2021; Tian et al., 2023). In addition 
to measuring global cognition with the Mini-Mental State 
Examination (MMSE; Arevalo-Rodriguez et  al., 2015) and the 
Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005), 
several cognitive domains, such as memory, language, attention and 
processing speed, executive function, and visuospatial function, were 
evaluated. Specifically, the Auditory Verbal Learning Test (AVLT; 
Ramirez-Gomez et al., 2017) and Brief Visuospatial Memory Test-
Revised (BVMT-R; Liu et al., 2021) were used to evaluate episodic 
memory; the Verbal Fluency Test (VFT; Clark et al., 2014) was used 
to assess language; the Stroop Colour and Word Test (Scarpina and 
Tagini, 2017) was used to evaluate executive function; the Digital Span 
Test (DST; Jaeger, 2018), Symbol Digit Modifications Test (SDMT), 
and Trail Making Test-A (TMT-A; Zhang et al., 2019) were used to 
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evaluate attention and processing speed; and the Judgement of Line 
Orientation (JLO; Wang et al., 2021) was used to evaluate visuospatial 
ability. Z scores were converted using the mean and standard deviation 
of cognitively unimpaired healthy controls from our longitudinal 
cohort (Tian et al., 2023).

Imaging markers

Image acquisition
Multimodal brain MRI scans were performed on all participants 

using a 3.0 T superconducting magnetic resonance scanner (Discovery 
MR750; General Electric, Milwaukee, WI, United States), including 
T1 weight imaging (T1WI), T2 weight imaging (T2WI), diffusion-
weighted imaging (DWI), fluid-attenuated inversion recovery 
(FLAIR), and gradient echo (GRE) sequences. The T1WI parameters 
were as follows: repetition time (TR) = 8.2 ms; echo time (TE) = 3.2 ms; 
time of inversion (TI) = 450 ms; flip angle (FA) = 12°; field of view 
(FOV) = 256 mm × 256 mm; layer thickness = 1 mm; and number of 
layers = 188. The following T2WI parameters were used: TR = 2,500 ms; 
TE = 80 ms; FA = 90°; FOV = 230 mm × 230 mm; layer thickness = 1 mm; 
and number of layers = 376; The FLAIR parameters were as follows: 
TR = 8,400 ms; TE = 150 ms; TI = 2,100 ms; FA = 111°; 
FOV = 240 mm × 240 mm; layer thickness = 6 mm; and number of 
layers = 18; The following DWI parameters were used: TR = 2,100 ms; 
TE = 65.4 ms; FA = 90°; FOV = 256 mm × 256 mm; layer 
thickness = 6 mm; and number of layers = 36. Finally, the GRE 
parameters were as follows: TR = 200 ms; TE = 3.9 ms; FA = 30°; 
FOV = 256 mm × 256 mm; layer thickness = 6 mm; and number of 
layers = 18.

Visual rating and quantification of small vessel 
disease markers on MRI

All MRI scans were reviewed by two investigators who were 
trained to be consistent and blinded to the clinical information and 
neuropsychological testing results. Small vessel disease markers were 
defined according to the standards for reporting vascular changes on 
neuroimaging (the STRIVE recommendation; Wardlaw et al., 2013). 
The number of lacunar infarctions in each part of the brain was 
assessed by semiquantitative visual scoring. Lacunes, including the 
basal ganglia, internal capsule, centrum semioval, and brainstem, were 
counted and recorded as either present or absent. The Microbleed 
Anatomical Rating Scale (MARS; Gregoire et al., 2009) was used to 
evaluate cerebral microbleeds. The location and number of cerebral 
microbleeds were interpreted according to the GRE sequence. The 
final MARS score was the sum of three different anatomical regions, 
including the brain lobes, deep brain, and infratentorial region. The 
perivascular space (PVS) was measured and scored according to the 
Potter scale, with grades of 0 (none), 1 (1–10), 2 (11–20), 3 (21–40), 
and 4 (>40) based on the number of PVSs in the basal ganglia and 
centrum semiovale, and 0 or 1 according to the absence or presence 
of PVSs in the midbrain. The sum of the scores of the midbrain and 
higher scores of the left or right hemisphere (basal ganglia + centrum 
semiovale) was used in the analysis for PVS (Tian et al., 2023). WMH 
was quantified using the lesion segmentation toolkit (LST)1 based on 

1 https://www.applied-statistics.de/lst.html

SPM. The lesion growth algorithm in LST was adopted to calculate the 
volume of WMH.

BDNF genotyping and plasma biomarker 
measurement

Blood samples from all participants were collected in standard 
tubes containing EDTA as an anticoagulant. DNA was extracted using 
a DNA automatic extraction kit (Enlighten, Shanghai, China). Primer-
BLAST software was used for primer design. After purifying the 
polymerase chain reaction (PCR) product, BDNF genotyping was 
performed using the ABI 3730XL analyser (Applied Biosystems, CA, 
United States).

Plasma was obtained from blood samples within 2 h of collection 
by being centrifuged at 2,500 × g for 15 min at 4°C and then was stored 
at −80°C until biochemical analysis. The levels of plasma amyloid beta 
(Aβ)42, Aβ40 and total tau (T-tau) were quantitatively detected using 
the Neurology 3-Plex A Assay Kit (Quanterix, 503203), plasma 
phosphorylated tau at threonine-181 (P-tau181) was quantitatively 
detected using the P-tau 181 Assay Kit V2 (Quanterix, 503008), and 
plasma glial fibrillary acidic protein (GFAP) and neurofilament light 
chain (NfL) were quantitatively detected using the Neurology 2-Plex 
B Assay Kit (Quanterix, 502,713). All measurements were performed 
on the single molecule array (Simoa) HD-X analyser platform 
(Quanterix, Lexington, MA, United States) according to the procedure 
previously described (Chen et  al., 2021, 2023). Twenty-nine 
participants who were enrolled at the beginning of the original study 
(ChiCTR1900027943) did not have enough plasma sample to 
complete the biomarker measurement. Therefore, only 52 participants 
had plasma biomarker results. The operation was carried out in strict 
accordance with the instructions of the kit, and all test data and 
genotypes were subject to strict quality control.

Statistical analysis

All analyses were performed using SPSS version 22.0. Quantitative 
data are presented as the mean ± SD, and categorical data are presented 
as n (%). Participants were divided into three groups (Val/Val, Val/
Met, and Met/Met) according to their BDNF genotype. The differences 
in demographic and clinical data, neuropsychological scores, MRI 
markers for small vessel disease, and plasma biomarkers were 
compared between groups using one-way ANOVAs for continuous 
variables or chi-square tests for categorical variables. Fisher’s least 
significant difference was used for multiple comparisons. All 
hypothesis tests were two-tailed, and p < 0.05 was considered the 
threshold for statistical significance.

Results

Demographic characteristics

The participants, 50 males and 31 females, had an average age of 
71.40 ± 7.24 years, average course of disease of 3.98 ± 2.13 years, and 
average education level of 11.06 ± 3.38 years. There were 26 patients 
with Val/Val, 35 with Val/Met, and 20 with Met/Met BDNF genotypes. 
There were no significant differences in age, sex, years of education, or 

https://doi.org/10.3389/fnagi.2023.1244191
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.applied-statistics.de/lst.html


Yao et al. 10.3389/fnagi.2023.1244191

Frontiers in Aging Neuroscience 04 frontiersin.org

proportions of hypertension and diabetes between patients with 
different BDNF genotypes (Table 1).

Neuropsychological performance

There was a significant difference in VFT scores amongst the three 
groups (Table 2). Post hoc analysis showed that the Met/Met group had 
lower scores on the VFT than both the Val/Val group (Val/Val group vs. 
Met/Met group, p = 0.009) and the Val/Met group (Val/Met group vs. Met/
Met group, p = 0.008). No significant differences were observed in global 
cognition measured with the MMSE and the MoCA and other scores for 
various cognitive domains between groups (p > 0.05).

Small vessel disease markers on MRI

There was no statistically significant difference in any small vessel 
disease markers between groups (p > 0.05; Table 3).

Plasma biomarkers

The plasma NfL level was higher in the Met/Met group than in the 
Val/Val group (Val/Met group vs. Met/Met group, p = 0.002) and the 
Val/Met group (Val/Met group vs. Met/Met group, p = 0.004; Table 4). 
No difference in the levels of other plasma biomarkers was found, 
including Aβ42, Aβ40, Aβ42/40, P-tau181, GFAP, and T-tau.

TABLE 1 Comparison of demographic and clinical characteristics between SIVD patients with different BDNF gene polymorphisms.

Val/Val (N  =  26) Val/Met (N  =  35) Met/Met (N  =  20) F/χ2 P

Age (years) 71.58 (7.06) 71.74 (6.46) 71.00 (8.36) F = 0.17 0.85

Sex (male/female) 19/7 18/17 13/7 χ2 = 3.78 0.15

Course of disease (years) 4.25 (2.45) 4.00 (2.18) 3.76 (1.95) F = 0.18 0.84

Education (years) 10.46 (2.92) 11.24 (3.66) 11.40 (3.25) F = 0.98 0.38

Hypertension (n) 12 (46.16%) 25 (71.43%) 14 (70%) χ2 = 1.64 0.44

Diabetes mellitus (n) 6 (23.07%) 8 (22.86%) 5 (25%) χ2 = 1.28 0.53

Values are provided as the mean (SD) unless specifically indicated. CDR, Clinical Dementia Rating scale.

TABLE 2 Comparison of cognitive scores between SIVD patients with different BDNF gene polymorphisms.

Val/Val (N  =  26) Val/Met (N  =  35) Met/Met (N  =  20) F P

Global cognition

  MMSE −3.48 (3.41) −3.20 (2.81) −4.00 (2.91) 0.46 0.64

  MoCA −3.16 (1.92) −2.81 (1.94) −3.70 (2.04) 1.32 0.27

Episodic memory

  AVLT total learning −2.51 (1.33) −2.33 (0.93) −2.59 (0.82) 0.43 0.65

  AVLT delayed recall −2.48 (1.08) −2.59 (1.04) −2.81 (0.93) 0.61 0.55

  AVLT recognition −2.40 (2.25) −2.08 (1.59) −2.68 (1.57) 0.75 0.48

  BVMT-R total learning −1.74 (0.69) −1.52 (1.08) −1.91 (0.76) 1.30 0.28

  BVMT-R delayed recall −1.96 (0.91) −1.82 (1.23) −2.29 (0.94) 1.24 0.29

  BVMT-R recognition −1.47 (1.19) −1.54 (1.55) −1.63 (1.42) 0.07 0.93

Language

  VFT −1.55 (1.10) −1.58 (1.01) −2.38 (1.09) 4.54 0.01a

Executive function

  Stroop Colour and Word −1.48 (1.16) −1.44 (1.15) −1.59 (1.11) 0.10 0.91

Attention and processing speed

  DST Anterograde −4.88 (0.97) −0.86 (1.38) −0.91 (1.03) 0.71 0.50

  DST Backwards 0.26 (1.87) 0.16 (2.07) −0.43 (1.26) 0.68 0.51

  SDMT −1.86 (0.95) −1.78 (0.86) −1.99 (1.04) 0.29 0.75

  TMT-A 2.19 (1.71) 2.21 (1.62) 2.42 (1.73) 0.13 0.88

Visuospatial function

  JLO −1.09 (1.58) −0.63 (1.54) −1.47 (1.32) 2.00 0.14

Values are presented as the mean (SD) of Z scores. aPost hoc analysis: Val/Val group vs. Met/Met group, P = 0.009; Val/Met group vs. Met/Met group, P = 0.008; Val/Val group vs. Val/Met group, 
P = 0.92. MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; AVLT, Auditory Verbal Learning Test; TMT-A, Trail Making Test-A; VFT, Verbal Fluency Test; DST, 
Digital Span Test; SDMT, Symbol Digit Modifications Test; BVMT-R, Brief Visuospatial Memory Test-Revised; JLO, Judgement of Line Orientation.
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Discussion

Although the correlation between BDNF gene polymorphism 
and cognitive function has been observed in persons with normal 
ageing, neurodegenerative diseases (e.g., AD and PD), multiple 
sclerosis, and some mental disorders (Harrisberger et al., 2015; Shen 
et al., 2018; Cechova et al., 2020; Portaccio et al., 2021; Dolcetti et al., 
2022), the evidence in patients with VaD (particularly SIVD) is 
limited. In this study, we found that SIVD patients with Met/Met 
BDNF polymorphism tended to have worse cognitive performance 
compared with those carrying Val/Val or Val/Met under similar 
disease duration and level of vascular burden, although this tendency 
did not reach significance in most neuropsychological tests except 
semantic verbal fluency. This finding indicates that homozygotes of 
the Met gene had a detrimental role in cognitive function in patients 
with SIVD.

Consistent with the observed tendency of the Met carriers to show 
worse cognitive performance in our study, the influence of Met 
genotype on impairment in various cognitive domains has been 
reported in several previous studies. In persons with preclinical AD, 
Met carriers have significantly decreased cognitive functions, such as 
episodic memory, executive function and language function, compared 
with noncarriers (Lim et al., 2013, 2017). Met homozygotes also exhibit 
impaired executive function and visual memory compared with those 
carrying Val/Val or Val/Met in patients with posttraumatic stress 
disorder (Havelka Mestrovic et al., 2020). It has been demonstrated that 
BDNF can attenuate the pathological state of neurons, promote their 
survival and differentiation, and protect them from injury through a 
variety of signal transduction pathways, especially its high-affinity 
receptor tyrosine kinase receptor B (TrkB), which prominently 
contributes to neuronal plasticity and long-term potentiation. It was 
reported that the Met gene reduced active-dependent secretion of 
BDNF and binding of mature BDNF and TrkB and damaged the 
intracellular transport and synaptic location of mature BDNF, leading 
to synaptic plasticity dysfunction and cognitive impairment.

Verbal fluency was the main cognitive domain affected by the 
Val66Met polymorphism in the present study. A previous study also 
found this effect in epilepsy patients (Toh et al., 2018; Doherty et al., 2021). 
The verbal fluency task is associated with executive function and semantic 
memory, which are highly dependent on the frontal system (Robinson 
et al., 2012; Clark et al., 2014). BDNF is highly expressed in the frontal 
lobe as well as in the hippocampus. Moreover, it has been shown that the 
Met gene impairs synaptic transmission and plasticity in the infralimbic 
medial prefrontal cortex (Pattwell et al., 2012), which might be associated 
with a deficit in semantic verbal fluency.

Since no specific biomarkers for SIVD have been identified yet, 
we tested plasma biomarkers for AD pathology, neuroinflammation, 
and neurodegeneration in this study. No differences in Aβ and P-tau 
or GFAP, which is a special intermediate filament component of 
mature astrocytes, were observed between SIVD patients with 
different Val66Met polymorphisms, indicating that the effect of Met 
may not be  attributable to increasing AD pathology or activating 
astrocyte-related inflammation.

Interestingly, NfL levels were significantly increased in SIVD 
patients with Met homozygotes compared with those with Val 
homozygotes and heterozygotes. Although it has been demonstrated 
that plasma NfL, an important protein component of the neuronal 
axon cytoskeleton, could be  a sensitive biomarker for 
neurodegeneration and predict cognitive decline in many central 
nervous system diseases, such as AD, FTLD and VaD (Forgrave et al., 
2019; Aamodt et al., 2021), there is no evidence for the contribution 
of Met to NfL level. Our findings suggested that the Met gene may 
accelerate neuronal axonal damage and neurodegeneration in cerebral 
small vessel disease or chronic ischaemic vascular injury.

In this study, there was no difference in MRI markers for small vessel 
disease, including WHM, lacunes, microbleeds and PVS, between SIVD 
patients with different BDNF gene polymorphisms. The effect of the 
Val66Met polymorphism on vascular markers was contradictory in 
previous studies. For instance, Met66 allele carriers show a larger WMH 
volume amongst elderly individuals with depression (Taylor et al., 2008). 

TABLE 3 Comparison of MRI markers between SIVD patients with different BDNF gene polymorphisms.

Val/Val (N  =  26) Val/Met (N  =  35) Met/Met (N  =  20) F P

WMH (mL) 23.23 (13.38) 22.77 (14.83) 20.93 (14.62) 0.12 0.89

Lacune 3.10 (3.40) 3.31 (3.48) 2.27 (2.74) 0.49 0.61

Microbleed 4.65 (5.98) 6.06 (9.44) 8.00 (16.26) 0.48 0.62

PVS 4.65 (1.30) 4.29 (1.13) 4.50 (1.03) 0.65 0.53

Values are provided as the mean (SD). WMH, white matter hyperintensities; PVS, perivascular space.

TABLE 4 Comparison of plasma biomarkers between SIVD patients with different BDNF gene polymorphisms.

Val/Val (N  =  16) Val/Met (N  =  20) Met/Met (N =  16) F P

Aβ42 (pg/mL) 7.58 (2.44) 9.22 (2.34) 8.45 (2.51) 2.37 0.10

Aβ40 (pg/mL) 186.61 (65.99) 206.99 (76.85) 177.18 (51.18) 1.42 0.25

Aβ42/40 0.04 (0.11) 0.05 (0.01) 0.05 (0.01) 1.24 0.30

P-tau181 (pg/mL) 3.10 (1.70) 2.23 (1.51) 2.67 (1.53) 0.88 0.42

GFAP (pg/mL) 150.45 (63.19) 152.59 (54.60) 155.73 (58.22) 0.02 0.98

T-tau (pg/mL) 6.46 (3.16) 7.60 (3.05) 7.01 (3.68) 0.90 0.41

NfL (pg/mL) 17.54 (6.56) 18.59 (8.43) 30.01 (15.84) 6.55 <0.01a

Values are provided as the mean (SD). aPost hoc analysis: Val/Val group vs. Met/Met group, P = 0.002; Val/Met group vs. Met/Met group, P = 0.004; Val/Val group vs. Val/Met group, P = 0.71. 
GFAP, glial fibrillary acidic protein; NfL, neurofilament light chain.

https://doi.org/10.3389/fnagi.2023.1244191
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Yao et al. 10.3389/fnagi.2023.1244191

Frontiers in Aging Neuroscience 06 frontiersin.org

However, another study in elderly men without dementia found that 
WMH volume is increased in Val homozygotes compared with Met 
homozygotes (Huang et al., 2014). Our results further supported that the 
correlations between the Val66Met polymorphism and cognitive function 
and plasma NfL levels were not attributed to disease severity because 
participants from the three groups had the same disease duration and 
degree of vascular lesions.

There are some limitations of the study to address. First, although 
strict MRI criteria, including the medial temporal lobe atrophy score, 
were included in participant recruitment, we did not detect Aβ and tau 
markers using CSF or PET to exclude patients with mixed AD pathology, 
which could aggravate cognitive impairment and neurodegeneration in 
patients with SIVD. Second, apart from BDNF gene polymorphism, other 
genetic factors (e.g., apolipoprotein E), which might also play a role in 
pathogenesis and disease progression, were not analysed in this study. 
Third, although the Met/Met group showed worse performance on most 
tests, such as the AVLT, the BVMT-R, the Stroop, the TMT-A, the DST, 
the SDMT, and the JLO, the difference between the 3 groups was only 
statistically significant on the VFT. Therefore, the cognitive correlation of 
Val66Met polymorphism needs validation in more studies. Fourth, 
biomarker results were only obtained from individuals who were enrolled 
during the latter half of the study, which might not be representative of all 
participants. Finally, since this was a cross-sectional study, we could not 
completely determine the causal relationship between BDNF 
polymorphism and clinical and neurobiological correlations in SIVD 
patients. It is worth further investigating these correlations in persons 
with cerebral small vessel injury but not dementia with a long-term 
follow-up.

Conclusion

The Met/Met genotype in the rs6265 polymorphism of the BDNF 
gene may accelerate cognitive impairment in patients with SIVD, and 
this effect was correlated with neurodegeneration measured with 
plasma NfL but independent of vascular lesions.
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