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Objective: Coronary artery disease (CAD) usually coexists with subclinical 
cerebrovascular diseases given the systematic nature of atherosclerosis. In this 
study, our objective was to predict the progression of white matter hyperintensity 
(WMH) and find its risk factors in CAD patients using the coronary artery calcium 
(CAC) score. We also investigated the relationship between the CAC score and 
the WMH volume in different brain regions.

Methods: We evaluated 137 CAD patients with WMH who underwent coronary 
computed tomography angiography (CCTA) and two magnetic resonance imaging 
(MRI) scans from March 2018 to February 2023. Patients were categorized into 
progressive (n  =  66) and nonprogressive groups (n  =  71) by the change in WMH 
volume from the first to the second MRI. We collected demographic, clinical, and 
imaging data for analysis. Independent risk factors for WMH progression were 
identified using logistic regression. Three models predicting WMH progression 
were developed and assessed. Finally, patients were divided into groups based on 
their total CAC score (0 to <100, 100 to 400, and  >  400) to compare their WMH 
changes in nine brain regions.

Results: Alcohol abuse, maximum pericoronary fat attenuation index (pFAI), CT-
fractional flow reserve (CT-FFR), and CAC risk grade independently predicted 
WMH progression (p  <  0.05). The logistic regression model with all four variables 
performed best (training: AUC  =  0.878, 95% CI: 0.790, 0.938; validation: 
AUC  =  0.845, 95% CI: 0.734, 0.953). An increased CAC risk grade came with 
significantly higher WMH volume in the total brain, corpus callosum, and frontal, 
parietal and occipital lobes (p  <  0.05).

Conclusion: This study demonstrated the application of the CCTA-derived CAC 
score to predict WMH progression in elderly people (≥60  years) with CAD.
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Introduction

White matter hyperintensity (WMH) is a prevalent manifestation 
in cerebral small vessel disorders. The pathogenesis of WMH is 
interconnected with various pathological conditions that impact the 
small arteries, capillaries, and small veins that perfuse brain tissue, 
causing damage to both gray and white matter (Wardlaw et al., 2013a). 
This type of brain injury appears as hyperintense signal changes on 
T2-weighted and fluid-attenuated inversion recovery (FLAIR) 
sequences of magnetic resonance imaging (MRI) scans (Wardlaw 
et al., 2015). The prevalence of WMH increases with age, and among 
otherwise healthy individuals aged 80 or older, about 64–94% have 
WMH (Garde et al., 2000). The rate is even higher among individuals 
with a history of cardiovascular risks, diagnosed heart disease, or 
kidney impairment (Liu et al., 2018; Moroni et al., 2018). The presence 
and severity of WMH are associated with an increased risk of 
dementia, cognitive impairment and stroke, indicating that WMH 
may be a target for intervention in the management of small vessel 
disease (Debette and Markus, 2010). Therefore, it is crucial to identify 
the risk factors for WMH so we can intervene early to prevent or delay 
their onset (Ter Telgte et al., 2018; Chung et al., 2023).

Cardiovascular disease, including coronary artery disease (CAD), 
is the primary cause of mortality in developed nations (Sanchis-
Gomar et  al., 2016). It is estimated that 4 million patients die of 
cardiovascular causes in Europe every year (Townsend et al., 2016). 
CAD is a chronic and progressive disease that is usually caused by 
atherosclerosis. It develops as plaque accumulates in the heart, 
obstructing coronary arteries partially or entirely and leading to 
hindered blood flow to the myocardium (Libby et al., 2011). Despite 
the differences in clinical manifestations between heart and brain 
diseases, they may share similar pathophysiological mechanisms, such 
as atherosclerosis in coronary arteries and cerebral small vessels, 
because both organs rely on large surface arteries to deliver blood 
through a network of small penetrating vessels (Berry et al., 2019). 
Identifying a connection between these two diseases would be of great 
significance for managing and reducing the risk of brain complications 
(such as WMH) in CAD patients.

The coronary artery calcium (CAC) score is a non-invasive metric 
derived from non-contrast coronary computed tomography 
angiography (CCTA) images. It measures the volume of calcium in 
coronary arteries to assess individual plaque accumulation (Malguria 
et  al., 2018). The CAC score, a reliable measure of risk for 
cardiovascular and cerebrovascular diseases, is linked not only to 
coronary heart disease but also to ischemic stroke and cranial artery 
stenosis (Hermann et al., 2013; Oh et al., 2015). The presence and 
larger volume of coronary artery plaque have been associated with 
larger WMH volume (Johansen et al., 2021). Two other CCTA-derived 
markers can reflect the severity of CAD (Moroni et al., 2018): The 
pericoronary fat attenuation index (pFAI) is an imaging biomarker 
that reflects vascular inflammation (Antonopoulos et al., 2017). It 
remains unaffected by both CAC and lumen stenosis, and it can 
provide independent information on the degree of systemic 
inflammation and predict adverse cardiac events (Oikonomou et al., 
2018, 2019). Inflammation of brain tissue is hypothesized to lead to 
the destruction of microcirculation, leading to WMH (Moroni et al., 
2018). Apart from the shared factor of inflammation contributing to 
the onset and progression of these two diseases, both the brain and 
heart depend on adequate blood supply to meet their intense 

metabolic demands. Controlling resistance in the brain’s 
microcirculation is crucial for ensuring sufficient local blood flow in 
the brain (Moroni et  al., 2020). The other CCTA-derived marker, 
CT-derived fractional flow reserve (CT-FFR) can be obtained by using 
fluid dynamics technology to evaluate the degree of cardiac ischemia 
(Min et  al., 2015). Thus, abnormal perfusion in these two organs 
causes similar pathological changes.

The complex and multifactorial relationship between the CAC 
score and WMH remains unclear. It is critical to monitor changes 
in WMH in patients with coronary atherosclerosis, since such 
changes may affect their prognosis and treatment. Our preliminary 
research discovered a linear correlation between the CAC score 
and the volume of WMH in elderly populations with high clinical 
risk factors, which suggested that the CAC score could serve as an 
imaging biomarker predicting the progression of WMH (Jin et al., 
2023). Therefore, this study aimed to develop an accurate WMH 
progression prediction model based on the CAC score along with 
other critical demographic and risk factors such as the CCTA-
derived markers pFAI and CT-FFR.

Materials and methods

This study was approved by the Ethics Committee of ZJPP 
Hospital. Due to the retrospective application of imaging data, the 
need for informed consent was waived. The investigation complied 
with the principles set out in the Declaration of Helsinki.

Study population

This retrospective study gathered data from 1,452 patients who 
had both CCTA and brain MRI at Zhejiang Provincial People’s 
Hospital between March 2018 and February 2023. Of these, 364 
patients had WMH and underwent a second brain MRI after a 
12-month interval. Among them, 137 patients met the inclusion 
criteria and were allocated to the training and validation models. The 
inclusion criteria were as follows: (1) WMH seen on T2 FLAIR and 
T2 weighted MR images; (2) age 60 or above; (3) absence of stroke 
(not counting lacunar infarction) on the DWI sequence; (4) no 
neurological symptoms such as Alzheimer’s disease, multiple sclerosis, 
or major brain injuries; (5) no history of heart attack or coronary 
stenting; and (6) symptoms of typical or atypical angina persisting for 
at least 3  months. Exclusion criteria: (1) intracranial infection or 
inflammation; (2) heart valve disease or irregular heart rhythm; (3) 
past cerebral infarction or mini-stroke; (4) inability to provide full 
baseline information; and (5) poor quality of MRI and CCTA images. 
Figure  1 shows the flowchart of participant recruitment and 
study design.

Clinical examination and definition

Demographic and clinical data of all study participants were 
gathered, including age, sex, body mass index (BMI), hypertension, 
hyperlipidemia, diabetes, smoking, and alcohol abuse. The 
calculation of BMI involved dividing weight (in kgs) by the square 
of height (in meters). The criteria for hypertension included a 
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systolic blood pressure not less than 140 mmHg, a diastolic blood 
pressure at least 90 mmHg, or the regular use of hypertension 
medication. Hyperlipidemia was identified if the participants had 
total cholesterol ≥240 mg/dL, had low-density lipoprotein 
cholesterol ≥160 mg/dL, or were taking lipid-lowering drugs. The 
presence of diabetes was determined by the intake of diabetic pills 
or an HbA1c level of 6.5% or more (ElSayed et al., 2023). All these 
data were sourced from hospital information system (HIS), which 
is a comprehensive information management system that covers all 
operations and their entire process in hospital; it also includes 
medical records and test results.

CCTA image acquisition

CCTA was done by using a third-generation dual-energy CT 
(DECT) scanner (Somatom Force; Siemens Healthcare, Erlangen, 
Germany). The patient was told to fast before the examination, and 
the patient’s heart rate, height and weight were measured. After 
acquisition of the localization image, the contrast agent iohexol 
(350 mg I/mL) was injected via the right median vein at a rate of 
5.0 mL/s using a high-pressure syringe, and the contrast agent injected 
was 30 mL of contrast agent plus 40 mL of saline. The scan was 
triggered using bolus tracking, with the region of interest (ROI) placed 
in the ascending aorta at a threshold of 100 Hounsfield units (HU) and 
a 4-s delay in initiating the scan. The image quality imaging conditions 
were 100 kVp, 288 mAs, other scan parameters: prospective cardiac 

gating, 65% RR interval, pitch 3.2, 0.25 s/r, detector collimation width 
192 × 0.6 mm, reconstruction layer thickness and interval 3 mm.

Measurement of CAC score

The non-contrast image sets were reconstructed (B35f HeartView 
medium CaScore), and CAC was identified and quantified using 
syngo.via calcium scoring software (Volume Wizard; Siemens). The 
four key coronary arteries assessed included the left main artery (LM), 
left anterior descending artery (LAD), right coronary artery (RCA), 
and left circumflex artery (LCX). We defined the total CAC score as 
the sum of the CAC burden of the four coronary vessels. Lesions going 
beyond the calcium threshold of 130 HU within a volume of 1 mm3, 
spread across at least three neighboring pixels, were detected using 
3D-based tools. The areas of calcium in each slice, approximately 
3 mm thickness, were bolstered by an intensity factor and added up 
across slices to calculate the CAC score through the Agatston method. 
With this method, the CAC volume was measured by multiplying the 
area of each lesion by a weighted attenuation score, which depends on 
the maximum attenuation within the lesion. Two radiologists (with 3 
and 8 years of diagnostic imaging experience, respectively) reviewed 
and corrected the presence and amount of CAC independently, both 
blinded to the clinical information of all patients. The total CAC score 
was grouped into low-risk (score under 100), medium-risk (score 
between 100 and 400) and high-risk categories (score over 400). The 
measurement of CAC score is depicted in Figures 2A,B.

FIGURE 1

Flowchart of participant recruitment and study design.
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Acquisition of CT-FFR and pFAI

We used the PHIgo workstation (Precision Health Institution, 
Version 1.5.1) to measure the CT-FFR value and pFAI value of the 
target lesion based on threshold values for a high risk of CAD 
(CT-FFR ≤ 0.80 and pFAI ≥ −70.1 HU) (Zhang et al., 2022). Arterial 
phase images of CCTA in each patient were imported in DICOM 
format into the CQK analysis platform of PHIgo software (Precision 
Health Institution, Version 1.5.1) for automated segmentation of the 
coronary artery (Hou et al., 2023). A simulated three-dimensional 
coronary artery image was obtained by automated segmentation and 
reconstruction of the main coronary segments of the vessel for 
visualization. According to the CCTA images, a three-dimensional 
anatomical model of the centerline and luminal contours was 
constructed for the coronary artery tree. Specifically, CT-FFR at the 
target lesion was calculated using computational fluid dynamics under 
the simulated maximum hyperemia condition (Khav et al., 2020), and 
the CT-FFR is expressed as a percentage. Pericoronary adipose tissue 
(PCAT) was defined as all voxels with CT attenuation ranging from 
−190 to −30 HU within a radial distance from the outer coronary wall 
equal to the average diameter of the respective coronary vessel. 
Automated software was utilized to segment the PCAT of target 
lesions on vessels after importing CCTA images into the CQK 
platform, and then pFAI values were obtained. If there were multiple 

lesions in one vessel, the adipose tissue around the highest stenosis 
lesion was segmented. For PCAT, when a patient had multiple vascular 
lesions, the pFAI values in each vessel were combined as the total 
pFAI. The largest measured value in each vessel was selected as the 
maximum pFAI. To reduce the error generated by automated 
segmentation of the images, the three-dimensional coronary artery 
segments and PCAT fragments were manually corrected by two 
experienced radiologists who were blinded to the clinical information.

MRI acquisition

All brain MRI scans were carried out at a local hospital using a 
3.0-tesla MRI scanner (Discovery MR 750, GE Healthcare). This 
scanner was equipped with an eight-channel head coil. Consistent 
MRI parameters were maintained during scans, including T1 FLAIR, 
T2-weighted imaging, diffusion-weighted imaging (DWI), and T2 
FLAIR sequences. The T2 FLAIR sequence was used to observe 
WMH, applying parameters such as a repetition time/echo time/
inversion time of 9,000 ms/120 ms/2,412 ms, a field of view of 
256 × 256 mm, a matrix of 256 × 256, a flip angle of 160°, an echo chain 
of 18, a bandwidth of 50 kHz, a 5 mm section thickness, and a zero 
interslice gap. T1 FLAIR was used for white matter segmentation, with 
settings such as a 1,750 ms repetition time, a 24 ms echo time, a 

FIGURE 2

Schematic illustration of the measurements of the CAC score and WMH in a 78-year-old man. (A) Automatic measurement of the CAC score using 
Siemens software, with calcium plaques labeled in different colors. (B) Table of CAC score results generated by the software: the first column 
represents the artery, the second indicates the number of lesions, the third shows calcium volume, the fourth provides equivalent mass, and the fifth 
gives the score value. (C–F) Changes in WMH observed between two MRI examinations of the patient. (C,D) Show the baseline WMH on MRI. (E/F) 
Represents the follow-up MRI examination after an interval of 15  months, showing progression of WMH.
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256 × 256 mm field of view, a 256 × 256 resolution, a 111° flip angle, a 
10 echo chain, a 31.25 kHz bandwidth, a 5 mm section thickness, and 
a zero interslice gap.

Progression of longitudinal WMH volume

All T1 FLAIR and T2 FLAIR baseline images were imported into 
SPM12 software1 for registration, followed by automatic segmentation 
of the WMH using the lesion prediction algorithm (LPA) in the LST2 
toolbox in SPM12, which was implemented in MATLAB (The 
MathWorks, Inc., Natick, United States). WMH volume was measured 
using the spatial dimensions of each MRI slice voxel (Schmidt et al., 
2012). The process involved eliminating nonbrain matter and refining 
white matter segmentation. WMH volumes were calculated in 
milliliters, corrected for interscan intracranial volume differences, and 
normalized to the baseline intracranial volume. LPA does not require 
any parameters for user setting and is usually faster and more sensitive 
than the lesion growth algorithm (LGA). To minimize 
oversegmentation by LPA, the results were first viewed independently 
by two experienced radiologists. Then, the images segmented 
incorrectly by LPA were manually segmented and measured by an 
experienced neuroradiologist using itk-snap software.3 The change in 
WMH volume from the baseline to follow-up FLAIR images was 
documented. WMH volume fluctuation was classified into (1) 
progression and (2) nonprogression. A WMH change was considered 
progressive if the increase was more than 0.25 mL and there was 
significant visual change; if not, it was deemed nonprogressive. The 
smallest volume change is 0.25 mL, which is also likely be observed by 
radiologists. The benchmark was obtained from the 2015 study by 
Cho et al. (2015). Figures 2C–F shows the progression of WMH.

Construction and assessment of the 
prediction model

The clinical details of patients with progressive WMH were 
divided into two categories in each dataset. We then compared the 
differences in CAC score between these categories to identify potential 
predictive variables. Univariate logistic regression was applied to each 
predictive factor in the training set. Next, three models were developed 
using multivariable logistic regression to assess WMH progression: 
Model 1 incorporated traditional cardiovascular risk factors; Model 2 
included CT-FFR and pFAI on top of Model 1; and Model 3 was 
Model 2 plus the CAC index. Internal validation of the three models 
was performed with the validation set.

Association between CAC score and WMH 
volume

WMH from each participant were segmented using LPA. Lesion 
probabilities were estimated for each voxel to segment WMH lesions 

1 https://www.fil.ion.ion.ucl.ac.uk/spm/software/spm12/

2 https://www.statistical-modelling.de/lst.html

3 http://www.itksnap.org/pmwiki/pmwiki.php

observed in FLAIR images, and then local spatial lesion probability 
maps (LPMs) were calculated. The LPM was binarized (threshold = 0.5) 
with a minimum clustering range of 15 mm3 with default settings. To 
ensure accurate capture of WMH, all LPMs were visually inspected 
against the FLAIR images and manually corrected by an experienced 
radiologist according to published standards (Wardlaw et al., 2013b). 
We used the corresponding T1 images to calculate the binarized LPM 
for one participant in Mayo Clinic Adult Lifespan Template (MCALT) 
template space, which was then projected back to a single native space 
image using the inverse transform matrix calculated by the Advanced 
Neuroimaging Tool. All final templates warped to native space were 
visually inspected. Referring to MCALT,4 we extracted WMH volumes 
for nine regions: the deep white matter; corpus callosum; frontal, 
temporal, parietal, and occipital lobes; insula; brainstem; and 
cerebellum. The WMH volume of each brain region was normalized 
by dividing it by the intracranial volume. We performed a correlation 
analysis between the CAC scores of the 4 coronary arteries and the 
progression volumes of WMH in the 9 brain regions. Then, all the 
patients were divided into three groups according to CAC risk grade 
(Grade 1, n = 60; Grade 2, n = 43; Grade 3, n = 34). We  further 
compared the WMH variations across the different brain regions 
between the three CAC risk groups.

Statistical analysis

The statistical processing was done with SPSS 23.0 (IBM, Armonk, 
NY), MedCalc 19.3.1, and Excel 2019 (Microsoft). p < 0.05 
was significant.

Categorical variables are presented as n (%), and parametric data 
are reported as mean ± SD, following the application of the 
Kolmogorov–Smirnov test for normality. The chi-square test or 
Fisher’s exact test was used for categorical variable comparisons, while 
Student’s t test was utilized for continuous variable comparisons. After 
a comparative analysis of the CAC score between the two datasets per 
risk factor, significant risk factors were incorporated into the 
univariate logistic regression to calculate their association with WMH 
progression. Three predictive models were formulated based on 
multivariable logistic stepwise regression in a training set to evaluate 
WMH progression. The models’ efficiency was validated using the 
receiver operating characteristic (ROC) curve, sensitivity, specificity, 
accuracy, precision, and F1-score. Finally, we compared the differences 
in WMH outcomes in different brain regions among patients in 
different CAC risk groups.

Results

Clinical characteristics

The study included 137 patients with WMH (mean age, 68.66 years 
±9.64; 48 female), of whom 66 were put into the progression group 
(mean age, 70.42 years ±8.79; 24 female) and 71 patients (mean age, 
67.01 years ±10.15; 24 female) were put into the nonprogression 

4 https://www.nitrc.org/projects/mcalt/
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group. Statistical analysis revealed significant differences in age, 
hyperlipidemia, and alcohol abuse between the two groups (p < 0.05). 
No significant differences were observed in the other clinical factors, 
including sex, time interval, BMI, hypertension, diabetes mellitus, and 
smoking history (all p > 0.05). Further analysis showed significant 
differences in maximum pFAI and CT-FFR between the groups 
(p < 0.05), though total pFAI was similar (p > 0.05). The CAC scores of 
LM, LAD, LCX, and RCA and the total CAC score showed statistically 
significant differences (p < 0.05). The CAC risk grade also differed 
between the groups (p < 0.05). The findings are detailed in Table 1.

CAC score characteristics in the training 
and internal validation sets

A sample of 50 out of 137 cases was first randomly selected as the 
internal validation set, including 25 progression WMH and 25 
nonprogression WMHs, and the remaining 87 cases were taken as the 
training set, which were 41 progressive and 46 nonprogressive cases 
(Figure 1 and Table 2). In the training set, there was no difference in 

the CAC score of LM between the WMH progression and 
nonprogression patients (p = 0.310), while other variables were 
significantly different (p < 0.05). In the internal validation set, all CAC 
scores were different between the WMH progressive and 
nonprogression groups (p < 0.05).

Factors associated with longitudinal WMH 
progression

A univariate logistic regression analysis revealed that factors such 
as hyperlipidemia, alcohol abuse, maximum pFAI; CT-FFR; CAC 
scores of LAD, LCX, and RCA; total CAC score; and CAC risk grade 
were associated with the progression of WMH. Multivariate logistic 
regression was utilized to develop the predictive model and establish 
a comprehensive nomogram (Table 3 and Figure 3). Longitudinally, 
the WMH volume increased in people who regularly engaged in 
alcohol abuse compared to those who did not [odds ratio (OR) = 5.262, 
95% CI 1.397–19.820, p = 0.014]. The maximum pFAI (OR = 1.060, 
95% CI 1.004–1.118, p = 0.036) was positively associated with 

TABLE 1 Demographic, clinical, and imaging characteristics of patients with and without WMH progression.

Variable All data
(n  =  137)

Progression of WMH t or x2 or z p-value

Yes (n  =  66) No (n  =  71)

Demographics

 Female sex (n) 48 (35.0%) 24 (36.4%) 24 (33.8%) 0.099 0.754

 Age (y) 68.66 ± 9.64 70.42 ± 8.79 67.01 ± 10.15 2.095 0.038*

 Time interval (mo.) 24.11 ± 11.99 25.92 ± 11.94 22.41 ± 11.86 1.721 0.088

Cardiovascular risk factors

 BMI (kg/m2) 23.66 ± 3.77 23.76 ± 3.86 23.57 ± 3.71 0.298 0.766

 Hypertension (n) 84 (61.31%) 46 (69.70%) 38 (53.52%) 3.773 0.052

 Hyperlipidemia (n) 43 (31.39%) 28 (42.42%) 15 (21.13%) 7.204 0.007*

 Diabetes mellitus (n) 52 (37.96%) 24 (36.36%) 28 (39.44%) 0.137 0.711

 Smoking in past 5 years (n) 54 (39.42%) 28 (42.42%) 26 (36.62%) 0.483 0.487

 Alcohol abuse in past 5 years (n) 37 (27.01%) 23 (34.85%) 14 (19.72%) 3.972 0.046*

pFAI and CT-FFR

 Total pFAI −65.94 ± 21.69 −66.37 ± 7.09 −65.54 ± 29.44 −2.223 0.824

 Maximum pFAI −58.20 ± 12.94 −52.78 ± 15.04 −63.23 ± 7.88 5.037 0.000*

 CT-FFR (%) 74.93 ± 5.82 72.67 ± 4.70 77.03 ± 6.00 −4.752 0.000*

CAC score

 LM 17.29 ± 55.28 26.18 ± 57.11 9.02 ± 52.58 −2.802 0.005*

 LAD 146.03 ± 290.85 232.59 ± 381.88 65.56 ± 123.73 3.392 0.001*

 LCX 41.32 ± 126.15 70.40 ± 173.76 14.29 ± 36.67 2.571 0.012*

 RCA 8,202 ± 177.94 133.39 ± 223.88 34.27 ± 100.84 3.299 0.001*

 Total CAC 286.66 ± 484.91 462.57 ± 625.01 123.13 ± 194.45 4.226 0.000*

CAC risk grade 29.763 0.000*

 1 (n) 60 (43.80%) 12 (18.18%) 48 (67.61%)

 2 (n) 43 (31.39%) 28 (42.42%) 15 (21.13%)

 3 (n) 34 (24.82%) 26 (39.39%) 8 (11.26%)

*Indicates statistical significance. WMH, white matter hyperintensity; CAC, coronary artery calcium. BMI, body mass index; pFAI, pericoronary fat attenuation index; CT-FFR, CT-fractional 
flow reserve; LM, left main artery; LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right coronary artery.
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progression, whereas the larger the CT-FFR was, the more likely 
WMH showed a nonprogressive trend (OR = 0.835, 95% CI 0.740–
0.942, p = 0.003). The CAC risk grade was a strong predictor of WMH 
volume progression: With grade 1 as the reference, the ORs for grades 
2 and 3 were 5.614 (95% CI 1.495–21.075; p = 0.011) and 9.985 (95% 
CI 2.197 ~ 45.389, p = 0.003), respectively (Table 3).

Comparison of machine learning 
algorithms

All statistical analyses in the process of constructing the four 
models were performed using the Extreme Smart Analysis platform5 
(Liu et al., 2022). The four machine learning algorithms were logistic 
regression, multilayer perceptron (MLP) classifier, support vector 
machine (SVM) and k-nearest neighbor (KNN). Detailed assessments 
of the predictive performance of the four machine learning models are 
provided in Table  4 and in Supplementary material. Our analysis 
showed that the logistic regression model outperformed the others in 
predicting WMH progression, with an area under the curve (AUC) of 
0.864, sensitivity of 0.746, specificity of 0.866, and accuracy of 0.800. 
The recall rates of these models are shown in Supplementary Figure S1. 
We found that the logistic regression model yielded the highest AUC 
and recall values. We  chose logistic regression as our final 
predictive model.

Efficiency of different models for 
predicting the progression of WMH

The progression of WMH was evaluated using three models 
developed from multivariable logistic regression analysis. Model 1 
incorporated alcohol abuse, Model 2 included alcohol abuse and the 
maximum pFAI and CT-FFR, and Model 3 added the CAC risk grade. 
The predictive accuracies of these models are demonstrated in 

5 https://www.xsmartanalysis.com/

Figures 4, 5 and Table 5. Model 1 had a moderate AUC in the training 
set (AUC = 0.619, 95% CI: 0.500, 0.739) and in the internal validation 
set (AUC = 0.480, 95% CI: 0.319, 0.641). Including the quantitative 
CCTA-derived markers (maximum pFAI and CT-FFR) in Model 2 
enhanced the AUC, achieving a better prediction of WMH progression 
(training set: AUC = 0.814, 95% CI: 0.723, 0.905; internal validation 
set: AUC = 0.762, 95% CI: 0.632, 0.895) than Model 1 (p < 0.05). The 
AUC further improved upon adding the CAC risk grade in Model 3, 
underscoring its enhanced predictive ability over Models 1 and 2 
(training set: AUC = 0.878, 95% CI: 0.790, 0.938; internal validation 
set: AUC = 0.845, 95% CI: 0.734, 0.953).

Association between CAC score and WMH 
volumes

Using the Pearson correlation coefficient to evaluate the 
quantitative correlation between CAC score and WMH progression 
volume, we found that there was no significant correlation between 
any individual CAC score and WMH progression volume in any 
individual brain region (r < 0.4) (Figure 6). Significant differences were 
noted in the total WMH volume change between the three CAC risk 
grade groups (p < 0.05), greater changes becoming evident as the CAC 
risk grade increased (Grade 1: −44.17 ± 438.48 mL; Grade 2: 
279.77 ± 572.95 mL; Grade 3: 637.38 ± 607.34 mL). Links were 
observed between CAC risk grade and the WMH volume changes in 
the corpus callosum (p = 0.045), frontal lobe (p < 0.05), parietal lobe 
(p < 0.05), and occipital lobe (p = 0.047). No link was found between 
the WMH volume change and CAC risk grade in the deep white 
matter, temporal lobe, insula, brain stem or cerebellum (p > 0.05). 
More specific observations are detailed in Table 6 and Figure 7.

Discussion

Identifying reliable biomarkers for predicting WMH progression 
is clinically significant, as it enables early identification and 
intervention in high-risk patients. The present study evaluated the 
utility of the CAC score as a predictor of the progression of WMH in 

TABLE 2 Coronary artery calcium score of patients in the training and internal validation sets.

Training set (n  =  87) p-value Internal validation set (n  =  50) p-value

Progression of 
WMH (n  =  41)

No progression 
of WMH (n  =  46)

Progression of 
WMH (n  =  25)

No progression 
of WMH (n  =  25)

LM 26.51 ± 57.85 12.97 ± 65.10 0.310 25.64 ± 57.07 1.75 ± 5.70 0.048*

LAD 184.78 ± 171.46 70.81 ± 116.92 0.001* 311.00 ± 579.35 55.90 ± 137.37 0.041*

LCX 51.81 ± 83.26 16.79 ± 42.57 0.018* 100.89 ± 262.03 9.70 ± 22.12 0.096

RCA 155.21 ± 252.50 45.42 ± 123.30 0.014* 97.62 ± 165.37 13.75 ± 21.80 0.019*

Total CAC 418.31 ± 415.52 145.98 ± 211.12 0.000* 535.15 ± 872.58 81.10 ± 154.49 0.017*

CAC risk grade 0.000* 0.000*

1 (n) 7 (17.07%) 28 (60.9%) 5 (20.0%) 17 (68.0%)

2 (n) 19 (46.34%) 12 (26.1%) 9 (36.0%) 6 (24.0%)

3 (n) 15 (36.59%) 6 (13.0%) 11 (44.0%) 2 (8.0%)

*Indicates statistical significance. WMH, white matter hyperintensity; CAC, coronary artery calcium. LM, left main artery; LAD, left anterior descending artery; LCX, left circumflex artery; 
RCA, right coronary artery.
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patients with CAD. We conducted both univariate and multivariate 
logistic regression analyses to identify independent risk factors for 
WMH progression and developed three predictive models from them. 
We compared the predictive performance of traditional clinical risk 
factors, CCTA-derived markers (CT-FFR and pFAI) and CAC 
markers. Finally, we partitioned the regions of WMH progression to 
compare the progression of WMH volumes in different brain regions 
between different CAC risk grade subgroups. Our study had three 
major findings: (1) Alcohol abuse, maximum pFAI, CT-FFR and CAC 
risk grade were independent predictors of WMH progression 
(p < 0.05). (2) The combined model with alcohol abuse, maximum 
pFAI, CT-FFR and CAC risk grade showed the best performance in 
predicting the progression of WMH (training set: AUC = 0.878, 95% 
CI: 0.790, 0.938; internal validation set: AUC = 0.845, 95% CI: 0.734, 
0.953). (3) As the CAC risk grade increased, the volume change in the 
total WMH (p < 0.05), corpus callosum (p = 0.045), frontal lobe 
(p < 0.05), parietal lobe (p < 0.05), and occipital lobe (p = 0.047) became 
more significant.

WMH, a ubiquitous characteristic of the aging brain, is typically 
associated with various neurological disorders. CAC is a noninvasive 

method of assessing the risk of cardiovascular disease. Past studies 
hint at potential shared pathways linking CAC and WMH, including 
atherosclerosis and arterial endothelial barrier damage (Wardlaw 
et  al., 2003, 2017). Our previous study also found an association 
between CAC score and WMH volume, and a high-risk CAC score 
had a greater effect on WMH volume in the elderly population. In this 
study, we employed an automated segmentation method to measure 
WMH volume, offering a more objective, accurate, and consistent 
approach than the Fazekas visual scale used in earlier studies. Our 
study discovered that the CAC risk grade independently influences 
the likelihood of WMH progression. We  observed a pronounced 
increase in the risk of progression with a higher CAC risk grade. This 
indicates that the cumulative effect of CAC, an atherosclerosis marker, 
could be linked to cognitive decline and dementia risk (Reis et al., 
2013; Kuller et al., 2016; Fujiyoshi et al., 2017). Intriguingly, several 
cardiovascular risk aspects, such as hypertension, hyperlipidemia, and 
diabetes, did not predict WMH progression in our study, challenging 
earlier research findings. This discrepancy may be due to interference 
from other factors during the multivariate regression analysis. In a 
prospective study among older adults, hypertension strongly predicted 

TABLE 3 Risk factors associated with the progression of WMH by univariate and multivariate logistic regression analysis.

Variable Univariate logistic regression Multivariate logistic regression

OR (95% CI) p-value OR (95% CI) p-value

Demographics

 Sex (n) 0.933 (0.382 ~ 2.278) 0.879 NA NA

 Age (y) 1.040 (0.993 ~ 1.090) 0.094 NA NA

 Time interval (mo.) 0.998 (0.965 ~ 1.033) 0.919 NA NA

Cardiovascular risk factors

 BMI (kg/m2) 1.005 (0.901 ~ 1.120) 0.930 NA NA

 Hypertension (n) 2.084 (0.805 ~ 5.397) 0.130 NA NA

 Hyperlipidemia (n) 3.511 (1.370 ~ 9.204) 0.009* NA NA

 Diabetes mellitus (n) 0.566 (0.238 ~ 1.346) 0.198 NA NA

 Smoking in past 5 years (n) 1.974 (0.820 ~ 4.751) 0.129 NA NA

 Alcohol abuse in past 5 years (n) 3.566 (1.285 ~ 9.896) 0.015* 5.262 (1.397 ~ 19.820) 0.014

pFAI and CT-FFR

 Total pFAI 0.994 (0.974 ~ 1.014) 0.564 NA NA

 Maximum pFAI 1.073 (1.027 ~ 1.121) 0.002* 1.060 (1.004 ~ 1.118) 0.036*

 CT-FFR (%) 0.840 (0.763 ~ 0.926) 0.000* 0.835 (0.740 ~ 0.942) 0.003*

CAC score

 LM 1.004 (0.996 ~ 1.012) 0.331 NA NA

 LAD 1.006 (1.002 ~ 1.010) 0.002* NA NA

 LCX 1.011 (1.001 ~ 1.021) 0.032* NA NA

 RCA 1.004 (1.000 ~ 1.008) 0.030* NA NA

 Total CAC 1.003 (1.001 ~ 1.005) 0.001* NA NA

CAC risk grade

 1 (n) 0.000* 0.006*

 2 (n) 6.333 (2.110 ~ 19.011) 0.001* 5.614 (1.495 ~ 21.075) 0.011*

 3 (n) 10.000 (2.843 ~ 35.180) 0.000* 9.985 (2.197 ~ 45.389) 0.003*

*Indicates statistical significance. WMH, white matter hyperintensity; CAC, coronary artery calcium. BMI, body mass index; pFAI, pericoronary fat attenuation index; CT-FFR, CT-fractional 
flow reserve; LM, left main artery; LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right coronary artery.
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progressive white matter hyperintensity (Maillard et al., 2012; Choi 
et al., 2022). These discrepancies made us consider whether long-
lasting antihypertensive treatment could decelerate WMH 
progression, thus decreasing its predictive power. Furthermore, our 
findings counter the classically held belief about age as a determinant 
of WMH progression, though this is in alignment with findings that 
revealed declining vascular density as an age-independent pathological 
mechanism (Moody et al., 2004).

In this study, before establishing the prediction model for WMH 
progression, we first resampled the complete data, implementing a 
fivefold cross-validation. We  evaluated four common machine 
learning algorithms, finding that logistic regression performed best in 
the training and validation sets. We constructed the predictive model 
by logistic regression. Traditional cardiovascular risk factors showed 
limited predictive efficacy for WMH progression with a training set 
AUC of 0.619 and a validation set AUC of 0.480. Upon incorporating 

CCTA-derived biomarkers, the AUC significantly improved, with a 
training set AUC of 0.814 and a validation set AUC of 0.762. The most 
effective model, Model 3, featured the CAC risk grade, improving the 
performance to a training set AUC of 0.878 and a validation set AUC 
of 0.845. Recent research has pointed out that CAC is an indicative 
marker of atherosclerosis and is closely tied to cardiovascular risk 
factors. The findings study signify that CAC, compared to myocardial-
derived markers derived from CCTA, is more effective at predicting 
the progression of WMH. This discovery shows that the degree of 
CAC can be intuitively assessed based on CCTA to determine the 
impact of cardiovascular diseases on WMH.

A previous study used radiomics features of white matter 
throughout the brain, including histogram features, form factor features, 
co-occurrence matrix (GLCM) features, and run-length matrix (RLM) 
features, to predict the progression of any, periventricular, and deep 
WMH. The area under the curve (AUC) values for the training and 

FIGURE 3

CAC nomogram for the prediction of WMH progression. The CAC nomogram was developed with alcohol abuse, maximum pFAI, CT-FFR, and CAC 
risk grade in the primary cohort. The nomogram displays the contribution of the four predictor variables to the probability of WMH progression in the 
future. Each variable is represented as a line on the graph, with its value mapped onto the y-axis. The values are all added to make the total score, 
which is then mapped onto the predicted probability scale to find the probability of WMH progression in the future.

TABLE 4 Comparison of four machine learning algorithms.

Algorithms Training set Validation set

AUC Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy

Logistic 0.864 0.746 0.866 0.800 0.814 0.690 0.883 0.686

MLP 0.422 0.196 0.919 0.561 0.473 0.343 0.914 0.571

SVM 0.758 0.559 0.889 0.721 0.761 0.575 0.931 0.700

KNN 0.858 0.748 0.778 0.736 0.731 0.667 0.732 0.657

AUC, area under the curve; MLP, multilayer perceptron classifier, SVM, support vector machine; KNN, k-nearest neighbor.
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testing datasets were 0.697–0.758 (Shu et al., 2020). Our results show 
that the CAC risk grade was better at predicting the progression of total 
WMH. We further partitioned the whole-brain WMH into 9 regions, 
comparing the correlation between CAC and volume changes of WMH 
in different brain regions. The results suggest that CAC affects different 

brain functions, enhancing our understanding of the heart-brain 
correlation. Our analysis showed that there was no significant 
correlation between the CAC score of the four coronary arteries and the 
WMH volume in various brain regions. However, between the different 
CAC risk subgroups, WMH progression volumes were significantly 
different in the corpus callosum and frontal, parietal and occipital lobes. 
These four regions are extremely important parts of the brain that are 
involved in processing our memory, thinking, sensation, and vision. 
WMH could have negative effects on these functions, such as a decline 
in memory and impaired cognitive function. Therefore, predicting and 
assessing WMH based on the CAC score is important to prevent the 
onset of neurodegenerative diseases.

Explaining the clinical significance of research results is an 
important aspect of scientific studies. As a retrospective study, this 
cross-sectional design cannot definitively draw causal links between 
CAC scores and WMH progression. However, these preliminary 
statistical results reflect the correlation between CAC scores and WMH 
progression. In the future, it is necessary to explore the expected 
variations in the progression of WMH across different CAC risk tiers 
through prospective design. Understanding these variations can help 
improve risk assessment and guide treatment decisions. In practical 
settings, utilizing automated software for CAC scoring can reduce the 
subjectivity of manual assessments. Combining machine learning 
models for automated prediction of WMH progression can provide 
medical professionals with valuable tools. Medical professionals can 
categorize patients into different risk categories based on CAC scores, 
allowing for more informed decisions regarding treatment strategies. 
For instance, patients with higher CAC scores indicate a significant 
plaque burden and may require more aggressive interventions such as 
lipid-lowering medications or invasive procedures. Meanwhile, 
incorporating CAC scores into early screening strategies can help 
identify high-risk individuals with cerebral small vessel disease. 
Furthermore, investigating whether the progression of WMH at 

FIGURE 4

The receiver operating characteristic (ROC) curves of three different models for predicting the progression of white matter hyperintensity. (A) The 
performance of three models in the training set. (B) The performance of the three models in the internal validation set. The performance differences 
between the three models were compared with the DeLong test, and a p-value below 0.05 was considered significant. Model 1  =  Alcohol abuse; Model 
2  =  Alcohol abuse plus maximum pFAI plus CT-FFR; Model 3  =  Alcohol abuse plus maximum pFAI plus CT-FFR plus CAC risk grade. AUC, area under the 
curve.

FIGURE 5

Bar charts showing diagnostic performance for identifying the 
progression of WMH in different datasets. Comparison of the area 
under the curve (AUC), sensitivity (SEN), specificity (SPE), accuracy 
(ACC), precision (PREC), and F1-score among the three models in 
the (A) training set and (B) internal validation set. Error bars indicate 
95% CIs. Model 1  =  Alcohol abuse; Model 2  =  Alcohol abuse plus 
maximum pFAI plus CT-FFR; Model 3  =  Alcohol abuse plus maximum 
pFAI plus CT-FFR plus CAC risk grade.
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different risk grades is associated with specific clinical outcomes, such 
as cognitive decline or the occurrence of related cardiovascular events, 
can guide personalized treatment plans and improve patient prognosis.

This study has several limitations. First, the patients were elderly 
adults with CAD, and they appeared to have more vascular risk 

factors, so the applicability of the findings to younger demographics 
or those without CAD may be limited. And the sample size of 137 
patients was relatively small, potentially affecting the generalizability. 
Furthermore, the WMH volume changed excessively in some 
patients, which could affect the comparison of results between 

FIGURE 6

Simple correlation heatmap between the CAC score and the progression volume of WMH using the Pearson correlation coefficient. The CAC score 
included 4 coronary artery scores and the total score. The number indicates the value of the correlation coefficient, the bar indicates the range 
distribution of the correlation coefficient, and the color indicates the positive and negative of the correlation coefficient as well as the magnitude, with 
darker color indicating higher correlation. WMH volumes included the volumes in the nine regions of the brain and the total volume.

TABLE 5 Comparison of efficiency in different models for predicting the progression of WMH.

Training set (n  =  87) Internal validation set (n  =  50)

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

AUC 0.619 0.814 0.878 0.480 0.762 0.845

Sensitivity 0.390 0.732 0.732 0.240 0.76 0.84

Specificity 0.848 0.804 0.956 0.720 0.68 0.76

Accuracy 63.2% 77.0% 85.1% 48.0% 72.0% 80.0%

Precision 69.6% 76.9% 93.8% 46.2% 70.4% 77.8%

F1 score 0.500 0.750 0.822 0.316 0.731 0.808

Model 1 = alcohol abuse; Model 2 = alcohol abuse plus maximum pFAI plus CT-FFR; Model 3 = alcohol abuse plus maximum pFAI plus CT-FFR plus CAC risk grade. WMH, white matter 
hyperintensity; AUC, area under the curve.
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FIGURE 7

Scatterplot of the WMH change in each brain region in different CAC risk groups. The vertical axis represents the volume change in WMH (in mL), and 
the horizontal axis represents the CAC risk grade.
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patients. However, the results demonstrated the potential for the 
CAC score to predict the progression of WMH, and in the future, 
we will include more individuals to validate the accuracy of these 
findings. Second, the lack of publicly available datasets related to our 
aims lowers its credibility. Unfortunately, we were unable to access 
relevant data for this purpose during the study. Our data suggested 
that the time interval between the two MRI scans did not 
significantly impact the progression of WMH, possibly due to the 
small sample size and short time intervals. The progression value of 
WMH in this study was an absolute increment, without considering 
the influence of the baseline size of WMH, and the measurement 
errors of the quantitative values may have potential effects on the 
experimental results, which makes it necessary to further improve 
the precision of WMH segmentation. Finally, as with all traditional 
machine learning methods, our developed model may be enhanced 
further if radiomics or deep learning features are incorporated. To 
improve the model’s robustness and generalizability, we  plan to 
extract radiomics features of plaques and leverage deep learning 
algorithms to train the data.

In conclusion, the CCTA-derived CAC score, along with specific 
risk factors, can predict the progression of WMH in patients with 
coronary artery disease. In the future, we may be able to identify people 
at increased risk for catastrophic vascular events by deploying a CAC 
score to achieve early detection of and intervention against WMH.
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TABLE 6 The difference between CAC risk grade and the progression volume of WMH in different regions.

WMH region CAC score F or χ2 p-value Post hoc

Grade 1 (n  =  60) Grade 2 (n  =  43) Grade 3 (n  =  34)

Total WMH −44.17 ± 438.48 279.77 ± 572.95 637.38 ± 607.34 18.42a <0.05* i, ii, iii

Deep white matter −3.47 ± 68.15 7.05 ± 94.00 7.68 ± 154.02 2.53b 0.282 /

Corpus callosum 4.97 ± 37.14 22.12 ± 76.05 54.47 ± 146.45 6.21b 0.045* i, ii

Frontal lobe −17.85 ± 237.98 151.09 ± 381.83 289.32 ± 317.13 26.01b <0.05* i, ii

Temporal lobe −20.57 ± 163.63 −4.60 ± 187.20 17.44 ± 99.92 0.62a 0.537 /

Parietal lobe 3.60 ± 173.77 60.28 ± 185.22 202.59 ± 256.03 15.47b <0.05* ii, iii

Occipital lobe −15.90 ± 148.07 30.65 ± 164.00 62.79 ± 140.78 3.32a 0.047* ii

Insula lobe 2.48 ± 3.67 5.81 ± 3.84 1.74 ± 3.03 0.31a 0.732 /

Brain stem 0.70 ± 7.37 2.63 ± 7.32 0.53 ± 2.21 2.55b 0.279 /

Cerebellum 1.87 ± 10.43 4.74 ± 12.02 0.82 ± 3.76 1.80b 0.407 /

aMeans ANOVA. bMeans Kruskal–Wallis test. p < 0.05. *Indicates a significant difference between groups. Post hoc analysis: i: Grade 1 vs. Grade 2; ii: Grade 1 vs. Grade 3; iii: Grade 2 vs. Grade 
3. WMH, white matter hyperintensity; CAC, coronary artery calcium.
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