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During the last decades, our knowledge about the genetic architecture of 
sporadic amyotrophic lateral sclerosis (sALS) has significantly increased. However, 
besides the recognized genetic risk factors, also the environment is supposed 
to have a role in disease pathogenesis. Epigenetic modifications reflect the 
results of the interaction between environmental factors and genes and may play 
a role in the development and progression of ALS. A recent epigenome-wide 
association study (EWAS) in blood identified differentially methylated positions 
mapping to 42 genes involved in cholesterol biosynthesis and immune-related 
pathways. Here we performed a genome-wide DNA methylation analysis in the 
blood of an Italian cohort of 61 sALS patients and 61 healthy controls. Initially, 
a conventional genome-wide association analysis was performed, and results 
were subsequently integrated with the findings from the previous EWAS using 
a meta-analytical approach. To delve deeper into the significant outcomes, 
over-representation analysis (ORA) was employed. Moreover, the epigenetic 
signature obtained from the meta-analysis was examined to determine potential 
associations with chemical compounds, utilizing the Toxicogenomic Database. 
Expanding the scope of the epigenetic analysis, we explored both epigenetic drift 
and rare epivariations. Notably, we observed an elevated epigenetic drift in sALS 
patients compared to controls, both at a global and single gene level. Interestingly, 
epigenetic drift at a single gene level revealed an enrichment of genes related to 
the neurotrophin signaling pathway. Moreover, for the first time, we identified rare 
epivariations exclusively enriched in sALS cases associated with 153 genes, 88 of 
whom with a strong expression in cerebral areas. Overall, our study reinforces 
the evidence that epigenetics may contribute to the pathogenesis of ALS and that 
epigenetic drift may be a useful diagnostic marker. Moreover, this study suggests 
the potential role of epivariations in ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative 
disorder that affects upper and/or lower motor neurons in the brain 
and spinal cord, leading to progressive muscle paralysis and death 
within 2–3 years after the onset. ALS is mainly sporadic (sALS; 90%) 
with a multifactorial etiology, while familial (fALS) forms are 
characterized by high genetic heterogeneity. Genetic factors play a key 
role in ALS etiopathogenesis, although only 75% of fALS and 15% of 
sALS cases are currently explained by a pool of ~30 causative genes 
(Akçimen et al., 2023). In this context, whole-genome sequencing 
(WGS) analyses and genome-wide association studies (GWAS) have 
widely recognized several genetic risk factors associated with sALS 
(van Rheenen et  al., 2021). However, environmental and lifestyle 
factors may also contribute as additional and potential risk factors 
(Ingre et  al., 2015). Epigenetic changes, being the results of the 
interaction between environmental factors and genes, may contribute 
to clinical presentations and to increased susceptibility of sALS cases 
(Bennett et al., 2019).

At the state of the art, DNA methylation at CpG sites is the most 
described epigenetic modification, being the main process that 
regulates gene expression recruiting gene repressors or, alternatively, 
inhibiting the binding of transcriptional factors. In addition, DNA 
methylation may play an important role in genomic stability and 
imprinting (Benayoun et al., 2015; Elhamamsy, 2017). With the 
development and refinement of genome-wide arrays aimed at 
quantifying DNA methylation levels, the number of studies 
designed to analyze methylome differences between cases and 
controls has widely increased (Flanagan, 2015). For this purpose, 
epigenome-wide association studies (EWAS) in blood resulted 
appropriate for detecting the effects of epigenetic changes 
potentially induced by several risk factors, including smoking, 
alcohol intake, body mass index (BMI), and level of inflammatory 
enzymes, in various neurodegenerative diseases (Marabita et al., 
2017; Celarain and Tomas-Roig, 2020). Alterations of epigenetic 
signatures in ALS disease gained particular interest in the last few 
years as a valuable and challenging analytical perspective. More 
specifically, a recent study on a large European cohort provided a 
list of differentially methylated positions (DMPs) associated with 
ALS phenotype, demonstrating a possible enrichment for pathways 
and traits related to metabolism, cholesterol biosynthesis, and 
immunity (Hop et  al., 2022). This study also found that DNA 
methylation levels at several DMPs and blood cell proportion 
estimates derived from DNA methylation data were associated with 
survival rate in patients, suggesting that they might represent 
indicators of underlying disease processes potentially amenable to 
therapeutic interventions. However, this study mainly focused 
attention on DMPs between groups of patients and controls, not 
considering other epigenetic patterns, such as epigenetic aging 
acceleration, epigenetic drifts, and the role of rare epivariations. 
Recently, epigenetic drift, which reflects the accumulation of 
stochastic epigenetic mutations (SEMs), was reported to 
be significantly associated with Parkinson’s disease (PD) both at 
genome-wide level and in PD-causative genes, suggesting that a 
dysregulated methylome may contribute to the onset of 
neurodegenerative disorders (Chen et  al., 2022). The study also 
suggests that overall dysregulation of methylation levels, rather than 
changes in methylation levels at specific loci, are important drivers 

for outcomes such as aging, pre-term birth, or cancer. This 
dysregulation of methylation could be a significant factor in the 
development and progression of PD (Chen et al., 2022). Herein, 
we  investigated the DNA-methylation differences of an Italian 
cohort of ALS cases and controls by performing an unbiased EWAS 
in peripheral blood to assess, for the first time, epigenetic drift, both 
globally and at a single gene level, and the relevance of regions 
enriched in SEMs, also known as epivariations, in ALS disease.

Materials and methods

ALS cohort selection

A cohort of 61 Italian sporadic ALS patients, according to the El 
Escorial revised criteria (Brooks et al., 2000), were enrolled by IRCCS 
Istituto Auxologico Italiano. No mutations in the genes listed on the 
ALS diagnostic panel were found in any of the subjects participating 
in the study. The panel includes the following genes: ALS2, ANG, 
DCTN1, C9ORF72, CHMP2B, FUS, GRN, HNRNPA1, MATR3, NEK1, 
OPTN, PFN1, SETX, SOD1, SPAST, SPG11, HNRNPA2B1, MAPT, 
TBK1, TUBA4A, VAPB, SQSTM1, TARDBP, UBQLN2, and 
VCP. Informed consent for employing pseudo-anonymized clinical 
data for research purposes was obtained from all participants 
(Research ethics board - REB approval, 2021_05_18). Declaration of 
Helsinki’s guiding principles were followed in conducting the study.

DNA extraction and EWAs

Genomic DNA (gDNA) was extracted from peripheral blood 
using the Wizard-genomic DNA purification kit (Promega). Quality 
control (QC) and quantification were confirmed by visualization of 
gDNA on 1% agarose gel electrophoresis and NanoPhotometer Pearl 
(Implen GmbH). Bisulfite conversion was obtained using the EZ DNA 
Methylation Kit (Zymo Research Corporation). Following the 
manufacturer’s instructions, NanoPhotometer Pearl was used for 
assessing the conversion efficiency and the bisulfite DNA (bsDNA) 
integrity. Samples were analyzed using the Illumina 
HumanMethylation450 array following the manufacturer’s best 
practices and the Illumina-supplied reagents and conditions.

Quality control and differential analysis

QC of probes was first estimated via ChAMP package (Tian et al., 
2017). A total of 410,093 probes shared between all samples were 
retained for the subsequent analysis. In particular, the following 
criteria were adopted to filter out (1) 4,761 probes with a detection 
p-value above 0.01, (2) 250 probes with a beadcount <3 in at least 5% 
of samples, (3) 3,051 probes not in CpG Start, (4) 57,628 and 11 
probes indicated by Zhou et al. (2017), (5) 9,718 probes located on X 
and Y chromosomes. In addition, signal intensities were normalized 
via the SWAN normalization method provided by minfi package 
(Aryee et al., 2014). Batch effect due to experimental variability was 
previously evaluated and adjusted with ComBat R methods (Johnson 
et al., 2007) using the batch group (i.e., different groups of experiments) 
as a covariate. Group-level differential methylation analysis was 
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conducted using the R package limma (Ritchie et al., 2015). Since 
gDNA samples originated from blood, we  considered cellular 
heterogeneity using the method already described (Houseman et al., 
2012). In this context, we used principal component analysis (PCA) 
to effectively remove multicollinearity between features (cellular 
components and age).

Meta-analysis

The tool METAL, a software specifically designed for genome-
wide and epigenome-wide data, was used to perform meta-analysis 
(Willer et  al., 2010). This allowed us to combine both site- and 
genomic region-specific p-values obtained from differential 
methylation analyses. More specifically, we evaluated and retained a 
total of 382,371 probes from different studies.

Over-representation analysis, comparative 
toxicogenomic analysis, and gene 
prioritization

Over-representation analysis (ORA) was conducted using the 
online resource ShinyGo (Ge et  al., 2020). Comparative 
Toxicogenomics Analysis was conducted using the online tool 
provided by Comparative Toxicogenomics Database which combines 
chemical and genomic data (Davis et  al., 2023). The online tool 
VarElect (Stelzer et al., 2016) was used to prioritize the genes, with the 
“neurodegeneration” term as the only search parameter.

Age acceleration estimation

DNA Methylation Age Calculator1 was employed for estimating 
epigenetic aging measures (Horvath, 2013). DNA methylation beta-
values were normalized and processed by the DNAmAge calculator2 
after a further step of normalization computed by the algorithm to 
make data comparable to the training set. Being data originated from 
blood, blood cell abundance measures were also calculated, as well as 
GrimAge, a measure exclusively conceived for blood methylation data. 
Differences between ALS and controls were finally assessed through 
non-parametric tests.

Stochastic epigenetic mutations

We evaluated the presence of stochastic epigenetic mutations 
(SEMs) as binary scores for each subject-probe datapoint. The 
determination of SEM status involved computing the interquartile 
range (IQR) using data from all control samples at each specific locus. 
Consistent with the predefined criteria, a SEM was considered present 
for an individual at a given CpG site if its methylation level exceeded 
three times the IQR below the 25th percentile (Q1–3 × IQR) or three 

1 https://horvath.genetics.ucla.edu/html/dnamage/

2 https://dnamage.genetics.ucla.edu/home

times the IQR above the 75th percentile (Q3 + 3 × IQR) (Gentilini 
et al., 2015, 2017, 2018; Spada et al., 2020).

Based on the SEM scores obtained at each locus, we evaluated 
epigenetic drift by calculating 2 Epi Mutation Load (EML) scores for 
each subject to assess the overall burden of SEM counts across the 
entire genome (Global-EML) and at a single gene level (Gene-EML).

The association between Global-EML and ALS was tested using a 
logistic regression model and the same set of covariates used in the 
EWAS step; the burden of SEMs was expressed on a logarithmic scale 
and compared between cases and controls.

For testing associations between ALS and Gene-EML (i.e., Gene-
specific epigenetic drift scores), we applied methods for rare variants 
analysis and treated SEM calls at each methylation probe as the variant 
of interest (Chen et al., 2022). The RVTESTS program, initially used 
for mapping a contiguous set of rare variants to a specific trait, can 
be applied to other measures such as copy number variant (CNV), 
methylation counts, and sequencing data, under the assumption that 
a cluster of variations in adjacent sites is relevant to the trait. In 
particular, RVTESTS provides options to adjust for covariates and 
perform a gene-based Sequence Kernel Association Test (SKAT) that 
aggregates variants within a gene. By considering the joint effect of 
multiple rare epigenetic variants, SKAT increases the statistical power 
to detect associations with rare variant burden, which is often relevant 
in complex diseases.

Epivariation analysis

Epivariations are defined as regions exhibiting abnormal 
methylation patterns and can be  identified by their significant 
enrichment in epimutations (Garg et al., 2020; Gentilini et al., 2023a). 
These alterations are distinct from epigenetic drift and have been 
linked to genetic modifications, including CNVs, single nucleotide 
variations (SNVs), or short tandem repeat (STR) expansions, 
occurring at the differentially methylated loci. Additionally, 
inactivating variants in trans-acting factors essential for establishing 
or maintaining the methylation state at those loci have also been 
associated with epivariations. We adopted the well-established and 
validated methodology developed by Gentilini et  al. to detect 
epivariations, wherein we examined genomic regions that exhibited a 
significant enrichment of SEMs (Gentilini et al., 2018, 2023a,b; Guida 
et al., 2021). We utilized a sliding window approach with a predefined 
size on the annotated genome, employing a hypergeometric 
distribution to assess the significant enrichment of SEMs. This 
algorithm tests each window by sliding it (one site at a time) and 
generates a window-associated p-value. Through this enrichment, 
we identified SEMs and repeated the process in adjacent windows to 
identify SEM-enriched regions. The R package utilized for SEM 
calculation can be found at DOI 10.5281/zenodo.3813234.

Statistical analysis and plot generation

Statistical analysis and graphical plots were performed using 
the R programming language. To analyze differences between cases 
and controls, the Generalized Linear Regression (glm) model was 
used taking into account the existing covariates, such as sex, 
Principal Components, and age. To deal with skewed or 
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non-normal data, values were log converted. In addition, the 
“Wilcox.test” function offered by the R package “class” was utilized. 
Images not previously provided by used tools were generated using 
the “ggplot2” library.

Results

Clinical and immunological features of the 
cohort

A cohort of 61 sporadic sALS cases and 61 controls was enrolled 
in the study. The ALS population comprised 20 females and 41 males 
with a median age at the collection date of 50.6 years (Table 1). Age at 
onset was considered during the selection phase to equally divide the 
investigated samples into early-onset (<40 years), adult-onset 
(40–70 years), and late-onset (>70 years; Table  1). Moreover, 
we selected 36 females and 25 males as controls, with a median age of 
48 years. Genome-wide analysis of DNA methylation profiles was 
performed using the Illumina HumanMethylation450 array. The 
immunological differences of the analyzed samples in terms of blood 

cell subpopulations were subsequently estimated. The results of the 
logistic regression analyses indicate that there was an association 
between the disease and the unit increase of CD8T, CD4T, NK, 
Plasmablasts, and Granulocytes (p-value < 0.05; Table 1). In contrast, 
there was no statistically significant association between CD8T naive, 
CD4T naive, Monocytes, and B-cells and the disease. However, it is 
important to highlight that a significant relationship was observed 
between age and gender variables (Table 1).

Epigenetic profiling and meta-analysis

After completing methylation data QC and normalization 
procedures, which included batch effect adjustment, an initial 
investigation was conducted to examine variations in global DNA 
methylation profiles between ALS cases and controls. Principal 
Component Analysis (PCA) was used to reduce the complexity of DNA 
methylation data, and the results were visualized using a scatterplot 
featuring the first two principal components (Supplementary Figure 1). 
Subsequently, a differential analysis was performed, taking into account 
potential confounding factors such as age and cellular composition. This 
step retrieved 1,131 significant probes, respectively 1,072 and 59  in 
hyper and hypo-methylated state (Supplementary Table 1). The findings 
from this analysis were then combined with those of the previous study 
conducted by Hop et al. using a meta-analytical approach. Following 
adjustment for multiple testing, a total of 167 significant and consistent 
probes corresponding to 126 unique genes (Supplementary Tables 2, 3) 
were confirmed as differentially methylated and concordant in the state 
of methylation. Results are also illustrated in the Manhattan plot 
displayed in Figure  1. Subsequently, an enrichment analysis was 
conducted on the resulting genes specifically exhibiting 
hypermethylation and hypomethylation. Regarding the 
hypermethylated genes, the analysis revealed an enrichment in KEGG 
pathways such as “Autophagy,” “Longevity regulating pathway,” “Fatty 
acid metabolism,” “AMPK signaling pathway,” “EGFR tyrosine kinase 
inhibition resistence,” and “HIF-1 signaling.” Conversely, the down-
methylated genes did not reveal any enriched pathway.

We finally explored all chemical compounds potentially associated 
with the 126 genes identified in the ALS epigenetic signature. To 
complete this task, we  retrieved a list of associated chemical 
compounds for each gene using the Comparative Toxicogenomic 
Database. In addition, chemical compounds have been prioritized 
according to the number of genes they interact with. Intriguingly, this 
analysis showed an association with (i) compounds already known for 
their neurotoxic effects, such as sodium arsenite, silicon dioxide, and 
nickel; (ii) environmental agents such as benzo(a)pirene, air pollution, 
particulate matter, and tetrachlorodibenzodioxin; (iii) lifestyle factors 
such as smoking; and (iv) chemical agents used as pesticides such as 
rotenone, and DDT (Supplementary Figure 2). The prioritized results 
of this analysis are summarized in Table 2.

Age acceleration

Epigenetic age acceleration was estimated via Horvath method for 
each ALS and control sample as described in Materials and Methods. 
The resulting regression analysis did not show a statistically significant 
age acceleration in ALS cases compared to controls (Figure  2A). 

TABLE 1 Demographic and immunological characteristics of ALS cases 
and healthy controls.

Demographic 
Information

ALS cases 
(n  =  61)

Controls 
(n  =  61)

p-value

Gender - frequency (%)

 Female 20 (32%) 36 (59%) 0.006a

 Male 41 (68%) 25 (41%)

  Age at collection (years) - 

Median

50.6  

(IC 52.6–62.7)

48  

(IC 44–51)

0.01b

Clinical features

  Age at onset (Years) - 

Median

48.16 - -

 Early-onset (<40 years) 17 - -

 Adult-onset (40–70 years) 20 - -

 Late-onset (>70 years) 24 - -

Site of onset

 Spinal 50 (82%) - -

 Bulbar 11 (18%) - -

Inferred immunological cellular components

CD8T 0.03c

CD4T 0.03c

CD8 Naive 0.5c

CD4 Naive 0.2c

Natural Killer (NK) 1.19e-05c

Monocytes 0.3c

BCell 0.3c

Granulocytes 0.0001c

PlasmaBlast 0.002c

aχ2 test.
bWilcoxon test.
cLogistic regression.
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Additionally, the GrimAge predictor of mortality was assessed, but no 
statistical evidence between ALS cases and controls was found 
(Figure 2B).

Epigenetic drift

We examined epigenetic drift in all samples by considering the 
burden of SEMs. To assess this burden, we calculated SEM scores at 
multiple loci and used them to determine two Epi Mutation Load 
(EML) scores per subject. These two scores, respectively named 
Global-EML and Gene-EML, allowed us to evaluate the overall 
accumulation of SEM counts across the entire genome and at specific 
gene level, respectively. They provided a comprehensive assessment of 
the SEM burden in each subject.

Global-EML was first log-transformed and subsequently 
compared between groups by a multiple regression model taking into 
account important covariates such as gender, age, and cellular 
composition. This analysis revealed a significantly increased epigenetic 
drift in ALS cases compared to controls and the risk of ALS was 
significantly associated with the Global-EML (p < 0.0001, β = 0.23; 
Figure 3).

Moreover, we examined the gene-level epigenetic drift (Gene-
EML) using a SKAT test. After adjusting for multiple testing, 
we  observed a distinct set of genes (n = 700) that exhibited a 
significant increase in the accumulation of SEMs among ALS cases 
compared to controls (Supplementary Table 4). We then conducted 
an ORA to identify biological pathways potentially affected by the 
observed epigenetic drift. Notably, this analysis revealed a 
significant enrichment of pathways associated with 
“Neurotrophins” with a false discovery rate (FDR) < 0.01 (n 
genes = 12; Table  3). To further expand our analysis, we  also 
investigated the impact of SEMs in the neurotrophin genes and 
their association with age at the onset of the disease. The multiple 

regression model, considering also age as a covariate, showed a 
significant association between the increase in the burden of SEMs 
and a lower age at the onset (β = −0.43, p < 0.01).

Epivariation analysis

Based on our SEMs analysis, regions showing a significant 
enrichment of SEMs, commonly referred to as epivariations, were 
identified within each subject. While Gene-EML involves comparing 
all subjects, including both cases and controls, to identify regions 
with a different burden of epimutations, epivariation analysis focuses 
on regions within each individual, highlighting the presence of 
enriched epimutations and aberrant methylation status. The 
calculation algorithm used is a sliding window approach based on a 
cumulative hypergeometric test, which conducts an enrichment 
analysis for each subject (see Materials and Methods). Furthermore, 
to identify candidate genes, the genomic coordinates of epivariations 
(SEM-enriched regions) for each individual were recorded along with 
their corresponding methylation status (hyper- or hypo-methylated), 
and subsequently annotated (Supplementary Tables 5, 6). From this 
analysis, a list of genes associated with epivariation, exclusively 
observed in ALS cases and absent in all controls, was generated 
(Supplementary Table  7). This investigation revealed 153 unique 
genes displaying epivariations specific to ALS cases. Among these 
genes, we further narrowed down the list using GTEX and identified 
88 genes that were highly expressed in the brain (Figure  4). 
Furthermore, the gene prioritization step revealed 2 genes already 
associated with the term “Neurodegeneration,” namely NIPA1 and 
PRDM8. NIPA1 resulted hyper-methylated, while PRDM8 resulted 
hypo-methylated. Furthermore, using SNP genotyping data 
previously obtained in our laboratory (Manini et al., 2023), we also 
evaluated if CNVs could influence our analysis. No CNVs were 
detected for all evaluated genes.

FIGURE 1

Manhattan plot showing the 27 genes significant emerged from the meta-analysis. The dashed line indicates a significance level of 5% (p  <  0.05).
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Discussion

The role played by epigenetics in the onset of complex diseases 
still represents a challenging frontier of study. During the last 
decade, genome-wide methylation analysis, coupled with an 
accurate collection of clinical data, has offered extensive knowledge 
of novel and alternative pathomechanisms that may characterize 
multifactorial disorders (Horvath, 2013; Gentilini et  al., 2015, 
2023b; Lu et al., 2020; Spada et al., 2020). In the context of ALS 
disease, genome-wide approaches and case vs. control studies, 
although with not completely overlapping results, highlighted 
several significant genes differentially methylated (Nabais et al., 
2020; Cai et al., 2022; Hop et al., 2022; Ruf et al., 2022). In particular, 
Hop et al. have conducted an accurate and extensive analysis in 

blood on a large cohort of ALS cases (n = 6,763), revealing a clear 
link between neuroinflammation and disease progression (Hop 
et al., 2022). The present study, although conducted on a small case–
control cohort, extended the previously reported results by 
including other unexplored epigenetic aspects such as epigenetic 
drift and rare epivariations.

The differential methylation analysis followed by meta-analysis 
with previous results (Hop et al., 2022) led to the identification of a 
more robust episignature. ORA further investigated the epigenetic 
signature, revealing significant enrichment in specific Gene Ontology 
categories, in particular in the “Autophagy,” “Longevity regulating 
pathway,” “Fatty acid metabolism,” “AMPK signaling pathway,” 
“EGFR tyrosine kinase inhibition resistence” and “HIF-1 signaling” 
pathways in hypermethylated genes, these results are in line with 
previous findings (Navone et al., 2015; Hop et al., 2022). Conversely, 
the down-methylated genes showed no statistical significance in 
relation to various biological pathways and cellular processes. 
Furthermore, interesting findings emerged when investigating the 
chemical compounds likely associated with the identified ALS 
episignature. The toxicological effects deriving from arsenic 
derivatives, dioxin, and heavy metals were already well-investigated 
in many neurological disorders including ALS (Migliore et al., 2015; 
Prakash et al., 2016; Song et al., 2016; Figueroa-Romero et al., 2020). 
Similarly, air pollution, pesticides, environmental and/or lifestyle 
factors were frequently recognized as potential risk factors for 
neurodegeneration and ALS onset (Zhao et al., 2016; Ash et al., 2017; 
Marabita et al., 2017; Swash and Eisen, 2020; Malek et al., 2023). 
Despite the ongoing lack of definitive evidence regarding the clear 
role of these factors in ALS onset and progression (Ingre et al., 2015; 
Vasta et  al., 2022), the identification of an epigenetic profile 
compatible with these environmental risk factors provides additional 
support for the involvement of these chemical compounds in 
the disease.

Previous studies investigating age acceleration in ALS, 
frontotemporal dementia (FTD), and PD identified a significant 
increase in cases compared to controls (Chen et al., 2022; Ruf et al., 
2022; Murthy et al., 2023). This result was not confirmed by our study 
when adjusting for important covariates such as age, gender, and 
principal components deriving from blood cell type estimates. 
Similarly, the same negative result was observed even when 
considering the GrimAge predictor of mortality, which indicates an 
elevated risk of premature death in the presence of illness.

Interesting findings emerged from our analysis of epigenetic drift, 
particularly concerning the EML scores, which indicate the 
accumulation of SEMs at both the genome and gene levels. As recently 
reported concerning PD, SEM events in blood cells are stochastic in 
nature, affecting the entire genome and driven by some external 
process (Chen et al., 2022). However, they seem not only to influence 
the risk of PD but also motor decline, especially among female 
patients, as well as time to death in all patients (Chen et al., 2022). 
Thus, an increased epigenetic drift may have a significant impact on 
individual health, by likely contributing to increased genomic 
instability and abnormal gene expression, which can be reflected in 
some clinical implications. Interestingly, our study showed a 
significantly increased Global-EML in ALS cases compared to 
controls, according to the results obtained by the recent literature on 
PD (Chen et al., 2022). Additionally, the Gene-EML analysis revealed 
a list of 700 genes exhibiting distinct SEM burdens between ALS cases 

TABLE 2 Top 30 chemical compounds associated with resulting 
differentially methylated genes from the Comparative Toxicogenomic 
Database.

Chemical compounds Occurrences (n)

Benzo(a)pyrene 250

Valproic Acid 227

Bisphenol A 209

Estradiol 179

Smoke 165

Aflatoxin B1 134

Sodium arsenite 124

Dorsomorphin 107

4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-

yl-1H-imidazol-2-yl)benzamide

102

Cisplatin 102

Resveratrol 95

Cyclosporine 90

Lipopolysaccharides 88

Fulvestrant 85

Tretinoin 78

Air Pollutants + Particulate 77

Arsenic Trioxide 76

Arsenic 73

Doxorubicin 73

Thallium 72

Dexamethasone 68

Tetrachlorodibenzodioxin 68

Acetaminophen 66

Trichostatin A 61

Glucose 59

Abrine 58

Nickel 57

Aristolochic acid I 56

Cadmium Chloride 54

Jinfukang 53

Chemical compounds are listed according to their occurrence in our dataset.
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and controls, leading to a significant enrichment in the “Neurotrophin 
signaling pathway.” Intriguingly, we also found an association between 
the burden of SEMs in the resulting 12 neurotrophin genes and the 
age at the onset. Despite a discouraging history of human trials with 
neurotrophins in ALS, recent works have hypothesized a role of 
dysregulated neurotrophin signaling in ALS etiopathogenesis (Baloh 
et al., 2022; Li et al., 2022). Therefore, our research brought to light a 
potential epigenetic modification connected to the neurotrophin 
pathway, a revelation that gains added significance in light of the 
distinct epigenetic mechanism involving miRNA (Brusati et al., 2022). 
Altogether, these findings support the possibility that a dysregulated 
methylome could be associated with ALS (Benayoun et al., 2015). 
Finally, we focused our analysis on the discovery and significance of 
uncommon epigenomic changes. Rare epivariations are known to 
affect hundreds of genes related to several hereditary diseases, 
suggesting that these genomic modifications may help explain the 
mutational spectrum underpinning many Mendelian disorders (Garg 
et  al., 2020). Epivariations are regions or genes characterized by 
aberrant methylation. They are identified as regions with enrichment 
of SEMs, but they differ from the regions highlighted in the Gene-EML 
analysis because SEM enrichment is calculated within each individual 

subject rather than across subjects. Our analysis revealed 153 genes 
carrying epivariations exclusively in ALS cases, with 88 of them highly 
expressed in brain and specific cerebral areas. Additionally, the 
prioritization analysis indicated that a couple of genes were 
already associated with “Neurodegeneration.” NIPA1, which was 
hypermethylated, has been reported as a common risk factor for ALS, 
where the expansion of the repetition unit motif GCG > 8 has been 
linked to an increased risk of the disease (Tazelaar et al., 2019), but 
associations with its methylation status were not investigated. On the 
other hand, PRDM8, which showed hypomethylation and codes for 
histone methyltransferase acting as a negative regulator of 
transcription, has never been linked to ALS, although recent research 
has shown its involvement in the specification of motor neurons and 
oligodendrocytes (Scott et  al., 2020). A recent study on PRDM8 
knocked-down cells also showed that the loss of PRDM8 leads to 
impaired neuronal differentiation (Cypris et al., 2020). This study 
found that CpGs associated with PRDM8 were hypomethylated in 
knocked-down cells compared to control cells, thus supporting our 
findings in ALS patients.

FIGURE 2

(A) Age acceleration between ALS cases and controls (p  =  0.051). (B) Grimage between ALS cases and controls (p  =  0.4).

FIGURE 3

Boxplot showing the epigenetic drift between ALS cases and 
controls. Differences were assessed by a regression model taking 
into account several covariates (p  =  0.0001, β  =  0.23).

TABLE 3 Significant genes enriched in “Neurotrophin signaling pathway” 
(FDR <0.1) based on SKAT.

Genes p-value Perm p-value

ABL1 0.05 0.01

CAMK4 0.15 0.01

KRAS 0.01 0.002

MAP2K1 0.08 0.04

MAP3K1 0.01 0.002

MAPK1 0.03 0.02

NFKBIA 0.03 0.02

NGF 0.1 0.01

PIK3CB 0.03 0.02

RAPGEF1 0.04 0.02

SH2B1 0.1 0.01

SH2B3 0.02 0.01
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FIGURE 4

GTEX data showing the expression levels of all the 153 genes with epivariations among the different cerebral areas. Transcript per million (TPM) values 
were color scaled to display the increased grades of expression.

The primary strength of this study is its rigorous and extensive 
evaluation of methylation differences using a multilevel approach, 
which not only enhances our understanding of the epigenetic aspects 
associated with ALS but also allows for a more in-depth exploration 
of the intricate and multifaceted mechanisms underlying the disease. 
Several limitations of our study should be  considered when 
interpreting our results. The relatively small sample size is certainly a 
restrictive factor that may affect retrieved information, although the 
meta-analytic approach we conducted increased our statistical power. 
We are fully aware that a larger sample size may be needed to confirm 
our findings. Another limitation is the study’s cross-sectional design, 
which prevented us from inferring causality or temporal relationships 
between epigenetic modifications and the development of 
ALS. Longitudinal studies of the same individuals over time would 

be needed to address this issue. Additionally, our study focused on a 
single Italian ALS cohort, and findings may not be generalizable to 
other populations. Further studies will therefore be needed to confirm 
our findings in populations with different ethnic origins and to 
determine whether the observed epigenetic modifications are specific 
to the Italian population or more broadly applicable to individuals 
with ALS worldwide. Another limiting aspect of our research was 
certainly the inability to further extrapolate information regarding 
genetic expression and exposure factors from our case data. 
We additionally know that associating specific epigenetic variation 
across different tissues, such as brain and blood, still remains 
challenging. However, the use of blood as a study tissue for epigenetic 
investigations into neurodegenerative diseases is supported by several 
justifications. These include:
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 1 Correlation between blood and brain tissues: there is a 
substantial degree of epigenetic variability correlation between 
blood and brain tissues, as supported by the findings by Davies 
et al. (2012) and other relevant publications. Despite variations 
in epigenetic regulation between these two tissue types, 
extensive research has consistently revealed epigenetic 
modifications in genes associated with neurological processes 
when studying blood as a valuable resource for investigating 
psychiatric and neurodegenerative disorders.

 2 Accessibility and ease of collecting blood samples: blood is an 
attractive tissue for study due to its accessibility and ease of 
collection. This practical advantage positions blood as an 
invaluable resource for the discovery of potential biomarkers, 
particularly given the expeditious collection of blood samples 
relative to other tissue types. This convenience enhances its 
applicability for clinical and diagnostic purposes.

Finally, our study examined DNA methylation at the whole 
genome level, but it is also likely that other epigenetic modifications, 
such as histone modifications or DNA hydroxymethylation, may also 
play a role in the pathogenesis of ALS. Further analysis will be required 
to examine these other epigenetic modifications and to determine 
their potential relevance to the disease.

Overall, our study provides additional evidence that epigenetics may 
be involved in the pathogenesis of sALS and that epigenetic drift may 
be a useful marker for the disease. In particular, we found a Global-EML 
increase in ALS and an association between age at onset and the burden 
of SEMs in neurotrophin genes by Gene-EML analysis. However, these 
findings need further confirmation by a deep examination of the 
mechanisms underlying the observed epigenetic modifications. 
Moreover, epivariations analysis highlighted two genes already associated 
with ALS or neural impairment. However, as epivariations are a new 
analytical approach for DNA methylation analysis, further investigations 
to evaluate their influence on ALS will be required.
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