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Association between gene 
expression and altered 
resting-state functional networks 
in type 2 diabetes
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University General Hospital, Tianjin, China

Background: Type 2 diabetes (T2DM) is a polygenic metabolic disorder that 
accelerates brain aging and harms cognitive function. The underlying mechanism 
of T2DM-related brain functional changes has not been clarified.

Methods: Resting-fMRI data were obtained from 99 T2DM and 109 healthy 
controls (HCs). Resting-state functional connectivity networks (RSNs) were 
separated using the Independent Component Analysis (ICA) method, and 
functional connectivity (FC) differences between T2DM patients and HCs within 
the RSNs were detected. A partial least squares (PLS) regression was used to test 
the relation between gene expression from Allen Human Brain Atlas (AHBA) and 
intergroup FC differences within RSNs. Then the FC differences-related gene sets 
were enriched to determine the biological processes and pathways related to 
T2DM brain FC changes.

Result: The T2DM patients showed significantly increased FC in the left middle 
occipital gyrus (MOG) of the precuneus network (PCUN) and the right MOG / 
right precuneus of the dorsal attention network (DAN). FC differences within 
the PCUN were linked with the expression of genes enriched in the potassium 
channel and TrkB-Rac1 signaling pathways and biological processes related to 
synaptic function.

Conclusion: This study linked FC and molecular alterations related to T2DM and 
suggested that the T2DM-related brain FC changes may have a genetic basis. 
This study hoped to provide a unique perspective to understand the biological 
substrates of T2DM-related brain changes.
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1 Introduction

Type 2 diabetes (T2DM) is a polygenic metabolic disorder (Saeedi et al., 2019) that has 
brought great health and economic burden to individuals and society, which cannot be ignored 
(American Diabetes Association, 2018). T2DM-related cognitive impairment mainly involves 
executive and memory functions (McCrimmon et al., 2012; Zilliox et al., 2016). It accelerates 
brain aging and increases the risk of dementia (Biessels et al., 2006; Mayeda et al., 2015). It 

OPEN ACCESS

EDITED BY

Puliyur MohanKumar,  
University of Georgia, United States

REVIEWED BY

Mercedes Atienza,  
Universidad Pablo de Olavide, Spain  
Xiaoli Liu,  
Zhejiang Hospital, China

*CORRESPONDENCE

Quan Zhang  
 quanzhang@tmu.edu.cn

RECEIVED 07 September 2023
ACCEPTED 13 November 2023
PUBLISHED 29 November 2023

CITATION

Zhang Y, Du X, Qin W, Fu Y, Wang Z and 
Zhang Q (2023) Association between gene 
expression and altered resting-state functional 
networks in type 2 diabetes.
Front. Aging Neurosci. 15:1290231.
doi: 10.3389/fnagi.2023.1290231

COPYRIGHT

© 2023 Zhang, Du, Qin, Fu, Wang and Zhang. 
This is an open-access article distributed under 
the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Original Research
PUBLISHED 29 November 2023
DOI 10.3389/fnagi.2023.1290231

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2023.1290231%EF%BB%BF&domain=pdf&date_stamp=2023-11-29
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1290231/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1290231/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1290231/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1290231/full
mailto:quanzhang@tmu.edu.cn
https://doi.org/10.3389/fnagi.2023.1290231
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2023.1290231


Zhang et al. 10.3389/fnagi.2023.1290231

Frontiers in Aging Neuroscience 02 frontiersin.org

has been reported that cognitive function was lower in middle-aged 
and elderly individuals with T2DM than that without T2DM 
(Rawlings et al., 2014). So far, the potential mechanism of T2DM-
related brain functional changes has not been clarified.

Functional neuroimaging researches have always been committed 
to revealing the mechanism of T2DM affecting the central neural 
system. Resting-state functional connectivity networks (RSNs) are 
involved in cognitive processes (Beckmann et al., 2005). Disruptions 
in the RSNs are associated with cognitive dysfunction (Gili et al., 2011; 
Olde Dubbelink et al., 2013). Several RSNs have been identified, and 
changes of functional connectivity (FC) within networks have been 
found to be associated with cognitive impairment in T2DM patients 
(Musen et al., 2012; Chen et al., 2014; Hoogenboom et al., 2014; Lei 
et al., 2022), including the default mode network (DMN) (Macpherson 
et  al., 2017), the precuneus network, and the executive control 
network (Wu et al., 2022). From the topological FC network research, 
patients with early T2DM mostly retained the small-world properties 
of the brain network while exhibiting abnormal nodal clustering 
coefficient and characteristic path length in the frontal, temporal lobe, 
and cingulate gyrus (Zhang D. et al., 2021). These results suggested 
the reorganization of brain FC networks in T2DM patients (van 
Bussel et al., 2016). Therefore, RSNs analysis is an effective method for 
detecting brain functional changes related to T2DM.

T2DM has a strong genetic predisposition (Kwak and Park, 2016). 
Investigating the link between gene expression and neuroimaging 
phenotype can help reveal the biological process of T2DM-related 
brain changes from a unique perspective. Allen Human Brain Map 
(AHBA) provides spatially matched gene expression data with human 
brain neuroimaging data, which can help link the brain gene expression 
with brain FC phenotype. With this approach, neuroimaging-gene 
expression association studies have been successfully conducted in 
diseases such as schizophrenia (Morgan et al., 2019; Zong et al., 2022), 
Parkinson’s disease (Thomas et  al., 2021), autism (Romero-Garcia 
et al., 2019), and Alzheimer’s Disease (Zhang Y. et al., 2021). However, 
similar studies are limited in T2DM patients.

Independent Component Analysis (ICA) is a frequently used 
technique for identifying the most prominent RSN in resting-
state fMRI (rs fMRI) data (Beckmann and Smith, 2004), which is 
a data-driven method that automatically explores the temporal 
correlation between different brain regions in a resting state, 
detecting and separating multiple RSNs from rs fMRI data 
(Beckmann et al., 2005). In this study, RSNs were separated by 
using the ICA and different patterns of internetwork FC in T2DM 
patients were detected. Then, the FC differences were combined 
with the gene expression data in AHBA transcriptome data to 
determine the possible mechanism of T2DM affecting brain 
function. Partial least squares (PLS) regression was used to test 
whether FC differences in the RSNs were related to specific gene 
expression patterns. Finally, those genes whose expression 
patterns were related to FC differences were enriched and 
analyzed to determine the biological processes and pathways 
associated with brain FC changes in T2DM. A workflow of the 
study protocol was shown in Figure 1. This study conducted an 
exploratory analysis on the possible mechanism of T2DM 
affecting brain function and hoped to provide a unique 
perspective to understand the mechanism of T2DM-related 
brain changes.

2 Materials and methods

2.1 Participates

This study was approved by the Ethics Committee of Tianjin 
Medical University General Hospital. All participants voluntarily 
provided written informed consent. 109 individuals with T2DM were 
recruited from the Department of Endocrinology of Tianjin Medical 
University General Hospital. 119 Well-matched healthy controls 
(HCs) were recruited from community recruitment. Four T2DM 
patients and five HCs were excluded due to incomplete scans or 
cognitive assessment. Subjects with poor blood sample quality (four 
T2DM patients and five HCs) and poor image quality (two T2DM 
patients) were also excluded. Finally, 99 individuals with T2DM and 
109 well-matched HCs were enrolled. The clinical diagnosis of T2DM 
was based on the 2010 criteria of the American Diabetes Association 
(ADA). By screening, patients with retinopathy, nephropathy, and 
peripheral neuropathy were excluded. As previously described (Ryan 
and Geckle, 2000), retinopathy was screened by direct ophthalmoscopy, 
nephropathy by laboratory tests for microalbuminuria, and peripheral 
neuropathy by clinical examinations. Exclusion criteria were as 
follows: (i) history of psychiatric disorder; (ii) history of stroke, 
hemorrhage, trauma, or epilepsy; (iii) alcohol or drug abuse; (iv) 
family dementia; (v) contraindications for MRI scans.

2.2 Clinical data and cognitive assessment

All the participants were right-handed and were in Chinese Hans. 
The disease course of each T2DM patient was recorded. For all the 
individuals, education level, height, and weight were recorded and their 
body mass index (BMI) was calculated. Blood samples were collected 
in the morning after more than 10 hours of fasting and used for testing 
fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c).

Cognitive assessments were conducted before MRI scanning. 
General cognition was assessed using the MMSE (Folstein et  al., 
1975). Anxiety and depression were tested using the self-rating anxiety 
scale (SAS) (Zung, 1971) and the self-rating depressive scale (SDS) 
(Zung, 1965), respectively. Episodic memory was evaluated by the 
Rey-Osterrieth Complex Figure Test (ROCF) (Shin et al., 2006) and 
the Chinese version of the Auditory Verbal Learning Test (AVLT) 
(Rosenberg et al., 1984).

2.3 MRI data acquisition

MRI scans were performed on a 3.0-T MR system (Discovery 
MR750; General Electric, Milwaukee, WI, United States), using an 
8-channel phase array head coil. Blood oxygen level-dependent 
(BOLD) fMRI data were obtained using a gradient-echo, single-shot, 
echo-planar imaging sequence. Specific scanning parameters were set 
as TR = 2000 ms, TE = 45 ms, FA = 90°, FOV = 220 mm × 220 mm, 
matrix = 64 × 64, slice thickness = 4 mm, slice gap = 0.5 mm, 32 axial 
slices, 180 volumes. Three-dimensional sagittal T1-weighted images 
were obtained using a brain volume sequence. Specific parameters were 
set as TR = 8.2 ms, TE = 3.2 ms, TI = 450 ms, FA = 12°, matrix = 256 × 256, 
section thickness = 1 mm, 188 continued sagittal sections.
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2.4 MRI data preprocessing

Statistical Parametric Mapping software (SPM12; www.fil.ion.ucl.
ac.uk/spm) embedded in MATLAB was used to preprocess the rs 
fMRI data. The following steps were performed: (i) remove the first 10 
volumes in each time series; (ii) slice timing correction; (iii) motion 
estimation and correction, subjects with more than 2 mm translational 
or more than 2° rotational head motion were excluded; (iv) spatially 
normalization into Montreal Neurological Institute (MNI) space; (v) 
reslice: 3 mm × 3 mm × 3 mm; (vi) spatially smoothed with a 6-mm full 
width at a half-maximum Gaussian kernel.

2.5 Independent component analysis and 
component selection

GIFT software1 was used to conduct the group spatial ICA 
analysis. First, 22 ICs were automatically estimated using the 
minimum description length criteria (Li et  al., 2007). Second, a 
two-step principal component analysis was performed to decompose 
the fMRI data into 22 principal components. Third, an Informax 

1 http://icatb.sourceforge.net/

FIGURE 1

The workflow of the study protocol. (A) Acquire the whole-genomic transcriptomic profiles from the AHBA database; (B) Obtain the sample-wise gene 
expression matrix. ICA and component selection were performed on rs-fMRI data. FC case–control T values were obtained by comparing two groups 
within ICA-identified RSNs; (C) Identify FC difference-related genes by investigating correlations between gene expression and FC case–control T 
values using PLS; (D) Functional annotations for FC difference-related genes. AHBA, Allen human brain atlas; FC, functional connectivity; ICA, 
independent component analysis; PLS, partial least squares.
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algorithm (Bell and Sejnowski, 1995) was used to perform the group-
level IC estimation. ICA analysis was re-runed 100 times using the 
ICASSO method to achieve the most stable estimation of IC. Fourth, 
the subject-level ICs were reconstructed from the group-level ICs 
using a spatial–temporal algorithm. Finally, z-scores transformation 
was performed on subject-specific spatial and temporal components 
to create a normal distribution. By visual observation and according 
to the resting state network model in the literature (Laird et al., 2011), 
the components representing noise were excluded, and finally, 13 ICs 
representing the RSNs were chosen for further analysis. The spatial 
component was defined as intra-network FC.

2.6 Gene expression data processing

Publicly original gene expression data were downloaded from an 
open-access transcriptomic dataset (Allen Human Brain Atlas 
(AHBA), http://human.brain-map.org). The AHBA provides 
transcriptomic data of 20,737 genes taken from 3,702 spatially distinct 
tissue samples obtained from six postmortem adult brains. Here, the 
abagen toolbox,2 an open-access software package with a standardized 
workflow (Markello et  al., 2021) for transcriptomic data, was 
conducted to link gene expression and neuroimaging data. The 
standardized sample-based workflow included four major steps: (i) 
Update probe-to-gene annotation, the updated probe-to-gene 
annotations generated by Arnatkeviciute et al. (2019) were used in the 
workflow; (ii) Intensity-based filtering of probes, we removed the 
probes which signal that did not exceed 50% above the background 
noise; (iii) Probe selection, differential stability is adopted as the 
selection method, that is, the probe with the highest average 
correlation to other probes across brain regions for every pair of 
donors was retained when there are more than two probes indexing 
the same gene; (iv) Normalization, by using the scaled robust sigmoid 
(SRS) measure, both sample and gene normalization were conducted 
for each donor to correct the donor effects. After the above steps, 
we ultimately obtained the expression values of 15,609 genes of the 
3,452 brain samples. The sample × gene expression matrix of 
3,452 × 15,609 from the six donors was used for further analysis in 
our study.

2.7 Transcription-imaging association

Before gene expression-neuroimaging association analysis, the 
sample correspondence between gene expression and fMRI data 
should be established. First, using the MNI coordinate of each tissue 
sample in the AHBA data as a center, defined a sphere with a radius of 
6 mm, which is twice the size of the voxel, to obtain gene expression 
data. Then extract the average T-statistic value from the FC case–
control T-value map. The following correlation analysis will 
be conducted within ICA-identified RSNs with significant intergroup 
FC differences. To detect genes whose expression levels were 
significantly associated with FC difference, PLS regression was used, 
with gene expression data as the independent variable (X) and the 

2 https://abagen.readthedocs.io/en/stable/index.html

regional FC case–control T-value of RSN as the dependent variable (Y). 
The PLS regression was performed using 15 components, and 
percentage variances in Y explained by the 15 components were plotted 
(Supplementary Figure S1). A 1,000 times spatial permutation test was 
utilized to correct the PLS regression results. PLS1 and PLS7 survived 
the permutation test and therefore adopted for the following 
enrichment analyses. Genes’ weight in the PLS1 and the PLS7 were 
evaluated using a Bootstrapping method. After Bonferroni correction 
(p < 0.05), gene sets reliably contributed to the PLS1 and the PLS7 
were obtained.

2.8 Gene enrichment analysis and 
functional annotation

The FC difference-related genes (the PLS1 and PLS7 gene sets) 
were put into the Toppgene3 to perform enrich analyses for biological 
processes and pathways. Multiple comparisons were performed using 
the Benjamini and Hochberg method for false discovery rate (FDR-BH 
correction, p < 0.05).

2.9 Statistical analyses

Functional connectivity analyses were conducted by using SPM12 
software.4 The 13 retained ICs represented different brain RSNs. To 
identify the spatial distribution pattern of the FC of each RSN, a voxel-
wise one-sample T-test was performed on the spatial maps of each 
RSN in both T2DM patients and HCs. A family-wise error (FWE) 
correction (p < 0.05) was used for multiple comparison corrections. 
Brain regions exhibiting statistically positive FC in each RSN were 
binarized. For each RSN, a mask was generated by taking the union of 
the statistically positive FC regions in T2DM patients and HCs for 
subsequent statistical analysis.

Using a two-sample T-test, voxel-based intergroup comparisons 
of FC were performed in 13 RSNs within their respective mask, and 
age, sex, and education were controlled. Multiple comparison 
corrections were conducted using an AlphaSim algorithm (p < 0.05) 
(single voxel uncorrected p = 0.001, 1,000 simulations, within the mask 
of each RSN). Regions with significant intergroup differences were 
defined as regions of interest (ROI). Averaged FC values within each 
ROI were extracted for subsequent correlation analyses.

The Statistical Package for the Social Sciences (SPSS version 22.0) 
was used to test the intergroup difference in the clinical and cognitive 
data. Two-sample T-tests were conducted for normally distributed 
continuous variables, Mann–Whitney U-tests were used for 
continuous variables with a non-normal distribution, and categorical 
variables were assessed with a chi-squared test. Partial correlation 
analyses were performed to test the correlation between the extracted 
FC value of ROIs and cognitive assessments after controlling for age, 
education, and gender. The significance level was set as p < 0.05.

3 https://toppgene.cchmc.org/

4 https://www.fil.ion.ucl.ac.uk/spm/software/spm12
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3 Result

3.1 Demographics, clinical indicators and 
cognitive status

The main demographics, cognitive status, and clinical indicators 
are shown in Table 1. Compared to HCs, the BMI, FBG, and HbA1c 
were significantly higher in T2DM patients (p < 0.001).

The short-term (z = −2.225, p = 0.027) and long-term (z = −2.418, 
p = 0.016) memory of AVLT and delayed recall score of ROCF (z = −2.972, 
p = 0.003) were lower in the T2DM patients compared with the HCs.

3.2 WM network spatial patterns

Thirteen noise-free ICs included the posterior default mode 
network (pDMN) (IC 1), sensorimotor Network (SMN) (IC 2 and 3), 
salience network (SAN) (IC 4), visual network (VN) (IC 5 and 6), 
anterior DMN (aDMN) (IC 7), precuneus network (PCUN) (IC 8), 
ventral attention network (VAN) (IC 9), dorsal attention network 
(DAN) (IC10), auditory network (AUN) (IC 11), right frontoparietal 
network, (RFPN) (IC 12), left frontoparietal network (LFPN) (IC 13). 
Specific IC maps for the T2DM group and HCs are shown in Figure 2.

3.3 Functional connectivity analyses

Internal network FC significantly differed in the PCUN and 
DAN (p  < 0.05, AlphaSim corrected). The T2DM patients 

exhibited significantly increased FC in the left middle occipital 
gyrus (MOG) of the PCUN (x = −30, y = −81, z = 24, cluster 
size = 22 voxels, p  < 0.05, AlphaSim corrected), and the right 
MOG / right precuneus of the DAN (x = 36, y = −72, z = 42, 
cluster size = 27 voxels, p < 0.05, AlphaSim corrected) (Table 2 
and Figure 3). In the T2DM patients, the FC value in the left 
MOG of the PCUN was positively correlated with the delayed 
recall scores of ROCF (r = 0.248, p = 0.014). The FC value in the 
right MOG / right precuneus of the DAN and the delayed recall 
scores of ROCF also showed a positive correlation trend 
(r = 0.194, p = 0.057) (Figure 4).

3.4 Associations between gene expression 
and between group FC difference

Within the PCUN (IC 8), 598 genes were detected to make 
significant contributions to the PLS1 (Bonferroni correction, 
p < 0.05) (Supplementary Table S1); 337 genes were identified to 
make significant contributions to the PLS7 (Bonferroni 
correction, p < 0.05) (Supplementary Table S1). These 2 sets of FC 
difference-related genes were defined as the PLS1 gene set and 
the PLS7 gene set, respectively, and were used for subsequent 
gene functional annotation analyses. Significant PLS components 
were significantly correlated to the intergroup FC difference 
(p < 0.0001) (Figure 5).

There were no significant PLS components associated with the FC 
case–control T map within the DAN (IC 10).

TABLE 1 Demographics, clinical data and cognitive assessment.

Characteristics
Type 2 diabetes 

(n =  99)
Healthy controls 

(n =  109)
Statistical value p value

Demographics

Age (years) 60 (41, 76) 59 (42, 74) −1.182 0.237

Gender (M/F) 53/46 52/57 0.705 0.401

Education (years) 11 (3, 17) 11 (3, 18) −0.084 0.933

Clinical Data

BMI (kg/m2) 26.13 ± 2.67 24.64 ± 3.03 3.741 < 0.001*

BP (hypertension /normal) 50 / 49 45 / 64 1.778 0.182

FBG (mmol/L) 7.14 (3.57, 16.87) 5.38 (4.52, 9.91) −8.633 < 0.001*

HbA1c (%) 7.00 (5.40, 12.80) 5.60 (4.82, 7.50) −10.067 < 0.001*

HbA1c (mmol/mol) 53.01 (35.52, 116.39) 37.71 (29.18, 58.47) −10.067 < 0.001*

Cognitive assessment

MMSE 28 (22, 30) 28 (21, 30) −0.105 0.916

AVLT Short-term Memory 41.22 ± 8.45 44.10 ± 10.05 −2.225 0.027*

AVLT Long-term Memory 8 (0, 14) 9 (0, 15) −2.418 0.016*

ROCF Copy 31 (13, 36) 31 (21, 36) −0.398 0.691

ROCF Immediate Recall 0.57 (0.15, 0.92) 0.64 (0.04, 0.90) −0.741 0.082

ROCF Delayed Recall 0.55 (0.11, 0.93) 0.65 (0.00, 1.00) −2.972 0.003*

Two-sample t-tests for normalized data, Mann–Whitney U-tests for non-normalized data, and Pearson’s Chi-square test for gender and BP. *p < 0.05 indicates statistically significant 
differences. AVLT, Auditory Verbal Learning Test; BMI, body mass index; BP, blood pressure; FBG, fasting blood glucose; MMSE, mini-mental state examination; ROCF, Rey-Osterrieth 
Complex Figure Test; TC, total cholesterol.
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3.5 Enrichment analysis

The PLS1 gene set showed significant enrichment in neuron-
specific terms, including pathways of the neuronal system and 
potassium channels (FDR-BH correction, p < 0.001) and biological 
processes of neurotransmitter secretion, synaptic signaling, and ion 
transmembrane transport (FDR-BH correction, p < 0.001). The PLS7 
gene set exhibited prominent enrichment in the pathway of TrkB-Rac1 
signaling (FDR-BH correction, p < 0.001); and biological processes of 

skeletal system morphogenesis/development (FDR-BH correction, 
p < 0.001). The top 5 enrichment results are shown in Figure 6. For 
detailed information, please see Supplementary Tables S2–S5.

4 Discussion

This study carried out an ICA-based internal network FC 
comparison between the T2DM patients and the HCs. We found that 

FIGURE 2

Resting state networks in T2DM patients and HCs identified by ICA. The color bar represents the t value by one-sample t-test (p  <  0.05, FWE 
correction). IC, independent component; R, right.

TABLE 2 Brain regions with significantly increased FC values in the T2DM patients compared with the HCs.

RSN Brain regions
Peak MNI coordinates

Voxels Peak T value p
X Y Z

precuneus network MOG (L) −30 −81 24 22 3.94 0.042*

DAN MOG/precuneus (R) 36 −72 42 27 4.23 0.041*

*AlphaSim corrected, p < 0.05. DAN, dorsal attention network L, left; MNI, Montreal Neurological Institute, MOG, middle occipital gyrus; R, right.
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the T2DM patients exhibited increased brain FC in the PCUN and the 
DAN compared with the HCs, with the main differences in the MOG 
and the precuneus. PLS regression analysis showed that two genetic 
components (PLS1 and PLS7) significantly explained the variance of 
the T2DM-related FC difference within the PCUN. The PLS1 gene set 
was mainly enriched for the pathway of the neuronal system and 
potassium channels, and biological processes of neurotransmitter 
secretion, synaptic signaling, and ion transmembrane transport. The 
PLS7 gene set was mainly enriched for the pathway of TrkB-Rac1 
signaling and biological processes of skeletal system morphogenesis/
development.

Both the MOG (Wu et al., 2022) and the precuneus (Cavanna 
and Trimble, 2006) are crucial for visual cognition-related visual 

information processing and were commonly reported with 
alterations in T2DM (Cui et al., 2022). The MOG is located in the 
primary visual cortex, which is a transit station for visual signals, 
receiving visual signals from the retina and transferring visual 
information to the higher visual cortex (Zhen et al., 2018). The 
precuneus is a major association area integrating higher-order 
cognitive functions, which has extensive connections with other 
brain areas and plays a critical role in visual–spatial images and 
episodic memory (Cavanna and Trimble, 2006). Retinopathy is a 
common diabetes complication, which can lead to visual 
impairment. Most studies on T2DM patients with optic nerve-
related complications have reported negative alterations in the 
MOG and the precuneus, including decreased synchronous 

FIGURE 3

Brain regions showing increased internal network FC in T2DM patients (p  <  0.05, AlphaSim correction). Brain regions with increased FCs within the 
precuneus network (A) and the DAN (B) in the T2DM patients were shown. FC, functional connectivity; R, right.

FIGURE 4

Correlation between the FC differences and the delayed recall scores of ROCF within both PCUN and DAN. (A) The FC value in the left MOG of the 
PCUN was positively correlated with the delayed recall scores of ROCF (r =  0.248, p  =  0.014). (B) The FC value in the right MOG / right precuneus of the 
DAN and the delayed recall scores of ROCF also showed a positive correlation trend (r  =  0.194, p  =  0.057).
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neural activities, decreased dynamic cerebral activity (Yang et al., 
2022), lower degree centrality (Huang et al., 2021), and decreased 
connectivity (Zhang et  al., 2020; Wan et  al., 2021). When 
extended to a wider population of diabetes, the results are 
inconsistent. Xia et  al. (2013) and Li et  al. (2021) reported 
decreased spontaneous neural activities in the MOG, while Liu 
et al. (2020) reported an increase in spontaneous neural activity 
in this area. In addition, increased nodal characteristics (Xiong 
et al., 2020) and functional connectivity (Liu et al., 2020) in the 
MOG were also reported in T2DM. As for the precuneus, several 
studies observed compensatory increased FC in the precuneus in 
T2DM patients (Feng et al., 2021; Lin et al., 2022). In a recent 
dynamic network connectivity research, the precuneus network 
was found to be more active in T2DM patients without cognitive 
decline, and the FC in the left precuneus was positively associated 
with the long-term memory score of AVLT (Wu et al., 2022). In 
our study, T2DM patients demonstrated increased FC within the 
precuneus network in the left MOG and increased FC within the 
DAN network in the right MOG/precuneus. Compared with 

those cases with T2DM-related visual system damage, our 
subjects had no complications or severe cognitive impairment. 
We speculated that they were still in a compensatory stage where 
a basic cognitive function can be  maintained through a 
compensatory mechanism of brain functional reorganization. 
This can be  supported to a certain extent by our result of a 
positive correlation between the FC value in the left MOG of the 
PCUN and the delayed recall scores of ROCF, as well as the 
positive correlation trend between the right MOG / right 
precuneus of the DAN and the delayed recall scores of ROCF in 
T2DM patients.

During the further enrichment analyses on the two gene sets 
PLS1 and PLS7, which were closely related to the FC differences 
within the PCUN, The PLS1 gene set was most enriched for neuronal 
system and potassium channels, especially voltage-gated potassium 
channels. The potassium channels are the most broadly distributed 
and diverse channel in the brain (Abbott, 2020; Kefauver et  al., 
2020). Among them, the Voltage-gated potassium channels are the 
largest class of potassium channel families, widely expressed in the 

FIGURE 5

Correlations between the PLS1 and PLS7 components and the intergroup FC difference. PLS1 (A) and PLS7 (B) components were significantly related to 
the intergroup FC difference (p  <  0.0001).

FIGURE 6

Top five enrichment results of PLS1 and PLS7 gene sets. (A,B) Show the pathway and biological process enrichment results of the PLS1 Gene Set 
(p  <  0.001, FDR-BH corrected). (C,D) Show the pathway and biological process enrichment results of the PLS7 Gene Set (p  <  0.001, FDR-BH corrected).
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central nervous system and involved in a broad range of biological 
processes, including neuronal excitability generation and 
transmission, neurotransmitters release, cell proliferation, 
degradation, and death (Yan et al., 2019). Dysfunctions of potassium 
channels were found to be related to neurodegenerative diseases 
(Subramaniam et al., 2014; Rangaraju et al., 2015; Boscia et al., 2017; 
Yin et  al., 2017). For example, finely regulation of potassium 
channels and their associated proteins plays a critical role in the early 
onset of Alzheimer’s disease (AD) (Palop et al., 2007; Frazzini et al., 
2016). Evidence shows that the amyloid-β (Aβ), a neuropathological 
hallmark of AD, was also a regulatory factor for potassium channel 
activity (Plant et al., 2006).

Potassium channels in the nervous system are also important 
regulators for excitatory synaptic transmission and plasticity and 
control neurotransmitter release throughout the nervous system. 
Normal synaptic function is the foundation of brain connectivity, and 
changes in brain connectivity are related to many neurological 
diseases. Neurotransmission, brain network dysfunction, and synaptic 
loss are all involved in neurodegenerative pathogenesis (Reddy and 
Reddy, 2017). In addition, some mutations in genes encoding voltage 
gate channel potassium are associated with epilepsy, autism, 
schizophrenia, and developmental disorders (Baculis et al., 2020).

PLS1 is enriched in potassium channel-related pathways and 
many biological processes related to synaptic function, indicating the 
biological substrates underlying T2DM-related FC changes within 
the PCUN.

The PLS7 gene set was enriched for other pathways of NTRK2 
activates RAC1 and signaling by NTRK2/TrkB. Tropomycin receptor 
kinase B (TrkB) (also known as NTRK2) is a member of the 
neurotrophin receptor tyrosine kinase (NTRK) family. Neurotrophins 
bind to the TrkB receptors and activate different downstream signal 
cascades (Lewin and Barde, 1996). Brain-derived neurotrophic factor 
(BDNF) is an important receptor of TrkB. BDNF–TrkB signal 
transduction plays an important role in the development and adult 
nervous system. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a 
member of Rho-family GTPases. Rac1 signaling pathway can 
be  activated by the binding of BDNF and TrkB and is involved in 
regulating actin cytoskeleton, as well as morphogenesis, polarity, 
migration, axonal growth and guidance, fine and plasticity of dendrites, 
and synaptic formation of neurons (Luo, 2000; Dickson, 2001; Nikolic 
and Chernoff, 2002; Sin et al., 2002). Rac1 Activation is necessary for the 
learning and memory process. Some studies have demonstrated that the 
Rac1 inactivation will lead to synaptic plasticity changes and memory 
impairment (Haditsch et al., 2009; Martinez and Tejada-Simon, 2011). 
Therefore, the pathway enrichment results of the PLS7 gene set may 
suggest that the TrkB-Rac1 pathway may become another possible 
biological substrate for T2DM-related FC changes within the PCUN.

Our enrichment analysis of the PLS7 gene set also indicated 
enrichment in several biological processes related to skeleton 
morphology and development. The TrkB-Rac1 signaling pathway 
simultaneously regulates proper synaptic connections and spinal 
morphogenesis. Therefore, it is unsurprising that genes related to the 
TrkB-Rac1 signaling pathway were also enriched in biological processes 
related to skeleton morphology and development. In addition, it has 
long been recognized that throughout the entire developmental process, 
the development of nerves and bones is closely intertwined (Marcucio 
et al., 2011; Richtsmeier and Flaherty, 2013; Gondré-Lewis et al., 2015).

Several limitations should be noted. First, the gene expression 
data and neuroimaging data were obtained from different 
participants. However, the overall gene expression of the human 
population is highly conserved (Stranger et al., 2007), thus the FC 
difference-related genes obtained in this study should 
be considered highly conserved among subjects. Second, T2DM 
patients require long-term medication treatment, and treatment-
related effects were inevitable.

In summary, this study linked FC and molecular alterations 
relevant to T2DM, suggesting that the T2DM-related brain FC 
changes may have a genetic basis. This study hoped to provide a 
unique perspective to understand the biological substrates of 
T2DM-related brain changes.
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