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Background: Thousands of research studies concerning genome-wide 
association studies (GWAS) in Alzheimer’s disease (AD) have been published in the 
last decades. However, a comprehensive understanding of the current research 
status and future development trends of GWAS in AD have not been clearly 
shown. In this study, we tried to gain a systematic overview of GWAS in AD by 
bibliometric and visualization analysis.

Methods: The literature search terms are: (“genome-wide analysis” or “genome-
wide association study” or “whole-genome analysis”) AND (“Alzheimer’s Disease” or 
“Alzheimer Disease”). Relevant publications were extracted from the Web of Science 
Core Collection (WoSCC) database. Collected data were further analyzed using 
VOSviewer, CiteSpace and R package Bibliometrix. The countries, institutions, authors 
and scholar collaborations were investigated. The co-citation analysis of publications 
was visualized. In addition, research hotspots and fronts were examined.

Results: A total of 1,350 publications with 59,818 citations were identified. The 
number of publications and citations presented a significant rising trend since 
2013. The United States was the leading country with an overwhelming number 
of publications (775) and citations (42,237). The University of Washington and 
Harvard University were the most prolific institutions with 101 publications each. 
Bennett DA was the most influential researcher with the highest local H-index. 
Neurobiology of Aging was the journal with the highest number of publications. 
Aβ, tau, immunity, microglia and DNA methylation were research hotspots. 
Disease and causal variants were research fronts.

Conclusion: The most frequently studied AD pathogenesis and research 
hotspots are (1) Aβ and tau, (2) immunity and microglia, with TREM2 as a potential 
immunotherapy target, and (3) DNA methylation. The research fronts are (1) 
looking for genetic similarities between AD and other neurological diseases and 
syndromes, and (2) searching for causal variants of AD. These hotspots suggest 
noteworthy directions for future studies on AD pathogenesis and genetics, in 
which basic research regarding immunity is promising for clinical conversion. The 
current under-researched directions are (1) GWAS in AD biomarkers based on 
large sample sizes, (2) studies of causal variants of AD, and (3) GWAS in AD based 
on non-European populations, which need to be strengthened in the future.
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Introduction

Alzheimer’s disease (AD) is the most common cause of dementia, 
with tremendous economic and social burden. About 6.7 million 
Americans living with AD in 2023 are 65 years and older, and as the 
aging population increases, the prevalence of dementia is predicted to 
increase to 131.5 million in 2050 (Anonymous, 2023, p. 1598–1695). 
With memory and cognitive decline, AD can have a significant 
negative impact on the patient and family (Hsiao et  al., 2018). 
However, there is still no satisfactory treatment for diagnosed AD 
(Golde, 2022). Therefore, identifying risk factors and susceptible 
populations for AD is crucial for targeted interventions.

AD is a genetically complex disorder with an apparent hereditary 
predisposition, and the heritability factors account for 58–79% of the 
risk of late-onset AD, and up to 92–100% of the risk of early-onset AD 
(Sims et al., 2020; Ayodele et al., 2021). Therefore, identifying genetic 
characteristics not only is essential for fundamentally understanding 
AD etiology, but also provides with the possibility of early intervention 
for susceptible populations. Linkage studies have long established 
APP, PSEN1 and PSEN2 to cause early-onset AD, while early-onset 
form only accounts for less than 5% of all AD cases (Ikram and 
Decarli, 2012). The discovery of APOEε4 in 1993 denoted the first 
gene to increase susceptibility for the more common late-onset AD, 
and APOEε4 remained the only robustly replicated gene for late-onset 
AD for almost two decades (Bertram et al., 2010; Serrano-Pozo et al., 
2021). However, finding more AD risk variants was difficult due to the 
limitations of research technology at that time.

In recent years, technological advances have given rise to genome-
wide association studies (GWAS) in AD (Andrews et al., 2020). By 
using high-throughput genotyping and next-generation sequencing, 
GWAS has made it possible to uncover more AD risk variants (Xiao 
et al., 2022). GWAS has increased statistical power by adding clinically 
or pathologically diagnosed cases and controls, and has facilitated the 
discovery of DNA sequence variations across the human genome 
(Andrews et al., 2020). By GWAS, single nucleotide polymorphisms 
(SNPs) that are highly associated with the disease can be identified 
(Gibson, 2010). Progress in GWAS and global cooperation of genome 
projects started a new era of exploring AD genetic characteristics and 
helped us to predict AD occurrence better. Since the first GWAS in 
AD emerged in 2007, GWAS has facilitated the exploration of the 
genetic architecture underlying amyloid-β (Aβ) and tau, and 
implicated a host of genetic variants associated with Aβ and tau 
biological processing (Khani et al., 2022). Meanwhile, a large number 
of genes involved in physiopathologic processes including cholesterol 
metabolism (APOE, CLU, ABCA7 and SORL1), immune response 
(CR1, CD33, MS4A, CLU, ABCA7 and EPHA1), endocytosis (BIN1, 
PICALM, CD2AP, EPHA1 and SORL1) have been proven to 
be associated with the risk of AD (Ikram and Decarli, 2012; Karch and 
Goate, 2015). However, among these gene-indicated mechanisms, 
which are most critical in the AD process remains unknown. In 
addition, research interests were constantly changing with the 
development of the discipline. Branches of GWAS such as single-cell 
genomics, transcriptomics, metabolomics, epigenomics, and the 
exploration of gene-disease causation have been applied to the genetic 
exploration of AD. However, the current cutting-edge research 
directions have not yet been revealed. Therefore, a comprehensive 
literature analysis of GWAS for the AD field is necessary.

Bibliometrics is a reliable means for literature analysis. It allows 
quantitative description for publications of a specific field using 
mathematical and statistical methods, and enables visualization of 
bibliometric statistics by CiteSpace, VOSviewer and R software. It 
helps researchers identify research trends, hotspots and critical 
cooperation networks that collectively guide academic decisions (Ma 
and Ho, 2016; Chen, 2017). In this study, we drew a whole picture of 
GWAS in AD from the first publication to 2022 in a bibliometric way, 
to provide hints for future explorations in this field.

Methods

Data source and search strategies

A comprehensive search was performed within the Web of Science 
Core Collection (WoSCC) database (Clarivate Analytics, Philadelphia, 
PA, United States) using the following search strategy: TS = (“genome-
wide analysis” or “genome-wide association study” or “whole-genome 
analysis”) AND (“Alzheimer’s Disease” or “Alzheimer Disease”), 
document type = (article or review), and language = English. The time 
frame was limited from January 1, 2007 to December 31, 2022. All 
data searches and retrievals were completed in a single day on April 3, 
2023, to minimize the bias led by database updates (Figure 1).

Data extraction and screening

All bibliographical information of publications, including 
publication year, title, author’s names, affiliations, nationalities, 
abstracts, keywords, journal names and citation numbers, were 
recorded and then converted to text format. Subsequently, the data 
was imported into Microsoft Excel 2019 (Microsoft Corporation). 
Non-English publications and duplicate publications were removed. 
Then two researchers (Junyao Zhang and Yinuo Wang) independently 
examined and manually excluded the publications unrelated to the 
topic, 1,221 publications were agreed to meet the inclusion criteria. 
Then, the third researcher (Yingying Zhang) examined the parts 
where the other two researchers disagreed (234 publications) and 
made a final assessment to reach a consensus among researchers. In 
the end, 1,350 publications (including 1,193 articles and 157 reviews) 
were included in the final dataset (Figure 1).

Bibliometric analysis

The final dataset was imported into bibliometric software. 
VOSviewer (version 1.6.18) was used for co-authorship analysis of 
countries, institutions and researchers, and also used for keyword 
co-occurrence analysis. CiteSpace (version 5.8.R3) was used for 
publication co-citation analysis, knowledge base analysis, knowledge 
flow analysis and burst keyword analysis. R package Bibliometrix 
(version 4.2.1) was used for the authors’ local H-index analysis. In 
addition, the Microsoft Excel 2019 (Microsoft Corporation) software 
was used to present global trends of annual publications and citations. 
SCImago Graphica (version beta 1.0.21) was used for geographic 
visualization in country co-authorship analysis.
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Results

Analysis of global publication output and 
citation trend

All the 1,350 publications (including 1,193 articles and 157 
reviews) were cited 59,818 times from the first publication in 2007 to 
the end of 2022. The trend of annual publication and citation numbers 
was generally on the rise. The annual publication number increased 
rapidly after 2013 and peaked in 2021 with 187 publications. The 
average number of citations per year increased and maintained at a 
high level after 2013 (Figure 2).

Distribution of countries and regions

Seventy countries and regions participated in the publication of 
GWAS in AD. When ranked by the number of publications, the 
United  States was the most productive country with 775 
publications cited 42,237 times, followed by China with 309 
publications cited 7,259 times, and the United Kingdom with 302 
publications cited 25,311 times. The map indicating the 
contributions of countries or regions in this field is shown in 
Figure 3A. The top 10 countries with the most significant number 
of publications are listed in Table 1.

A country co-authorship map is shown in Figure  3B. The 
United States was the most active country and extensively cooperated 
with the United  Kingdom, China and other countries. European 
countries also worked closely with each other and contributed a lot in 
the field of GWAS in AD.

Analysis of the most productive institutions

Overall, a total of 1,819 institutions performed GWAS in AD. As 
presented in Table 2, both the University of Washington and Harvard 
University topped the list with 101 publications each, closely followed 
by Columbia University with 92 publications. Harvard University was 
the research institution with the highest total citations (6,851 
citations), while the University of Washington and Boston University 
followed with a total citation of 5,817 and 4,715, respectively.

An institution co-authorship map is shown in 
Figure 4A. Institutions in the United States, like Harvard University, 
the University of Washington, Columbia University, Rush University 
and the University of Miami were most active in collaborating with 
other institutions.

According to the overlay map generated by VOSviewer, the Mayo 
Clinic, the University of Pittsburgh, the University of Toronto, the 
University of Miami and the University of California Los Angeles 
started working on GWAS in AD the earliest. Columbia University, 
Harvard University, Rush University, the University of Washington, 
the University of Cambridge and King’s College London published the 
most between 2016 and 2017. Research by Stanford University, the 
University of Oxford and Duke University were the institutions 
published the most after 2018 (Figure 4B).

Analysis of the most influential researchers

Local H-index refers to h publications cited at least h times for 
each paper in a certain field. It is an important index to 
comprehensively measure the quantity and quality of a researcher’s 

FIGURE 1

Details of the literature searching and data filtrating. 1,846 publications on the topic of GWAS in AD were identified in the WoSCC database, and a total 
of 496 publications were manually excluded. Finally, 1,350 publications were included in the final dataset for bibliometric and visualization analysis .
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output. To investigate the most influential researchers, the researchers 
with the highest H-index were shown. As demonstrated in Figure 5A, 
Bennett DA, Farrer LA, Mayeux R and De Jager PL were the most 
influential researchers with high-quality publications in this field.

As indicated by the researcher co-authorship map, Bennett DA, 
De Jager PL and Saykin AJ were critical researchers and cooperated 
extensively with others. Researchers from China were in the red 
cluster, with strong collaborative relationships established with each 
other, while little collaboration between Chinese researchers and 
researchers in other countries was observed. And Yu JT and Tan L 
were influential researchers in this cluster (Figure 5B).

Representative publications and 
knowledge bases

According to the publication co-citation analysis in Figure 6A, 
Bertram et  al. (2007), Harold et  al. (2009), Lambert et  al. (2009), 
Seshadri et al. (2010), Hollingworth et al. (2011), Naj et al. (2011), 
Guerreiro et  al. (2013), and Lambert et  al. (2013) were early 
publications in the field, cited numerous times, these publications 
could be  regarded as roots of the area. Recent work including 
Jun (2016), Sims et al. (2017), Marioni (2018), Jansen et al. (2019), and 
Kunkle et al. (2019) were also cited a lot, although it has only been a 
short time since their publication. The top 10 most-cited publications 
are listed in Table 3.

In the knowledge base map, articles co-cited by another article had a 
close academic relationship and were therefore grouped into the same 
cluster. Tags that represent the knowledge base of the cluster were 
extracted from the titles of the publications. As demonstrated in Figure 6B, 
11 crucial tags were extracted (after removing tags without academic 
meaning), including #polygenic risk scores, #risk variant, #TREM2, 
#meta-analysis, #PICALM, #eQTLs, #brain expression, #snRNA-seq, 
#linkage analysis, #microglia and #Mendelian randomization.

Analysis of prolific journals and knowledge 
flow

As demonstrated in Table  4, Neurobiology of Aging had 105 
publications and 2,910 total citations, followed by J Alzheimer’s Disease 
with 95 publications cited 1,561 times, Plos One with 49 publications 
cited 2,277 times, and Alzheimer’s & Dementia with 47 publications 
cited 1,805 times. Although Nature Genetics only had 22 publications, 
it received an overwhelming 11,327 citations.

To display the evolutionary relationship between citing and cited 
journals, the knowledge flow overlay map was generated (Chen, 2017). 
The dots on the left part of the map constitute the citing journals, and 
the dots on the right include the cited journal. Labels extracted from 
journal names are linked by lines pointing from the cited journals to 
the citing journals. As shown in Figure 7, the wide yellow line and the 
wide pink line were core citation paths, indicating publications in 
journals of basic science (molecular, biology and genetics) were 
mainly cited by publications in journals related to basic science 
(molecular, biology, immunology) and clinical medicine (medicine, 
medical clinical).

Analysis of essential keywords and 
hotspots

A co-occurring keyword network based on 4,077 extracted 
keywords was generated to show the most frequently mentioned 
keywords. The keywords displayed on the map were divided into four 
clusters. GWAS terms were in the green cluster, and the pathogenesis 
of AD (#Aβ, #tau, #DNA methylation, #microglia, #gene expression, 
#inflammation) belonged to the red cluster. #genetic association, 
#protein, #SNP and #population were assigned to the blue cluster. 
While the most often mentioned genes, including #PICALM, #CLU, 
#CD33 and #ABCA7, were shown in the yellow cluster (Figure 8A).

FIGURE 2

Global trends of annual publications and citations on the topic of GWAS in AD from the first publication to 2022, generated by Excel. From 2007 to the 
end of 2022, the number of publications and citations in this field was generally on the rise.
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To visualize the dynamics of frontier topics in the field, the burst 
analysis of keywords from 2007 to 2022 was performed. The whole 
segments stand for the time span of each keyword, while the red 
segments represent sudden increases in the frequency of the keyword 
occurrence during this period. The burst strength is a statistical value 

calculated from the keyword occurrence frequency over time. The 
top 20 keywords with the strongest bursts are shown in Figure 8B. The 
keywords #genetic association, #APOE, #late-onset AD, #suseptibility 
gene, #identifies variant, #CLU, #PICALM, #common variant, 
#CD2AP, #EPHA1, #CD33 had burst time before 2016. The keywords 

FIGURE 3

Co-authorship country and region analysis on GWAS in AD from first publication to 2022. (A) Geographic map of country and region distribution 
generated by VOSviewer and Scimago Graphica. The countries/regions that cooperate extensively with each other were assigned to the same cluster. 
(B) Cordal graph of country and region cooperation network generated by VOSviewer and Scimago Graphica. 28 countries or regions met the criteria 
that publishing more than 8 publications were grouped into 4 clusters by their cooperations. The node size indicates the cooperative activity, the larger 
the node, the more cooperation the country or region has with others.
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#Mendelian randomization, #Aβ, #UK Biobank, #meta-analysis, 
#causal association, #causal effect, #disease, #microglia and 
#sensitivity analysis has become popular since 2020 till now, 
suggesting the present research fever of the field.

Discussion

Research trend and current profile of 
GWAS in AD

We investigated 1,350 publications, including original articles and 
reviews on GWAS in the AD field between 2007 and 2022. Since 
several small GWAS opened the new era of AD research in 2007, the 
number of annual publications of GWAS in AD has been generally on 
the rise, indicating it is an academic concern. There were not many 
citations in the first few years, while the average citations per year 
increased and maintained at a high level after 2013 (Figure 2), which 
suggests that a growing number of high-quality, influential studies 

emerged. In 2013, a large-scale GWAS was conducted by the 
International Genomics of Alzheimer’s Project with 11 new 
AD-associated loci identified, it has been the most-cited publication 
till now (Lambert et  al., 2013). The sample size of GWAS kept 
expanding in recent years. In 2021, a meta-analysis study including 
1,126,563 individuals identified 38 susceptibility loci for the late-onset 
form of AD, which was the largest GWAS for clinically diagnosed AD 
to date (Wightman et al., 2021). So far, around 70 loci implicating the 
risk for AD have been identified by GWAS, providing strong evidence 
for the genetic pathogenesis of AD.

Then, we got an overview of GWAS in AD by demonstrating the 
main contributors and their cooperation networks. The highest 
number of studies was generated by the United States (775), followed 
by China (309) and the United Kingdom (302). When ranked by total 
citations, the United States had an overwhelming 42,237 citations, and 
the United Kingdom ranked second with 25,311 citations. Although 
China had many publications, the total citations were not high (7,259) 
(Table 1). The top ten institutions included nine in the United States 
and one in China (Table 2). The most influential researchers were 
Bennett DA, Farrer LA, Mayeux R, De Jager PL, Schellenberg GD, 
Peterson RC, Haines JL and Younkin SG from the United  States, 
Hardy J from the United  Kingdom, and Amouyel P from France 
(Figure  5A). From the results above, it can be  found that the 
United  States was the country that had made a remarkable 
contribution in this field. China has also explored much, but the 
research quality needs further improvement. The cooperation analysis 
indicates that researchers in the United States collaborated extensively 
with researchers in other countries. While researchers from China 
preferred to establish cooperative relations with domestic rather than 
international counterparts (Figure  5B). According to Table  4, 
Neurobiology of Aging was the journal that published the most research 
in this field, and Nature Genetics was the authority of this field with 
the largest number of citations.

As indicated in Figure  6B, after clustering the co-cited 
publications, the knowledge base map was generated by extracting 
words from publication titles. The knowledge bases included 
#polygenic risk scores, #risk variant, #TREM2, #meta-analysis, 
#PICALM, #eQTLs, #snRNA-seq, #linkage analysis, #microglia and 
#Mendelian randomization, which were important words or phrases 
that summarize the basic concepts underlying the field, including 
research objects and methods of GWAS in AD.

Knowledge flow analysis is an intuitive way to show the 
developmental trajectory of research. The cited literature was 
published earlier, and the citing literature was published later. As 
Figure 7 demonstrates, the studies were mainly published in journals 
of basic research (molecular, biology, and genetics) in earlier times. 
Later studies were published in both journals of basic research 
(molecular, biology, immunology) and journals of clinical medicine 
(medicine, medical clinical), reflecting a shift in the research focus 
from bench to practice over the years.

Research hotspots of AD pathogenesis

Aβ and tau: pathological biomarkers and the 
genetic basis

Our keyword analysis revealed that #Aβ and #tau were frequently 
mentioned keywords in this field. Extracellular plaques that consist of 

TABLE 1 List of top 10 countries/regions.

Country/
Region

Publications Citations Total Link 
Strength*

The United States 775 42,237 981

China 309 7,259 207

The United Kingdom 302 25,311 810

Germany 128 15,730 509

France 97 14,893 473

Netherlands 93 12,780 485

Canada 77 12,992 272

Spain 74 11,550 347

Australia 74 4,839 261

Sweden 72 8,481 356

*Total link strength indicates the cooperative activity of the country or region.

TABLE 2 List of top 10 institutions.

Institution Publications Citations Total link 
strength*

Harvard University 101 6,851 582

The University of 

Washington

101 5,817 685

Columbia University 92 4,127 606

Boston University 80 4,715 588

The University of 

Pennsylvania

79 4,303 590

Rush University 71 4,595 535

The University of Miami 67 4,364 509

Indiana University School 

of Medicine

67 2,752 348

The Mayo Clinic 64 4,550 390

Qingdao University 62 869 84

*Total link strength indicates the cooperative activity of the institution.
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Aβ and intracellular neurofibrillary tangles (NFT) with over-
phosphorylated tau protein are the basic pathological features of AD, 
and are recognized as major players in disease progression (Sierksma 
et al., 2020).

Aβ was the most well-studied pathological feature, as indicated by 
Figure 8A. It had a research fever in recent years (a citation burst from 
2020 to 2022, Figure 8B), indicating its core position in AD genetic 
studies. In Aβ pathology, altered amyloid precursor protein (APP) 
metabolism with the overproduction of Aβ peptides is the primary 
cause of amyloidosis, and APOEε4 and ABCA7 were identified to 
be most strongly associated with Aβ production (Apostolova et al., 
2018). Of all the APOE protein isoforms, APOEε4 has the strongest 

effect on stimulating neuronal Aβ production by enhancing APP 
transcription (Huang Y. W. A. et al., 2017). ABCA7 loss of function 
facilitates the process of APP protein cleaving, leading to rapid 
accumulation of cortical Aβ at the early stage of AD (Sakae et al., 
2016). Moreover, several GWAS-defined genes linked to endocytosis 
(BIN1, CD2AP and PICALM) and endosomes (FERMT2 and SORL1) 
can also modulate APP metabolism and Aβ production (Dourlen 
et al., 2019). The dysregulated clearance pathway is another cause of 
Aβ accumulation. In normal conditions, LRP1 receptor in neurons is 
shown to uptake Aβ-APOE complexes. But when the APOEε4 variant 
takes place, the clearance rate is lower. At the same time, PICALM 
regulates Aβ clearance across the blood–brain barrier by 

FIGURE 4

Co-authorship institution analysis on the topic of GWAS in AD from first publication to 2022. (A) Institution co-authorship network map generated by 
VOSviewer. 35 institutions that met the standard of having more than 25 publications were included and grouped into 4 clusters by their cooperations. 
The node size denotes the cooperative activity, the larger the node, the more cooperation the institutions had with others. (B) Institution co-authorship 
overlay map generated by VOSviewer. The node color indicates the average publication time of the institution, the lighter the color of the node, the 
more recent the average publication time of the institution.
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internalization and transcytosis, and the variants of PICALM disrupt 
the mechanism (Zhao et al., 2015).

Tau is another essential feature of AD progression. The prevalent 
notion is that pathological tau is integral for Aβ to exert neurotoxicity 
(Frost, 2023). A recent study has strongly suggested that tau protein is 
also an early indicator of preclinical AD, that aggregations of tau 
protein seem to precede the deposition of Aβ by approximately a 
decade, and that the location of pathogenic tau, but not Aβ, can 
predict the degeneration of the brain areas in the following 2 years (La 
Joie et al., 2020). Thus, uncovering the genetic factor associated with 

tau pathology is particularly important for intervening in the disease 
process in the preclinical stage. BIN1, the first tau-related AD risk 
gene, has been the focus of tau pathology. Compiling GWAS evidence 
indicated that variants in BIN1 increase AD risk (Kingwell, 2013; 
Franzmeier et  al., 2019), and its variants have been proven to 
be  associated with only tau loads but not Aβ loads in AD brains 
(Chapuis et al., 2013). Several mechanism studies have reported the 
protective role of BIN1. A study using transgenic mice concludes that 
BIN1 overexpression prevents both tau mislocalization and somatic 
inclusion in the hippocampus and directly binds tau to rescue 

FIGURE 5

Analysis of the most influential researchers on the topic of GWAS in AD from first publication to 2022. (A) Ten researchers with the highest local 
H-index in this field were generated by the R package Bibliometrix. (B) Researcher co-authorship network map generated by VOSviewer. Researchers 
with at least 13 publications were included in the map, and a total of 50 researchers who met the criteria were grouped into 5 clusters. The node size 
denotes the cooperative activity, the larger the node, the more the researcher cooperates with others.

FIGURE 6

Analysis of the representative publications on the topic of GWAS in AD from first publication to 2022. (A) Co-citation network of the publications in this 
field generated by CiteSpace. The node size positively correlates with the corresponding publication’s total citation number. The color of the node 
indicates the publication time, the lighter the node color, the more recent the publication time. (B) Knowledge base map generated by clustering the 
co-cited publications. Publications in close co-citation relationships were divided into the same cluster, and tags representing the cluster’s knowledge 
base were extracted from publications’ titles.
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long-term memory deficits (Sartori et al., 2019). Lower BIN1 levels 
promote tau propagation by efficiently increasing endocytosis and 
endosomal trafficking (Calafate et  al., 2016). However, there are 
opposite opinions that loss of forebrain BIN1 mitigates tau pathology 
in the hippocampus and entorhinal/piriform cortex of the tauopathy 
mice, thus attenuating synapse loss, neuronal death, 
neuroinflammation and brain atrophy (Ponnusamy et  al., 2023). 
Other genes were also reported to affect tau pathology. APOEε4 
increases tau phosphorylation and aggregation (Therriault et  al., 
2020), and PTK2B acts as a tau toxicity suppressor (Brody et al., 2022). 
Although an increasing number of functional studies demonstrated 
that GWAS-identified AD risk genes are associated with tau pathology, 
the tau-related genetic profile is less uncovered compared to Aβ.

In recent years, GWAS based on neuroimaging or cerebrospinal 
fluid (CSF) Aβ and tau levels has been conducted. Although in its 
initial stage, it has identified vital genes associated with Aβ and tau (Li 
et al., 2022). Ramanan et al. conducted the first neuroimaging GWAS 
by integrating positron emission tomography (PET) phenotypes with 
genetic data, confirming the association of APOE and BCHE with Aβ 
burden (Ramanan et al., 2014). In the latest GWAS of tau-PET, the 
APOE dysfunction is emphasized, and novel loci regulating VNN2 and 
EYA4 are identified (Guo Y. et al., 2022). At present, the sample sizes 
are relatively small, and large-scale GWAS in AD biomarkers is 
still lacking.

Immunity and microglia: from genetic 
implications to clinical conversion

In the field of GWAS in AD, #immunity and #microglia were 
recurring keywords, suggesting the hotspots of AD mechanism 
(Figure 8A). It has been reported that the enhancer sequences for the 
immune process are regions where AD risk loci are preferentially 
enriched (Gjoneska et al., 2015). Over the years, plenty of GWAS-
defined genes participating in the immune process (APOE, TREM2, 
CD33, CLU, CR1, ABCA7, EPHA1, MS4As, INPP5D, SPI1, PLCG2, 
ABI3, HLA-DR15, etc.) have been reported to be associated to AD 
(Lambert et al., 2009; Seshadri et al., 2010; Hollingworth et al., 2011; 
Reitz et  al., 2013; Tan et  al., 2013; Deming et  al., 2017; Huang 
K. L. et al., 2017; Sims et al., 2017; Kunkle et al., 2019). Among these 
genes, TREM2, CD33 and CLU were the most studied ones according 
to Figure 8A. This evidence suggests that immunity is a vital part of 
AD pathogenesis.

As the most important cells of brain immune surveillance and 
neuronal support (Chen and Holtzman, 2022), microglia were also the 
research focus and have become increasingly popular with a citation 
burst after 2021 in the field (Figures 8A,B). Microglia protects the 
brain by phagocytosis, Aβ degradation and anti-inflammatory 
cytokines secretion under homeostatic conditions, while microglial 
excessive activation and phenotype conversion in AD brains leads to 
the release of pro-inflammatory cytokines and complement (Leng and 
Edison, 2021). Nott et al. identify that common non-coding variants 
associated with AD risk are enriched in microglial enhancers (Nott 
et al., 2019). Many AD risk genes involved in immune response and 
phagocytic function are highly expressed by microglia (Efthymiou and 
Goate, 2017), suggesting that microglia is the gathering spot of 
immune function.

The triggering receptor expressed on myeloid cell 2 (TREM2) is a 
microglial receptor encoded by TREM2. It is pivotal for maintaining 
the microglial cell number and function (Zheng et al., 2016). TREM2 
R47H variant has been identified as a risk factor for AD as early as 
2013 (Guerreiro et al., 2013), while mechanism studies have implicated 
that the unwanted mutations in TREM2 can lead to the reduced 
protective sTREM2 release, diminished microglial viability, and 
subsequent increased Aβ burden and neuroinflammation (Carmona 
et al., 2018; Zhao et al., 2018). In contrast to the protective role of 
TREM2, evidence suggests that CD33 inhibits microglial phagocytosis 

TABLE 3 List of 10 most-cited publications.

Author/Year Title

Lambert et al. (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease

Harold et al. (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease

Guerreiro et al. (2013) and Guerreiro et al. (2013) TREM2 variants in Alzheimer’s disease

Lambert et al. (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease

Hollingworth et al. (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease

Naj et al. (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease

Kunkle et al. (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and 

lipid processing

Jansen et al. (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk

Seshadri et al. (2010) and Seshadri et al. (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease

Bertram et al. (2007) Systematic meta-analysis of Alzheimer’s disease genetic association studies: the AlzGene database

TABLE 4 List of top 10 journals.

Journals Publications Citations

Neurobiology of Aging 105 2,910

J Alzheimer’s Disease 95 1,561

Plos One 49 2,277

Alzheimer’s and Dementia 47 1,805

Molecular Psychiatry 43 2,267

Translational Psychiatry 30 652

Scientific Reports 28 306

Molecular Neurobiology 27 628

Nature Genetics 22 11,327

Human Molecular Genetics 22 1,151
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function and promotes pro-inflammatory microglia activation. CD33-
immunoreactive microglia are positively correlated with plaque 
burden in AD brains, and the overexpression of CD33 may lead to 
inhibited Aβ uptake (Griciuc et al., 2013). Interestingly, TREM2 can 
act as a downstream switch to turn off the pro-inflammatory effects of 
CD33 (Griciuc et al., 2019).

Evidence from abundant gene-level studies put TREM2 in the 
spotlight for immunotherapy. A study by van Lengerich B et  al. 
reported that a TREM2-activating antibody is capable of promoting 
microglial glucose metabolism in AD mice (van Lengerich et  al., 
2023). Wang et  al. established a microglia-targeted gene delivery 
system for the treatment of AD and successfully remodeled 
dysfunctional microglia by TREM2 (Wang et al., 2022). Zhao et al. 
identified and modified a TREM2 agonist monoclonal Ab18 that can 

greatly enhance TREM2 activation. The modified-Ab18 treatment can 
significantly increase microglial phagocytosis of Aβ, reduce tau 
protein and improve cognition of AD mice (Zhao et al., 2022). The 
latest study by Yoo et al. using a TREM2 mutant AD mouse model 
suggests that microglial function can be  restored by systemic 
hematopoietic cell transplantation followed by microglia replacement 
(Yoo et al., 2023). These studies provide the possibility for clinical 
conversion of immunotherapy targeting TREM2.

CR1 and CLU of the complement system also participate in brain 
immunity. CR1 encodes a complement regulatory protein with both 
beneficial and detrimental effects. Higher CR1 expression removes 
C3b-Aβ immune complexes and lowers Aβ load (Li et  al., 2021). 
However, CR1 overexpression also leads to neuron damage (Crehan 
et al., 2013), and the closest ortholog of CR1 (Crry) silencing leads to 

FIGURE 7

Knowledge flow overlay generated by CiteSpace. The cited journals are on the right half of the map, and the citing journals are on the left. The main 
citation paths were pointing from basic disciplines (molecular, biology and genetics) to basic research (molecular, biology, immunology) and clinical 
medicine (medicine, medical clinical).

FIGURE 8

Co-occurrence analysis of global research on the topic of GWAS in AD from first publication to 2022. (A) Network visualization map keywords 
generated by VOSviewer. Keywords that occurred at least 30 times were included in the map, and a total of 60 keywords that met the criteria were 
divided into 4 clusters. The node size represents the keyword occurrence frequency. (B) The top 20 keywords with the strongest citation bursts by 
CiteSpace. The red segment indicates a sudden increase in the occurrence frequency of the keyword during this period.
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reduced tau pathology (Zhu et al., 2022). The other gene, CLU, also 
regulates Aβ in several dimensions. Its protein product clusterin 
interferes with Aβ aggregation by binding with oligomers, regulating 
Aβ microglial uptake, and modulating Aβ transport through the 
blood–brain barrier. However, whether clusterin-Aβ aggregation is 
more toxic than aggregates containing Aβ alone is controversial, and 
whether clusterin can promote Aβ clearance is still unknown (Foster 
et al., 2019). Although GWAS have suggested that CR1 and CLU are 
strongly associated with AD, the biological or pathological functions 
of CR1 and CLU in the pathogenesis of AD are far from clear.

The accumulating genetic evidence by GWAS emphasizes the 
preponderant role of immunity and microglia in the pathogenesis of 
AD, which has aroused researchers’ interest in mechanism studies 
concerning AD and immunity. Therefore, we  can speculate that 
immunotherapies may become a promising research direction after 
the failure of AD therapies targeting Aβ and tau.

DNA methylation is also one of the hotspots
DNA methylation is the most studied epigenetic mechanism of 

AD, and detecting DNA methylation by epigenomics has become a 
branch of AD genetic study. The degree of DNA methylation greatly 
affects gene expression. DNA hypermethylation often downregulates 
gene expression, while DNA hypomethylation increases gene 
expression and functional activation (Younesian et al., 2022). In AD 
pathology, Aβ related genes such as APP, PSEN1, and BACE1 tend to 
be DNA hypomethylated (Schrötter et al., 2012), directly resulting in 
Aβ plaque overload (De Jager et al., 2014). Besides, several genes are 
found to be  hypermethylated in AD, including ANK1, RPL13, 
RHBDF2, DUSP22, SORL1, ABCA7, BIN1, SLC24A4, HLA-DRB5, 
HOXA, which are mainly related to Aβ deposition (Lunnon et al., 
2014; Yu et al., 2015; Smith et al., 2018; Min et al., 2021; Nabais et al., 
2021). Nowadays, research on epigenomics has become a research 
hotspot, and studies committed to discovering new DNA methylation 
sites are rising.

Research fronts in GWAS for the AD field

Figure 8B manifested keywords with a citation burst in recent 
years (with its burst time followed): Aβ (2020–2022), UK Biobank 
(2020–2022), meta-analysis (2020–2022), causal association (2020–
2022), causal effect (2020–2022), disease (2020–2022), microglia 
(2021–2022) and sensitivity analysis (2021–2022), and these keywords 
indicated the research fronts and future trends of the GWAS in 
AD field.

Disease (2020–2022)
Diseases or syndromes that have similarities to AD have become 

the research focus in recent years. According to Figure 8A, diseases 
including Parkinson’s disease (PD) and schizophrenia, and syndrome 
including mild cognitive impairment (MCI), were common keywords 
in GWAS for the AD field, suggesting that these diseases or syndrome 
may partially overlap with genetic features of AD, and searching for 
genetic similarities of these diseases has become a popular 
research direction.

MCI due to AD is a stage between healthy aging and dementia, 
and genetic evidence supports the view that its conversion into 
dementia is primarily due to the AD pathway. Thus, MCI and AD are 
often studied in one GWAS as two subgroups (Adams et al., 2015). PD 

and AD are both neurodegenerative diseases, and although the clinical 
presentations are different, finding the genetic similarity of these two 
types of neurodegenerative diseases has become a new research focus. 
A large multi-center study identifies that Lewy body dementia shares 
risk genes and pathways with AD and PD (Chia et al., 2021; Guo 
P. et al., 2022). Recently, Reginal and colleagues observed a significant 
local genetic correlation between AD and PD in the PBK and SCARA5 
genic regions (Reynolds et  al., 2023). Meanwhile, Raffaele et  al. 
reported SNPs within HLA, MAPT and APOE regions jointly 
contributing to increased risk for AD or PD (Ferrari et al., 2017). In 
addition, schizophrenia is also investigated considering psychotic 
symptoms are present in approximately 50% of AD individuals 
(Murray et al., 2014). Several SNPs are reported to show the same 
effect on schizophrenia and AD with psychotic symptoms, indicating 
the genetic connectivity between AD and schizophrenia (Alfimova 
et al., 2019).

Causal association (2020–2022) and causal effect 
(2020–2022)

GWAS uncovers the association of many genetic loci with traits 
and diseases. However, even the variants most strongly associated with 
AD are not necessarily causal (Andrews et al., 2020). In recent years, 
pinpointing AD causal risk genes has been a trendy topic. The 
development of fine mapping and gene prioritization enables 
researchers to determine whether the loci-trait is causal to the 
phenotype (Broekema et al., 2020). Amlie-Wolf et al. applied fine-
mapping approaches in their study and identified candidate causal 
variants in four genes: EPHA1, CD33, BIN1 and CD2AP (Amlie-Wolf 
et al., 2018). Corces et al. nominates multiple AD risk variants that 
may be causal, including variants in the MS4A and BIN1 loci (Corces 
et  al., 2020). Recent research by Schwartzentruber suggests that 
CCDC6, TSPAN14, NCK2, SPRED2, BIN1, APH1B, PTK2B, PILRA 
and CASS4 are likely causal genes of AD (Schwartzentruber et al., 
2021). Not much research has been done on causal variants of AD so 
far, and there is still a long way to go.

Other research fronts
UK Biobank (2020–2022) is a biomedical database containing half 

a million volunteers’ genetic and health information (Littlejohns et al., 
2020). UK Biobank is the basis of many large-scale GWAS due to its 
unparalleled resources, significantly prompting AD genetic research. 
UK Biobank samples are almost entirely from the United Kingdom, 
which reflects that GWAS are based on specific regions and ethnicities. 
To some extent, European ancestry is overrepresented in genetic 
studies, and data based on other regions or ethnicities are relatively 
scarce, despite African Americans and Hispanic Americans being 
more likely to develop AD in the same community (Andrews 
et al., 2023).

As GWAS continues to evolve, some methodologies have also 
been developed. Mendelian randomization (2020–2022) is a statistical 
method based on GWAS, which is used to infer causal associations 
between exposures and disease outcomes using genetic variants. 
Mendelian randomization can effectively reduce confounding bias due 
to the advantage of alleles being randomly assigned to offspring. 
Meanwhile, sensitivity analysis (2021–2022) is a way to assess the 
reliability of conclusions obtained from Mendelian randomization 
studies and further enhance the studies’ credibility. In recent years, 
Mendelian randomization and sensitivity analysis have become 
cutting-edge methods frequently used in AD genetic studies.
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Limitations

There are certain limitations to our study. Only references in the 
WoSCC database and publications written in English were included 
in our study owing to the nature of bibliometric software. The 
publications we  included in this work were selected by database 
retrieval as well as manual screening, and therefore have an 
unavoidable subjective judgment bias. Although we covered a majority 
of publications, the study cannot fully describe the bibliometric 
information of the field.

Conclusion

This bibliometric and visualization study demonstrates what 
GWAS in AD is like, what it tells us, and where it is headed. According 
to our bibliometric analysis, the most concerned AD pathogenesis and 
current research hotspots were (1) Aβ and tau, (2) immunity and 
microglia, with TREM2 as a potential immunotherapy target, and (3) 
DNA methylation. The important pathogenesis implied by genetic 
studies is valuable for future mechanism studies and clinical 
conversion. The research fronts were (1) looking for genetic 
similarities between AD and other neurological diseases and 
syndromes, and (2) searching for causal variants of AD. Current 
weaknesses of the discipline are (1) GWAS in AD biomarkers based 
on relatively large sample sizes are scarce, (2) studies of causal variants 
of AD are few, and (3) GWAS in AD based on non-European 
populations are inadequate. It is necessary to pay more attention to 
these under-researched directions in the future. Our study provides a 
comprehensive view of GWAS in AD. Researchers new to the field can 
easily obtain useful information from our research and better 
investigate the genetic etiology of AD.
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