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Mild cognitive impairment
prediction and cognitive score
regression in the elderly using
EEG topological data analysis and
machine learning with awareness
assessed in a�ective reminiscent
paradigm

Tomasz M. Rutkowski1,2,3*, Tomasz Komendziński3 and
Mihoko Otake-Matsuura1

1RIKEN Center for Advanced Intelligence Project, Tokyo, Japan, 2Graduate School of Education, The
University of Tokyo, Tokyo, Japan, 3Department of Cognitive Science, Institute of Information and
Communication Research, Nicolaus Copernicus University, Toruń, Poland

Introduction: The main objective of this study is to evaluate working memory and
determine EEG biomarkers that can assist in the field of health neuroscience. Our
ultimate goal is to utilize this approach to predict the early signs of mild cognitive
impairment (MCI) in healthy elderly individuals, which could potentially lead to
dementia. The advancements in health neuroscience research have revealed
that a�ective reminiscence stimulation is an e�ective method for developing
EEG-based neuro-biomarkers that can detect the signs of MCI.

Methods: We use topological data analysis (TDA) on multivariate EEG data to
extract features that can be used for unsupervised clustering, subsequentmachine
learning-based classification, and cognitive score regression. We perform
EEG experiments to evaluate conscious awareness in a�ective reminiscent
photography settings.

Results: We use EEG and interior photography to distinguish between healthy
cognitive aging and MCI. Our clustering UMAP and random forest application
accurately predict MCI stage and MoCA scores.

Discussion: Our team has successfully implemented TDA feature extraction, MCI
classification, and an initial regression of MoCA scores. However, our study has
certain limitations due to a small sample size of only 23 participants and an
unbalanced class distribution. To enhance the accuracy and validity of our results,
future research should focus on expanding the sample size, ensuring gender
balance, and extending the study to a cross-cultural context.

KEYWORDS

EEG, biomarker, mild cognitive impairment (MCI), machine learning (ML), prevention,

topological data analysis (TDA)
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1 Introduction

Dementia is a prevalent condition that refers to the cognitive

decline experienced by older individuals, which can significantly

impact their daily lives and overall wellbeing (Sperling et al.,

2019). It can be caused by various factors, including Alzheimer’s

disease, vascular dementia, Lewy body dementia, frontotemporal

dementia, and traumatic brain injuries (Livingston et al., 2020).

Dementia poses a significant public health challenge worldwide,

with social and economic ramifications (WHO, 2019). To assess the

risk of dementia, cognitive impairment tests, such as mild cognitive

impairment (MCI) prediction, are often administered (Nara et al.,

2018). These tests are usually paper and pencil-based and help

identify cognitive decline that is more severe than expected for

a person’s age but does not yet meet the clinical dementia

diagnosis (Petersen et al., 1999).

Recent studies have shown that health neuroscience and

EEG neuro-biomarker research are crucial in developing effective

strategies for preventing dementia (Sperling et al., 2019; Rutkowski

et al., 2023a). Among the promising interventions that have gained

attention are reminiscent and affective stimulation, potentially

boosting brain health and cognitive resilience (Hsieh and Wang,

2003; Tam et al., 2021). Dementia can affect working memory,

making it difficult to encode and retrieve new memories, especially

recent events or information (Brai et al., 2021). Healthy working

memory can support attention switching between tasks, enhancing

cognitive reserve and brain plasticity, and even protecting against

dementia (Brai et al., 2021). In a study by Soto and Silvanto (2016),

it was found that being consciously aware can assist in selecting and

retaining important information in working memory and filtering

out unimportant or distracting information in individuals in the

early stages of dementia. Additionally, conscious awareness can

safeguard against dementia by indicating the underlying health

or impairment of the brain (Clare, 2002; Soto and Silvanto,

2016). The hippocampus is central for mood and memory; adult

neurogenesis can provide hope not only for depression but also for

dementia and Alzheimer’s disease (Berger et al., 2020). Bar (2022)

argues that helping individuals with depression or dementia regain

proper neurogenesis by renewing their ability for broad associative

mind-wandering. The employment of reminiscent stimulation is

a therapeutic technique that employs sensory cues such as music,

storytelling, or photographs to evoke memories and emotions

from an individual’s past. This method capitalizes on the cognitive

and emotional benefits of reminiscence, which can facilitate the

development of a sense of identity and connection with one’s

history (Pinquart and Forstmeier, 2012; Woods et al., 2018).

Affective stimulation refers to activities and experiences that evoke

positive emotions, reduce stress, and improve overall emotional

wellbeing. This method acknowledges the relationship between

emotional health and cognitive function to foster a supportive

environment for brain health (Hsieh and Wang, 2003; Blessing

et al., 2012). Drawing from the cognitive intervention methods

mentioned earlier, affective reminiscence involves recollecting

personal memories that evoke positive emotions like joy, happiness,

love, and gratitude. The objective is to enhance the mood,

self-confidence, social interaction, and cognitive abilities such

as memory, attention, language, and executive function of

senior citizens (Goldwasser et al., 1987). Affective reminiscence

can activate the hippocampus and other memory-related parts

of the brain, thereby improving neurogenesis and synaptic

plasticity (Cotelli et al., 2012). There has been a notable increase

in research interest regarding the brain as a network. This trend

is evident in the works of Varley and Sporns (2022) and Rutkowski

et al. (2023a), as well as in the examination of brainwave time-series

using a topological data analysis (TDA) by Varley et al. (2021). This

innovative approach to TDA allows for the evaluation of various

stages of conscious awareness in the brain, as demonstrated in

studies involving anesthetized animals (Varley et al., 2021) and the

prediction of age-related cognitive decline in humans (Rutkowski

et al., 2023b).

Our research aims to explore the potential of using EEG

biomarkers to predict MCI by testing working memory and

evaluating conscious awareness in an experimental paradigm. As

health neuroscience evolves, EEG-based neuro-biomarkers offer a

reliable means of studying the impacts of reminiscent and affective

stimulation. Our ongoing study can provide valuable insights into

the prevention of dementia and the identification of relevant

neural mechanisms. Our previous findings are documented in

multiple publications (Rutkowski et al., 2021b, 2022a, 2023a,b).

The current project uses innovative experimental paradigms to

study affective reminiscent and working memory, distinct from the

state-of-the-art resting state EEG (rsEEG) experiments (Babiloni

et al., 2021). Additionally, the TDA feature extraction has been

expanded beyond the original work by Varley et al. (2021), and

has been applied to machine learning classification and regression

models forMCI prediction. Themain objective of the brief research

report is to demonstrate the feasibility of using TDA features

as potential neuro-biomarkers for MCI prediction rather than

optimizing machine learning methods.

The brief research report paper is organized as follows: we

introduce the methods developed within the presented project in

the subsequent section, followed by the results presentation and the

discussion summarizing the paper.

2 Method

In the summer of 2022, EEG experimental data was collected

from older adult volunteers at Nicolaus Copernicus University

in Torun, Poland. The Institute of Psychology UNC Ethical

Committee for Experiments with Human Subjects endorsed

the investigation. The experimental procedure and information

collection followed The Declaration of Helsinki, which regulates

ethical principles for research involving human subjects, including

investigating identifiable human material and data. In a study

conducted on 23 older adults, with an average age of 70.70 ±

5.32 years (refer to Supplementary Figure 1 for age distribution),

16 were diagnosed with Mild Cognitive Impairment (MCI).

At the same time, the remaining 7 showed healthy cognitive

aging. In the current post-pandemic pilot study, the cognitive

abilities of all participants were evaluated using only the Montreal

Cognitive Assessment (MoCA) paper and pencil test (Julayanont

et al., 2012). A licensed evaluator administered the test. See

Supplementary Figure 2 for a detailed distribution ofMoCA scores.
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All participants willingly took part in the study and signed

informed consent forms. The group mainly consisted of female

participants, with only one male.

2.1 Reminiscent interior photography
oddball paradigm

A reminiscence involves recalling past experiences and events,

which can help define one’s identity by connecting them with

the future (Pinquart and Forstmeier, 2012; Woods et al., 2018;

Buzsáki et al., 2022). Utilizing tangible audiovisual aids such

as photos, music, or videos to communicate past life events

is known as reminiscence intervention or stimulation (Thomas

and Sezgin, 2021). Our study is based on the previous research

conducted by our team on EEG brainwave patterns, as outlined

in references (Rutkowski et al., 2021a, 2022b, 2023a). We

plan to investigate how healthy aging or MCI affects the

working memory of older adults using an interior photography

oddball task. Additionally, we aim to establish a neuro-

biomarker by measuring their conscious awareness during the

task. In each quick trial, the participants view eight interior

photographs encompassing contemporary and childhood-themed

(reminiscent) scenes. Like the traditional oddball task, each image

is designated as a target once, necessitating the participants

to remember it before each trial. EEG data is consistently

collected throughout the study, with triggers marking all phases

for the 23 senior citizens who participated in the research.

Every participant session comprises eight oddball sessions,

each containing eight interior images arranged randomly, with

four evocative of childhood and four featuring contemporary

rooms.

During the experimental session, there were a total of eight

oddball sessions. Each oddball session included the presentation

of one interior image (the target) followed by eight presentations

of a target photograph randomly placed. This resulted in 72

responses from each participant. When excluding responses with

missing markers due to stimulus system or network errors,

there were 503 responses from healthy participants and 1141

responses from MCI participants. These values are denoted

as nhealthy and nMCI in Figures 1C, F, I, L, O, R in the

all-stimulus-response case of Figure 1. Supplementary Section 1

provides a more detailed description of the experimental task

procedure.

2.2 EEG experiments

Our study involved collecting EEG data using the Unicorn

EEG headset from g.tec Medical Engineering, a reputable company

based in Austria. Our prior research has demonstrated the

reliability of this device compared to other available wearables,

as reported in publications by Rutkowski et al. (2022c, 2023a).

The preliminary investigation utilized eight EEG channels that

uniformly cover the human scalp at standard locations such

as Fz, C3, Cz, C4, Pz, PO7, Oz, and PO8. During the first

preprocessing stage, we digitize the eight EEG streams at a

sampling frequency of 250 Hz. Next, we apply a bandpass

filter to eliminate signal baseline shifts and high-frequency noise

within a frequency range of 1 to 40 Hz. Following this, we

segment (or “epoch”) the EEG signals into 2-s time segments for

reminiscent interior photography oddball tasks. These segments

are determined using recorded triggers from the onset of

each reminiscent photography stimulus. For our procedures in

filtering and segmentation, we utilized the MNE package version

1.5.1 (Gramfort et al., 2013) in Python 3.11.5. To eliminate any

artifacts caused by eye blinks or muscle movements in the EEGs

we collected, we utilized a methodology previously developed

by members of our research group (Rutkowski and Mori, 2015;

Rutkowski et al., 2023a). The empirical mode decomposition

(EMD) technique (Rutkowski et al., 2008, 2010) is utilized to

purify EEG channels to break them down into intrinsic mode

functions (IMF). Prior to reconstructing the final signal from sub-

threshold IMFs, components exceeding 100 µV are eliminated

(see Supplementary material). This entire process is carried out

using PyEMD ver.1.5.1. Once the cleaning is complete, the

resulting EEG traces are fed into the topological data analysis

(TDA) application (Rutkowski et al., 2023b) for time series-based

feature extraction. Please refer to the following section for a more

comprehensive understanding of this process.

2.3 TDA processing of EEG

Topology in mathematics studies shapes and spaces, while

topology in data analysis helps classify complex datasets by

extracting topological invariants (Carlsson, 2009; Patania et al.,

2017; Perea, 2018). Among the many topological methods

developed for data analysis (Carlsson, 2009; Patania et al., 2017;

Perea, 2018), a persistent homology is the most often used (Varley

et al., 2021). Persistent homology permits the construction of

descriptors of an embedded point cloud (EPC) shape and

cataloging the existence of different structural features, such as

connected components, cycles, and voids. In this study, we describe

the noisy EPCs generated from an eight-channel EEG time series

captured using a Unicorn EEG wearable with dry electrodes

during an affective reminiscent interior photography oddball task

performed by elderly participants. We utilize features such as

persistent homology, number of cycles, and normalized persistence

entropy, developed by Varley et al. (2021). This study builds

upon our previous endeavor to classify MCI by utilizing network

neuroscience features, as detailed in the publication by Rutkowski

et al. (2023a). The ripser library version 0.6.4 (Tralie et al., 2018;

Bauer, 2021) is used for TDA feature extraction, except for the

newly introduced persistence ratios’ analysis. The EPC obtained

from eight EEG channel time series in each 2-s time segment is

scrutinized to identify the maximum and total number of cycles,

normalized persistence entropy (NPE), and maximum and median

persistence ratios. Two novel improvements have been made to

the original TDA methodology proposed by Varley et al. (2021):

the use of latter ratio features and EMD-based EEG preprocessing.

More details can be found in the Supplementary material. Figure 1

illustrates all these features.

Frontiers in AgingNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1294139
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Rutkowski et al. 10.3389/fnagi.2023.1294139

FIGURE 1

Boxplots with marked median, quartile ranges, and whiskers extending to show the rest of the distributions (majority non-normal distributions),
together with Wilcoxon rank-sums test p−values, U-statistics, common language e�ect sizes (CLES) (McGraw and Wong, 1992) and area under the
ROC curve (AUC) (Hanley and McNeil, 1982) scores for TDA features, used in subsequent unsupervised clustering, classification and regression, in
three experimental response settings of the oddball paradigm’s target (TGT), ignored (IGN), and all (ALL) stimuli arranged in columns. The sample
numbers in both subject groups are marked by nhealthy and nMCI, respectively.
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2.4 Machine learning for MCI classification
and MoCA regression

Our study focused on predicting MCI using TDA feature

extraction and machine learning techniques. To visualize TDA

features, we employed uniform manifold approximation and

projection (UMAP) (McInnes et al., 2018), which allowed us to

differentiate between cognitive classes without supervision. We did

not need to preprocess with UMAP before applying two machine

learning algorithms directly. We aimed to classify healthy cognitive

aging and MCI and predict MoCA scores with limited participants.

We utilized leave-one-out-subject cross-validation (LOOSCV) to

achieve this, training a model using all participants except one.

Our final results, including median and confidence intervals,

were obtained by combining the results from each participant, as

discussed in the Section 3.

To report binary classification results between healthy cognitive

aging and MCI, we employed a random forest classifier (RFC)

with a maximum of 200 trees in the forest. Further information

about how the classifier performed in comparison to other methods

is available in the Supplementary material. This classifier can

be found in the scikit-learn ver. 1.3.0 library (Pedregosa et al.,

2011). Additionally, we used a random forest regressor (RFR)

to predict the exact MoCA score of each participant, using the

same parameters as previously mentioned. Our machine-learning

approaches relied on input features such as maximum and total

number of cycles, normalized persistence entropy, maximum

persistence, maximum ratio of persistence, and median.

3 Results

Our team’s proposed affective reminiscence paradigm leverages

TDA-drawn features from EEG and interior photography to

reveal significant differences between healthy cognitive aging

vs. MCI participants. Our visualization of these differences

utilizes unsupervised clustering UMAP. The following sections

comprehensively present our results from feeding the TDA features

into random forest classifiers and regressors.

3.1 Topological data analysis feature
distribution results

We utilized an oddball paradigm to evaluate working memory

through TDA features extracted from EEG signals in three different

contexts: targets (interior photographs that were instructed to be

memorized in each trial), ignored photographs (also known as

distractors), and all responses grouped. This proposed paradigm

of affective reminiscence enabled us to conduct our analysis

effectively. The results of the TDA-drawn features can be

seen in Figure 1. The distributions were analyzed using non-

parametric Wilcoxon rank-sum tests, which showed significant

differences with a probability of pr ≪ 0.01, except for the

median ratio of persistence cases. It is worth noting that most

of the distributions did not pass normality tests (with pn < 0.05).

As a result, we utilized reliable common-language-effect-size

(CLES) (McGraw and Wong, 1992) and area under the ROC

curve (AUC) (Hanley and McNeil, 1982) evaluations to support

non-parametric statistical significance outcomes. These evaluations

are indicated above each panel in Figure 1. According to our

research, MCI individuals and anesthetized animals (Varley et al.,

2021) displayed comparable outcomes concerning the number of

filtration cycles and their maximum results (see Figures 1A–F).

This suggests that people with MCI might have reduced levels of

conscious awareness, as reflected in their EEG brainwave patterns.

Moreover, while the study by Varley et al. (2021) we referred to

did not yield any significant differences in maximum persistence,

our findings revealed significantly higher outcomes for healthy

cognitive aging participants, as illustrated in Figures 1J–O. Finally,

the healthy cognitive aging group had significantly higher outcomes

than the MCI group for a normalized persistence entropy (see

Figures 1G–I). The encouraging differences in result distribution

prompted us to explore unsupervised clustering and machine

learning, with the outcomes discussed in the following sections.

3.2 Unsupervised clustering results

Each of the three experimental results - targets (TGT), ignored

(IGN), and all (ALL) brain responses grouped - were separated

and analyzed using a clustering technique. The resulting findings

are displayed in Figure 2, with color coding indicating MCI vs.

healthy cognitive aging cases and marker shapes representing the

exact MoCA scores. The UMAP unsupervised clustering projection

on a two-dimensional plane made it easy to differentiate between

cases of MCI and healthy cognitive aging. However, subsequent

classification or regression would require non-linear methods.

To compare and verify the results, we conducted a t-distributed

stochastic neighbor embedding (t-SNE) (Van der Maaten and

Hinton, 2008). This is presented in Supplementary Figure 5.

Although both UMAP and t-SNE maintain the structure of data,

UMAP is better at preserving the global structure, while t-SNE

excels at preserving the local structure. Additionally, UMAP is

more reliable and consistent than t-SNE, as it generates comparable

results for the same data even with different random seeds

and settings. This can be observed by comparing in Figures 2B,

C and Supplementary Figure 5. Promising findings were yielded

from examining 23 individuals using the affective reminiscent

interior oddball paradigm. These findings substantiate the theory

that TDA implementation holds great potential as a neuro-

biomarker for MCI. Additionally, the examination exposed a

connection to a reduction in conscious awareness in MCI subjects,

a phenomenon noted in past animal anesthesia experiments (Varley

et al., 2021). Further research is necessary to confirm preliminary

findings. Ideally, a multicultural group should be studied focusing

on MCI level.

3.3 MCI prediction results

The first section of Table 1 and the upper panels of Figure 3

provide a comprehensive overview of the successful outcomes

of the classification tests conducted on healthy cognitive aging

vs. MCI across three response settings: targets, ignored, and
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FIGURE 2

Unsupervised clustering (a machine learning training without class labels) scatter plots using UMAP (McInnes et al., 2018) in three experimental tasks
and original data without any data augmentation.

all. The median accuracies for all response groups exceeded

93%, with no noteworthy disparity between them. The chance

level for classification accuracy was set at 70% due to unequal

class memberships between MCI and healthy cognitive aging

groups. Furthermore, the classification results were corroborated

by impressive AUC, f 1, precision, and recall scores, as detailed in

Table 1.

3.4 MoCA regression results

We attempted a regression analysis after successfully classifying

data in the binary setting as reported in Section 3.3. However, these

findings should be interpreted cautiously due to a limited number

of participants and unequal distribution of MoCA scores, as shown

in Supplementary Figure 2. The results are shown in Table 1 and
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TABLE 1 LOOSCV overall MCI prediction and MoCA-score regression results.

LOOSCV overall MCI prediction (a binary classification of MCI vs. normal) results

Stimulus case Accuracy AUC f 1 Recall Precision

Target (TGT) 95.63% 0.96 0.96 0.96 0.96

Ignored (IGN) 93.13% 0.90 0.93 0.93 0.93

All (ALL) 93.86% 0.92 0.94 0.94 0.94

LOOSCV overall MoCA-score regression (the exact MoCA score prediction) results

Stimulus case r2 MSE MAE Median error MAPE (%)

Target (TGT) 0.35 11.53 2.52 0.37 13.21

Ignored (IGN) 0.32 12.14 2.66 0.21 13.68

All (ALL) 0.34 11.80 2.59 0.34 13.37

Figures 3C–F. The regression r2 score of the model exceeded that

of a naive regressor, indicating its ability to account for over

30% of the variability in the dependent variables. Encouragingly,

the mean absolute error (MAE) produced even more impressive

findings, accurately forecasting the subject’s MoCA score within

a narrow range of ±2.6. Moreover, in the LOOSCV setting, the

subjects’ median errors were below 0.4, indicating that the TDA

analysis performed in the affective reminiscence paradigm holds

the promise of being a reliable neuro-biomarker candidate with

a broader participant pool. Furthermore, all cases exhibited mean

absolute percentage error outcomes less than 14%, reinforcing our

research approach’s soundness. According to Figures 3C–F, there

were no significant differences in the regression results between

target, ignored, and all reminiscent photography stimuli.

4 Discussion

Previously, Varley et al. (2021) have utilized network

neuroscience analysis to investigate brainwave time series and

their correlation with levels of conscious awareness. Varley et al.

(2021) research established a relationship between the network

features and the degree of conscious awareness in animals

undergoing anesthesia. Similar observations have been shown in

EEG by Rutkowski et al. (2023a), also using a similar network

neuroscience approach for forecasting MCI in human subjects;

however, the relation to awareness modulation has yet to be

fully established. The same previous study by Varley et al. (2021)

used TDA analysis of brainwave time series to identify statistical

differences in the number of filtration cycles and their maximum

results in anesthetized animals. Our current study found that

participants with MCI have a statistically significant decrease in the

number of cycles during filtration, indicating similarity to the lower

awareness levels of anesthetized animals (Varley et al., 2021). This

preliminary finding, based on a limited subject group, suggests

a potential link between MCI and lower conscious awareness

levels in elderly individuals. However, further experimental

confirmation beyond the oddball paradigm is necessary to confirm

this hypothesis.

According to the results of the current study, healthy cognitive

aging participants have higher conscious awareness levels during

the experimental task. This is reflected in the significantly higher

numbers of cycles and maximum persistence ratios observed in

the EEG of these participants. This finding is consistent with

a previous study by Varley et al. (2021), which showed similar

results with pharmacologically controlled anesthesia levels. These

results suggest that healthy aging brains exhibit more frequent

state transitions (Barabási et al., 2023) during cognitive tasks that

involve affective reminiscence and working memory. This may

indicate that older individuals exhibit greater awareness during

tasks, as demonstrated by significantly higher numbers of cycles

and maximum persistence ratios observed in EEG, related to more

reach state transitions (Sizemore et al., 2019).

As highlighted in Section 3.2, the dissimilarities in distributions

that were detected via TDA analysis were validated to have

statistical significance with the aid of unsupervised machine

learning clustering techniques like UMAP and t-SNE. The obtained

clusters exhibited non-linear separability, indicating their potential

usefulness in non-linear classification and regression approaches

that may follow.

The final LOOSCV classification experiment presented in

Section 3.3 resulted in solid and above 93% classification accuracies

supported significant f 1-scores, as well as safely above the 70%

chance level in the study. Three different response groups of

selected only targets or ignored reminiscent interior photographs,

as well as all the above grouped, resulted in non-significant

classification and regression results as discussed in Sections 3.3, 3.4.

The presented brief research report has a limitation regarding

participant numbers, with only 23 individuals included.

Additionally, the class membership is unbalanced, with a

significantly higher number of individuals with Mild Cognitive

Impairment (MCI), as evaluated only with MoCA tests, than

those with healthy cognitive aging. Moreover, the study had

limited gender diversity, with only one male participant. As we

move forward, we plan to conduct a project involving a larger

group of participants with a balanced gender distribution. This

project may be undertaken in cross-cultural settings to validate

and reproduce the findings. Additionally, we intend to include

more cognitive tests to support our findings, as stated by Hodges

and Larner (2017). An effective means of enhancing the present

research lies in solidifying the linkages between the anticipated

phases of MCI and the cognitive scores (Hodges and Larner, 2017;
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FIGURE 3

The boxplot diagrams show the median, quartile, and 95−percentile ranges of LOOSCV-based MCI classification in (A, B), as well as MoCA regression
results in (C–F). The chance level is set at 70% for classification results due to unequal class memberships (MCI vs. healthy). Accuracy is displayed in
(A), while (B) shows f1−scores. Regression median errors for exact MoCA-score prediction are presented in (C), mean absolute percentage errors
(MAPE) in (D), mean absolute errors (MAE) in (E), and mean squared errors (MSE) in (F).

Nara et al., 2018). Accomplishing this requires the integration

of supplementary assessments, such as PET and cerebrospinal

fluid (CSF) biomarkers for Alzheimer’s syndrome or structural

MRI for evaluating vascular dementia (Morinaga et al., 2010;

Bucci et al., 2021). By doing so, the suggested neuro-biomarker

will become more dependable. Our study delves into applying
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topological data analysis (TDA) techniques in scrutinizing

multivariate EEG time series. Our primary focus is to uncover

the disparities between age-related healthy cognitive function

and MCI, as well as the regression of cognitive scores, with

the aid of TDA. We accomplish this by analyzing the temporal

dynamics of all EEG channels and constructing multi-dimensional

shapes using embedded point cloud (EPC) data. Our findings

reveal how the brain progresses through state space over time

(Sizemore et al., 2019; Barabási et al., 2023; Betzel et al., 2023).

The study aims to develop an inexpensive neuro-biomarker for

monitoring cognitive interventions and subsequent dementia care

remotely.
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