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Background: A few observational studies revealed that amyotrophic lateral 
sclerosis (ALS) was tightly connected with osteoporosis. However, the results of 
previous studies were inconsistent, and the causal effect of ALS on osteoporosis 
has not been investigated. To do so, the two-sample Mendelian randomization 
(MR) method was employed to estimate the causality.

Methods: The instrumental variables (IVs) for ALS were selected from one GWAS 
summary dataset (27,205 ALS cases and 110,881 controls), and bone mineral 
density (BMD) in the femoral neck (FN), lumbar spine (LS), and forearm, extracted 
from another large-scale GWAS summary database (53,236 cases), were used as 
phenotypes for osteoporosis. Random-effects inverse variance weighted (IVW), 
MR Egger, weighted median, simple mode, and weighted mode were conducted 
to evaluate the causality. Sensitivity analyses were further performed to explore 
heterogeneity and pleiotropy.

Results: A total of 10 qualified SNPs were finally selected as proxies for ALS. The 
results of random effects from IVW revealed that ALS has no causal effect on 
FN-BMD (beta: −0.038, 95% CI: −0.090 to 0.015, SE: 0.027, p  =  0.158), LS-BMD 
(beta: −0.015, 95% CI: −0.076 to 0.046, SE: 0.031, p  =  0.629), and forearm BMD 
(beta: 0.044, 95% CI: −0.063 to 0.152, SE: 0.055, p  =  0.418). These results were 
confirmed using the MR-Egger, weighted median, simple model, and weighted 
model. No heterogeneity or pleiotropy was detected (p  >  0.05 for all).

Conclusion: Contrary to previous observational studies, our study figured out that 
no causal effect existed between ALS and osteoporosis. The disparity in results is 
probably attributed to secondary effects such as physical inactivity and muscle 
atrophy caused by ALS.
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1 Introduction

Both amyotrophic lateral sclerosis (ALS) and osteoporosis are age-related diseases that can 
severely exacerbate the debilitation of the musculoskeletal system (Pandya and Patani, 2020; Ma 
et  al., 2023). ALS is a rare, fatal, and incurable disorder characterized by motor neuron 
dysfunction leading to progressive skeletal muscle weakness and behavioral deficits, with 
respiratory failure often the ultimate cause of death (Feldman et al., 2022). Osteoporosis is a 
generalized systemic skeletal disorder associated with decreased bone mass and disruption of 
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bone architecture, resulting in a subsequent increase in susceptibility 
to fractures (including hip, spine, and pelvic fractures) (Genant et al., 
1999). Numerous clinical studies have observed that the skeletal 
health of ALS patients significantly deteriorates due to a lack of muscle 
contraction and physical activity, manifested as an increased risk of 
bone loss and osteoporosis (Brown and Al-Chalabi, 2017; Caplliure-
Llopis et al., 2020). According to statistics, the annual incidence of 
osteoporotic fractures caused by osteoporosis exceeds 8.9 million 
cases worldwide, most of which usually require long-term care, and 
the mortality rate of patients with a disease duration of more than 
1 year is increased by 25%, thereby causing unoptimistic treatment 
costs and mortality (Ferrari et al., 2016; Ensrud and Crandall, 2017; 
Johnston and Dagar, 2020). Nonetheless, the problem of comorbid 
osteoporosis in ALS patients is always underestimated, as ALS patients 
often have limited mobility and bone loss tends to occur insidiously 
(usually asymptomatic until the first osteoporotic fracture), which 
poses a challenge for clinical management and intervention (Johnston 
and Dagar, 2020; Aibar-Almazán et  al., 2022). Non-invasive 
mechanical ventilation (NIMV) contributes to the prolonged survival 
of ALS patients, yet growing clinical cases have reported that ALS 
patients treated with NIMV who are comorbid with severe 
osteoporosis are more susceptible to respiratory failure due to a 
low-energy traumatic event that induces osteoporotic vertebral 
fracture (Hardiman et al., 2017; Portaro et al., 2018). Evaluating the 
correlation between ALS and osteoporosis, as well as timely identifying 
and treating ALS patients with the potential risk of osteoporosis and 
fracture, are bound to be of great clinical importance.

Previous studies have suggested that there is an interacting 
pathophysiological basis and a close clinical correlation between ALS 
and osteoporosis (Medinas et al., 2017; Caplliure-Llopis et al., 2020; 
Ma et al., 2023). Pathophysiological studies have revealed that bone is 
a key provider of muscle trophic factors (e.g., BMP, VEGF, and IGF-1), 
whereas muscle is a source of osteoblastic stem cells and certain 
anabolic stimuli for bone remodeling (Cho et al., 2010; Koh et al., 
2012; Zhou et al., 2015). Muscle strength continuously regulates the 
structure and function of the skeleton, so when ALS causes muscle 
dysfunction, the skeleton is compromised accordingly; likewise, 
compromised bone balance can, in turn, contribute to muscle 
degeneration, which further accelerates ALS progression (Zhou et al., 
2015). Clinical studies have found that ALS patients are at increased 
risk of developing osteoporosis and related fractures because of 
abnormal energy metabolism, malnutrition, decreased limb flexibility, 
increased joint stiffness, and frequent falls (Fernando et al., 2019; 
Morini et al., 2023). According to multiple observational studies, there 
is a strong statistical correlation between ALS and osteoporosis, 
whereas it is difficult to state the exact nature of the relationship since 
these studies are observational (Joyce et al., 2012; Kelly et al., 2020; 
Sooragonda et  al., 2021). Notably Caplliure-Llopis et  al. (2020) 
indicated that deterioration in bone health was not associated with 
ALS subtype or clinical status but could be related to the levels of 
metabolic parameters like thyroid-stimulating hormone and vitamin 
D. Thus, the aforementioned conflicting evidence may weaken the 
potential causal relationship between these two diseases. It should 
be recognized that in epidemiological studies (especially observational 
studies), studies were commonly limited to small sample sizes (due to 
the rarity of ALS), and the presence of bias introduced by confounders 
largely interfered with the causal-effect inference of exposure and 
outcome, thereby rendering the results unreliable (Fewell et al., 2007). 

Further research focused on the causal relationship between ALS and 
osteoporosis would be valuable for the prevention and treatment of 
combined osteoporosis in ALS patients.

Mendelian randomization (MR) is an emerging method in clinical 
epidemiology that utilizes genetic variants as instrumental variables 
(IVs) and thus cannot be affected by confounding factors and reverse 
causation, which exist in cross-sectional studies (Davey Smith and 
Hemani, 2014). Based on this, the MR method has the ability to 
identify causal relationships between exposure and outcome and is 
also regarded as an alternative method for randomized controlled 
trials, which have been regarded as the gold standard for verifying 
causality (Davey Smith and Hemani, 2014; Davies et al., 2018). Owing 
to its strength of causal-effect inference, the two-sample MR method 
was widely used to find risk factors for a variety of diseases, such as 
osteoporosis, Parkinson’s disease, and prostate cancer (Mitchell et al., 
2021; Bottigliengo et al., 2022; Deng and Wong, 2023; Fang et al., 
2023). At the same time, a number of close relationships identified by 
previous cross-sectional studies were further validated and 
disentangled by recent MR studies (Chen et al., 2022; Zhang et al., 
2022). For instance, previous observational studies have found that 
rheumatoid arthritis is closely related to osteoporosis, while through 
a two-sample MR analysis, Liu et al. (2021) demonstrated no causal 
association between rheumatoid arthritis and osteoporosis. Similarly, 
based on the results of MR analysis, He et al. (2021) did not find a 
causal relationship between depression and osteoporosis, which is 
contrary to the results of previous observational research. 
Unfortunately, to the best of our knowledge, there is still a lack of MR 
studies exploring the causal relationship between ALS and 
osteoporosis to validate the results of previously controversial 
observational studies and to provide guidance for future clinical 
interventions in ALS patients with comorbid osteoporosis.

The current study, as the first two-sample MR study to explore the 
causal effect of ALS on osteoporosis, ultimately aims to elucidate the 
causal relationship between ALS and osteoporosis and to corroborate 
the findings identified by previous cross-sectional studies.

2 Materials and methods

2.1 Data on ALS and BMD

The largest-scale ALS GWAS summary statistics up to now were 
extracted from a recent meta-analysis performed by van Rheenen 
et al. (2021), which involved 27,205 ALS cases and 110,881 controls. 
All participants were of European ancestry. For the ALS and BMD 
data sets used in this study (Zheng et al., 2015; van Rheenen et al., 
2021), we refer the reader to the primary GWAS manuscripts and their 
Supplementary material for details on information of cohorts. Cases 
were diagnosed in accordance with the revised El-Escorial criteria 
(Brooks et  al., 2000), and control subjects were population-based 
controls matched for sex and age. The summary-level data on ALS 
among European ancestry is publicly available through the Project 
MinE website.1

1 https://www.projectmine.com/research/download-data/
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In the present study, we aimed to explore the causal effect of ALS 
on osteoporosis. Osteoporosis was diagnosed clinically by 
measurement of BMD to a large extent (LeBoff et al., 2022). BMD 
measured at three common bone areas, including femoral neck BMD 
(FN-BMD), lumbar spine (L1-4) BMD (LS-BMD), and the forearm 
(distal 1/3 of radius) BMD, were treated as outcome variables in the 
MR analysis. GWAS summary data for BMD were retrieved from a 
large meta-analysis involving a total of 53,236 cases of European 
ancestry, which were selected from the general population (Zheng 
et al., 2015). Sex, age, age-squared, and weight were covariates in the 
meta-analysis and adjusted before testing SNPs. BMD was measured 
by DXA and standardized within each cohort to control systematic 
differences in BMD measurements. The summary-level data of 
FN-BMD, LS-BMD, and forearm BMD used in this study were 
extracted from the GEnetic Factors for OSteoporosis Consortium 
(GEFOS, http://www.gefos.org/).

Population stratification was regarded as a factor that could 
contribute to bias in MR analysis caused by different ancestries 
between exposure and outcome summary statistics. In our study, all 
the participants were of European ancestry. In addition, the degree of 
sample overlap was an important factor to consider and could 
introduce bias or a type 1 error rate if it was substantial in a two-sample 
MR study (Burgess et al., 2016). We tested the degree through the 
online tool2 (Burgess et al., 2016), and no significant sample overlap 
(<6%) between exposure (ALS) participants and outcome (FN-BMD, 
LS-BMD, and forearm BMD) participants was found. A large study 
population, relatively strong IVs, and low sample overlap in this study 
could minimize the extent of bias caused by overlapped populations 
to some extent (Burgess et al., 2016). On account of all the GWAS 
summarized statistics of ALS and BMD used in the present study 
being publicly available, no ethical consent was needed.

2.2 IVs selection process

To obtain robust results in the MR analysis, MR was required to 
satisfy the three assumptions as follows: first, the relevance 
assumption: IVs were strongly associated with ALS in this study; 
second, the exclusion restriction assumption: IVs could only exert 
influence on BMD through ALS rather than other pleiotropic 
pathways; and third, the independence assumption: IVs were 
independent of confounders (Skrivankova et al., 2021). Accordingly, 
the SNPs of exposure data that satisfied the strict criteria as follows 
were employed as IVs. First, SNPs with p-value lower than 5 × 10−8 and 
F-statistics greater than 10 were regarded as significantly associated 
with the exposure factor and included in the study. The formula F = R2 
(N − 2)/(1 − R2) and R2 = 2 × (1 − MAF) × MAF × β2 were used to 
calculate the strength of every single SNP. N represented the sample 
size of the ALS GWAS database, and MAF represented minor allele 
frequency. Second, the clumping process (r2 < 0.001, kb = 10,000) 
among all the above-included SNPs was carried out to exclude SNPs 
that were in linkage disequilibrium (LD) with other SNPs. r2 was the 
LD correlation coefficient. Third, if a large portion of SNPs were not 
found in the GWAS datasets of BMD, variant proxies (r2 ≥ 0.8) were 

2 https://sb452.shinyapps.io/overlap/

selected by visiting the online website3 (Li et al., 2022; Seyedsalehi 
et  al., 2023). Fourth, PhenoScanner V2 (available at http://www.
phenoscanner.medschl.cam.ac.uk/) is a simple and widely used tool 
to specify whether a particular SNP is associated with other 
confounders (Kamat et al., 2019). SNPs related to confounders were 
excluded by visiting this online website. Previous studies have 
demonstrated that age at menarche has a causal effect on osteoporosis 
(Zhang et al., 2018). The SNP rs2077492 was excluded due to its strong 
association with age at menarche. The SNP rs9275477 was also 
excluded due to its association with treatment with prednisolone. 
Finally, SNPs that were significantly (p-value lower than 5 × 10−8) 
associated with outcome data were excluded. Incompatible SNPs were 
also excluded from the harmonization process. Finally, 10 SNPs of 
ALS were used as the IVs for further MR analysis. The flowchart of 
this study design was shown in Supplementary Figure S1.

2.3 Mendelian randomization analyses and 
sensitivity analyses

The causal effects of ALS on osteoporosis risk, including FN-BMD, 
LS-BMD, and forearm BMD, were estimated using the two-sample 
MR method. Random effects inverse variance weighted (IVW) was 
the main analytical method. Other complementary methods, 
including MR-Egger regression, weighted median, simple model, and 
weighted model, were also used.

The following sensitivity analyses were applied to explore 
heterogeneity and pleiotropy. Cochran’s Q tests using IVW and 
MR-Egger were calculated to estimate the heterogeneity. MR-Egger 
intercept analysis was used to detect the horizontal pleiotropic effects. 
p-values less than 0.05 indicated pleiotropy. A leave-one-out cross-
validation test was applied to detect the effect of potentially influential 
SNPs and the robustness of the estimates. The MR pleiotropy residual 
sum and outlier test (MR-PRESSO) was conducted to test pleiotropy 
and detect and correct the outliers. If there were any outlier SNPs, the 
MR analysis was performed again after the outlier was corrected. The 
symmetry of the funnel plot could intuitively reflect potential 
horizontal pleiotropy, and any asymmetry was a sign of directional 
pleiotropy (Burgess et al., 2017). Statistical power was tested according 
to the method proposed by Brion et al. (2013). A p-value less than 0.05 
indicated statistical significance in all the sensitivity analysis methods.

2.4 Statistical analysis

Package “TwoSampleMR” (Hemani et al., 2018) in the R software 
(version 4.1.2) was employed for two-sample MR analysis. Tests were 
two-tailed. When the number of tests is greater than one, Bonferroni 
correction should be performed to avoid false-positive estimates (Peng 
et al., 2022). Bonferroni-corrected statistical significance was 0.05/(1 
ALS × 3 BMD) = 0.017  in this study. p-value less than 0.017 was 
considered significant in the MR analysis. p-value less than 0.05 but 
more than 0.017 was considered a potential causal relationship.

3 https://snipa.helmholtz-muenchen.de/snipa3/
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3 Results

After strict adherence to the criteria of IVs selection, a total of 10 
qualified SNPs were finally selected as proxies for ALS in the present 
study (Supplementary Table S1). No proxy SNPs were employed 
because all the SNPs identified in the exposure data were found in the 
outcome data.

3.1 Causal effect of ALS on FN-BMD

Based on the results of the main MR method, ALS had no 
etiological effect on FN-BMD in IVW [beta: −0.038, 95% confidence 
interval (CI): −0.090 to 0.015, standard error (SE): 0.027, p = 0.158, 
Figure 1]. The results were validated in other complementary methods, 

MR-Egger (beta: −0.120, 95% CI: −0.242 to 0.002, SE: 0.062, 
p = 0.090), weighted median (beta: −0.041, 95% CI: −0.112 to 0.029, 
SE: 0.036, p = 0.249), simple model (beta: −0.045, 95% CI: −0.160 to 
0.070, SE: 0.059, p = 0.483), and weighted model (beta: −0.047, 95% 
CI: −0.127 to 0.033, SE: 0.041, p = 0.319, Figure 1). A scatterplot of the 
causal associations between ALS and FN-BMD is shown in Figure 2A.

3.2 Causal effect of ALS on LS-BMD

Similarly, no significant causal effect was identified between ALS 
and LS-BMD, estimated by the following five two-sample MR analysis 
methods (IVW beta: −0.015, 95% CI: −0.076 to 0.046, SE: 0.031, 
p = 0.629; MR-Egger beta: −0.041, 95% CI: −0.183 to 0.100, SE: 0.072, 
p = 0.581; weighted median beta: −0.025, 95% CI: −0.106 to 0.056, SE: 

FIGURE 1

MR analysis between ALS and osteoporosis (FN-BMD, LS-BMD, and forearm BMD). Five methods: random-effects IVW, MR Egger, weighted median, 
simple mode, and weighted mode.
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0.041, p = 0.552; simple model beta: −0.051, 95% CI: −0.184 to 0.081, 
SE: 0.068, p = 0.469; weighted model beta: −0.009, 95% CI: −0.140 to 
0.121, SE: 0.067, p = 0.877, Figure 1). The forest map of the above five 
MR methods is shown in Figure  1. A scatterplot of the causal 
relationships between ALS and LS-BMD is shown in Figure 3A.

3.3 Causal effect of ALS on forearm BMD

ALS also showed a null causal relationship with forearm BMD 
in IVW (beta: 0.044, 95% CI: −0.063 to 0.152, SE: 0.055, p = 0.418), 
MR-Egger (beta: 0.132, 95% CI: −0.119 to 0.384, SE: 0.128, 
p = 0.333), weighted-median (beta: 0.041, 95% CI: −0.099 to 0.181, 
SE: 0.072, p = 0.553), simple model (beta: 0.021, 95% CI: −0.202 to 
0.244, SE: 0.114, p = 0.860), and weighted model (beta: 0.115, 95% 
CI: −0.073 to 0.302, SE: 0.096, p = 0.338, Figure 1). The scatterplot 

of the causal associations between ALS and forearm BMD is shown 
in Figure 4A.

3.4 Sensitivity analyses

Detailed results of MR-PRESSO, MR-Egger intercept analysis, 
heterogeneity tests by IVW, and heterogeneity tests by MR-Egger are 
shown in Table 1. All the p-values were greater than 0.05 in MR-Egger 
intercept analysis, heterogeneity tests by IVW, and heterogeneity tests 
by MR-Egger, indicating that no heterogeneity or pleiotropy existed 
in our study. In addition, no outliers were identified by MR-PRESSO 
analysis. According to the results of the leave-one-out cross-validation 
test, we did not detect any potentially influential or problematic SNPs 
(Figures  2B–4B). As shown in the funnel plots 
(Supplementary Figure S2), no potential horizontal pleiotropy was 

FIGURE 2

Scatterplot of the causal relationships between ALS and FN-BMD (A). MR Leave-one-out cross-validation test for ALS on FN-BMD (B).

FIGURE 3

Scatterplot of the causal relationships between ALS and LS-BMD (A). MR Leave-one-out cross-validation test for ALS on LS-BMD (B).
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discovered. Based on the consistency of the results estimated by five 
different MR analytical approaches and the fact that no positive 
findings existed in the heterogeneity and pleiotropy tests, the results 
were considered robust.

4 Discussion

As far as we know, this is the first study to estimate the genetic 
causal effect of ALS on osteoporosis by utilizing the two-sample MR 
method. Our results demonstrated that ALS was not causally 
associated with osteoporosis (FN-BMD, LS-BMD, and forearm BMD). 
In other words, ALS was not an immediate risk factor for osteoporosis. 
No heterogeneity or pleiotropy existed in the sensitivity analyses, 
indicating relatively strong robustness of the causal-effect inference in 
the present study.

Contrary to our findings, several observational epidemiological 
studies reported robust associations between ALS and osteoporosis, 
but their findings were contradictory. As far back as 1977, 
abnormalities in vertebral structure have been observed among ALS 
patients (Mallette et al., 1977). Subsequently, a significant decrease 
in cortical bone mass was detected in individuals with ALS 
(Yanagihara et al., 1984). Likewise, Morini et al. (2023) found that 

patients with ALS (16 male and 22 female individuals) showed lower 
BMD. According to a recent cross-sectional study, ALS patients 
represented statistically significantly worse bone quality parameters 
(including T-score and BMD) compared with the control group 
matched in sex and age (Caplliure-Llopis et al., 2020). Interestingly, 
in this series, when analyzing BMD according to different sexes, 
female patients with ALS (11/12) showed statistically significantly 
lower BMD than healthy female individuals (4/24); however, 
differences in the proportion of male individuals with osteoporosis 
in the ALS group and healthy control group (7/21 vs. 23/42) were 
not significant. In contrast, one Indian cohort including 30 male ALS 
subjects and 33 healthy controls suggested a higher level of bone 
turnover marker in the ALS group; nevertheless, no significant 
differences in BMD between the two groups were observed 
(Sooragonda et al., 2021). Yet, all of the above studies were limited 
by a relatively limited sample size; the associations identified in the 
observational studies may have been generated by confounders, 
reverse causality, and a variety of biases, such as selection bias and 
recall bias. Moreover, inaccurate causal-effect inferences of exposure 
and outcome still remain, even through rigorous study design and 
statistical adjustment (Fewell et al., 2007; Davey Smith and Hemani, 
2014). Elucidating the causal relationship between ALS and 
osteoporosis was clinically important.

FIGURE 4

Scatterplot of the causal relationships between ALS and forearm BMD (A). MR Leave-one-out cross-validation test for ALS on forearm BMD (B).

TABLE 1 The results of sensitivity analyses.

Exposure Outcome MR-PRESSO MR-Egger intercept 
analysis

Heterogeneity tests 
by IVW

Heterogeneity tests 
by MR-Egger

Global 
test 

p-value

Main 
MR 

results 
p-value

Intercept Intercept 
p-value

Cochran’s 
Q

p-
value

Cochran’s 
Q

p-
value

ALS FN-BMD 0.570 0.171 0.010 0.180 8.120 0.522 5.967 0.651

ALS LS-BMD 0.725 0.563 0.003 0.694 5.842 0.756 5.676 0.683

ALS Forearm BMD 0.930 0.217 −0.011 0.470 3.342 0.949 2.768 0.948

p < 0.05 was considered significant in sensitivity analyses.
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The mechanism between ALS and osteoporosis has also been 
widely discussed. Some studies suggest that neurotoxic metals that 
have been detected in individuals with ALS might have an effect 
on bone mineralization (Roos et al., 2013). Specifically, evidence 
from Roos (2014) showed that several neurotoxic metals (e.g., 
cadmium, lead, and arsenic) accumulate in the bones of ALS 
patients to disrupt bone remodeling by replacing calcium in 
hydroxyapatite (one important mineral component of bone). 
While Ko et al. (2018) revealed that SOD1G93A mice, the mouse 
model of ALS, exhibited decreased trabecular bone mass, thinner 
trabeculae, and lower cortical bone thickness when compared 
with healthy controls. Similarly, by using the G93A mouse model, 
Zhu et al. (2015) found that mice with serious muscle atrophy 
showed significantly lower trabecular as well as cortical bone 
mass. They also found that osteoblast properties, such as 
osteoblast differentiation capacity, were seriously impaired and 
that osteoclast formation was markedly improved in the G93A 
mouse model with serious muscle atrophy. But no striking changes 
in osteoblast and osteoclast properties were detected in G93A 
mice without muscle atrophy. Consistently, significant degradation 
of bone caused by muscle paralysis was found in the murine 
model (Warner et al., 2006). These animal studies might suggest 
that muscle atrophy was a direct contributor to osteoporosis, not 
due to ALS itself.

Accumulative evidence indicated that skeletal muscle load was the 
major source of mechanical stimulation of bone anabolism; moreover, 
skeletal muscles were the crucial source of osteogenic growth factors 
(Hamrick et al., 2010). Clinically, mechanical unloading could lead to 
bone loss (Lloyd et  al., 2014). For instance, one previous study 
indicated that individuals affected by Duchenne muscular dystrophy 
showed lower BMD and Z-scores (Rufo et  al., 2011). Insufficient 
physical activity was also regarded as a risk factor for osteoporosis 
(Roos, 2014). Likewise, ALS is a neurodegenerative disease 
characterized by progressive weakness of skeletal muscles, muscle 
atrophy, and behavioral deficits. These findings indicated that the 
presence of osteoporosis in individuals with ALS might be partially 
intermediated by other elements, including muscle atrophy and 
physical inactivity. The results of our two-sample MR study revealed 
no causal relationship between ALS and osteoporosis, which might 
also suggest an indirect effect, rather than a direct effect, of ALS 
on osteoporosis.

This study has several strengths. First, our MR study revealed 
no causal effect of ALS on osteoporosis for the first time at the 
genetic level, which contributes positively to the genetics of 
osteoporosis. We further discussed how deteriorated bone health in 
ALS patients might be due to muscle atrophy or physical inactivity. 
Based on our results, we recommended that more clinical attention 
should be paid to the bone health of ALS patients with muscular 
dystrophy, but osteoporosis should not be dogmatically viewed as a 
complication of ALS, as our results revealed that ALS may not 
be causally associated with osteoporosis. The insightful realization 
that there was no causal association between ALS and osteoporosis 
helped clinicians place the focus of intervening in osteoporosis in 
patients with ALS on regular monitoring of bone mineral density 
and appropriate strategies to nourish the skeletal-muscular system, 
as well as to enhance muscle contraction and physical activity. 
Second, the data used in this study were extracted from two large-
scale GWAS summary datasets for ALS and osteoporosis separately, 

which helped to estimate the causality more precisely compared 
with previous observational studies. Third, there is no significant 
sample overlap between exposure and outcome datasets in this 
two-sample MR-designed research. Fourth, BMD in three common 
bone sites (FN-BMD, LS-BMD, and forearm BMD) was employed 
as a phenotype for osteoporosis, which might control the statistical 
bias to some extent. Fifth, no positive findings in the sensitivity 
analyses excluded the possibility that the MR study was biased by 
horizontal pleiotropy.

This study has certain limitations. First, considering different bone 
qualities have been identified between male and female patients with 
ALS in previous observational studies (Caplliure-Llopis et al., 2020), 
stratified analysis according to different sexes would have been of 
clinically great interest. Nevertheless, since we only adopted summary-
level databases that are publicly available for MR analyses, it is 
impossible to perform subgroup analyses. Second, all the participants 
were of European ancestry; in our study, we did not verify whether a 
causal effect existed in other populations. Further studies validating 
the causality among other ethnic groups are needed.

5 Conclusion

Contrary to previous observational studies, our study figured out 
that no causal effect existed between ALS and osteoporosis. The 
disparity in results is probably attributed to secondary effects such as 
physical inactivity and muscle atrophy caused by ALS.
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Glossary

ALS Amyotrophic lateral sclerosis

BMD Bone mineral density

CI Confidence interval

DXA Dual energy X-ray absorptiometry

FN Femoral neck

GEFOS Genetic factors for osteoporosis consortium

GWAS Genome-wide association studies

IVs Instrumental variables

IVW Inverse variance weighted

LD Linkage disequilibrium

LS Lumbar spine

MAF Minor allele frequency

MR Mendelian randomization

MR-PRESSO MR pleiotropy residual sum and outlier test

NIMV Non-invasive mechanical ventilation

OR Odds ratio

SE Standard error

SNP Single nucleotide polymorphism
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